É uma investigação sobre os efeitos de processos anti-dumping sobre importações americanas de bário da China (ver enunciado em Wooldridge (2006, p.325)). A presença de sazonalidade pode estar desestabilizando as séries e induzindo a regressão espúria devido à não-estacionariedade causada pelas sazonalidades
# Ver também HEISS (p.177), e
# MOHR (https://www.r-econometrics.com/reproduction/wooldridge/wooldridge10/)
# https://www.r-econometrics.com/reproduction/wooldridge/wooldridge10/
library(wooldridge)
data("barium")
#esquisse::esquisser()
# Plot de lchnimp
library(ggplot2)
ggplot(barium) +
aes(x = t, y = lchnimp) +
geom_line(size = 1L, colour = "#0c4c8a") +
theme_minimal()
# regressão com dummies sazonais
lm.10.11 <- lm(lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + afdec6 +
feb + mar + apr + may + jun + jul + aug + sep + oct + nov + dec,
data = barium)
# regressão sem dummies sazonais
lm.10.11res <- lm(lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + afdec6,
data = barium)
anova(lm.10.11, lm.10.11res)
## Analysis of Variance Table
##
## Model 1: lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + afdec6 +
## feb + mar + apr + may + jun + jul + aug + sep + oct + nov +
## dec
## Model 2: lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + afdec6
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 113 40.844
## 2 124 44.247 -11 -3.4032 0.8559 0.5852
Nesse caso, Mohr fez um teste conjunto dos dois modelos, um restrito (lm.10.11res) e outro irrestrito. A Pr(>F)=0.5852 indicou que as dummies sazonais são não significativas.
# http://www.urfie.net/downloads10.html
#
data(barium, package='wooldridge')
# Imports from China: Variable "chnimp" from data frame "data"
# Monthly time series starting Feb. 1978
impts <- ts(barium$chnimp, start=c(1978,2), frequency=12)
# plot time series
plot(impts)
library(dynlm);library(lmtest);library(car);library(foreign)
data(barium, package='wooldridge')
# Define monthly time series beginning in Feb. 1978
tsdata <- ts(barium, start=c(1978,2), frequency=12)
res <- dynlm(log(chnimp) ~ log(chempi)+log(gas)+log(rtwex)+befile6+
affile6+afdec6+ season(tsdata) , data=tsdata )
coeftest(res)
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.7792155 32.4286452 0.5174 0.60587
## log(chempi) 3.2650621 0.4929302 6.6238 1.236e-09 ***
## log(gas) -1.2781403 1.3890083 -0.9202 0.35944
## log(rtwex) 0.6630453 0.4713037 1.4068 0.16222
## befile6 0.1397028 0.2668075 0.5236 0.60158
## affile6 0.0126324 0.2786866 0.0453 0.96393
## afdec6 -0.5213004 0.3019499 -1.7264 0.08700 .
## season(tsdata)Feb -0.4177110 0.3044444 -1.3720 0.17277
## season(tsdata)Mar 0.0590520 0.2647307 0.2231 0.82389
## season(tsdata)Apr -0.4514830 0.2683864 -1.6822 0.09529 .
## season(tsdata)May 0.0333090 0.2692425 0.1237 0.90176
## season(tsdata)Jun -0.2063315 0.2692515 -0.7663 0.44509
## season(tsdata)Jul 0.0038366 0.2787666 0.0138 0.98904
## season(tsdata)Aug -0.1570645 0.2779927 -0.5650 0.57320
## season(tsdata)Sep -0.1341605 0.2676556 -0.5012 0.61718
## season(tsdata)Oct 0.0516925 0.2668512 0.1937 0.84675
## season(tsdata)Nov -0.2462599 0.2628271 -0.9370 0.35077
## season(tsdata)Dec 0.1328376 0.2714234 0.4894 0.62550
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# teste de restrição
linearHypothesis(res, c("season(tsdata)Feb","season(tsdata)Mar",
"season(tsdata)Apr","season(tsdata)May",
"season(tsdata)Jun","season(tsdata)Jul",
"season(tsdata)Aug","season(tsdata)Sep",
"season(tsdata)Oct","season(tsdata)Nov",
"season(tsdata)Dec"),
c(0,0,0,0,0,0,0,0,0,0,0))
## Linear hypothesis test
##
## Hypothesis:
## season(tsdata)Feb = 0
## season(tsdata)Mar = 0
## season(tsdata)Apr = 0
## season(tsdata)May = 0
## season(tsdata)Jun = 0
## season(tsdata)Jul = 0
## season(tsdata)Aug = 0
## season(tsdata)Sep = 0
## season(tsdata)Oct = 0
## season(tsdata)Nov = 0
## season(tsdata)Dec = 0
##
## Model 1: restricted model
## Model 2: log(chnimp) ~ log(chempi) + log(gas) + log(rtwex) + befile6 +
## affile6 + afdec6 + season(tsdata)
##
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 124 44.247
## 2 113 40.844 11 3.4032 0.8559 0.5852
car::linearHypothesis(res,c("season(tsdata)Feb"),c(0))
## Linear hypothesis test
##
## Hypothesis:
## season(tsdata)Feb = 0
##
## Model 1: restricted model
## Model 2: log(chnimp) ~ log(chempi) + log(gas) + log(rtwex) + befile6 +
## affile6 + afdec6 + season(tsdata)
##
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 114 41.524
## 2 113 40.844 1 0.68043 1.8825 0.1728