#Model Evaluation
##The Colon Cancer Data Set
ColonData <- read.delim("C:/Users/jtame/Documents/GitHub/FresaTests/DataSets/cancerColonb.txt")
Colon <- ColonData[,-1]
rownames(Colon) <- ColonData[,1]
ExperimentName <- "Colon"
bswimsReps <- 5;
theData <- Colon;
theOutcome <- "Class";
reps <- 5;
fraction <- 0.8;
theData[,1:ncol(theData)] <- sapply(theData,as.numeric)
BSWiMSFileName <- paste(ExperimentName,"BSWIMSMethod.RDATA",sep = "_")
CVFileName <- paste(ExperimentName,"CVMethod.RDATA",sep = "_")
##Benchmarking
BSWiMSMODEL <- BSWiMS.model(formula = paste(theOutcome," ~ 1"),data = theData,NumberofRepeats = bswimsReps)
save(BSWiMSMODEL,file = BSWiMSFileName)
load(file = BSWiMSFileName)
cp <- BinaryBenchmark(theData,theOutcome,reps,fraction)
save(cp,file = CVFileName)
load(file = CVFileName)
##Results
###Classifier Results
hm <- heatMaps(Outcome = "Outcome",data = cp$testPredictions,title = "Heat Map",Scale = TRUE,hCluster = "col",cexRow = 0.25,cexCol = 0.75,srtCol = 45)
#The Times
pander::pander(cp$cpuElapsedTimes)
| BSWiMS | RF | RPART | LASSO | SVM | KNN | ENS |
|---|---|---|---|---|---|---|
| 9.446 | 2.366 | 0.462 | 0.356 | 0.016 | 0.014 | 12.2 |
learningTime <- -1*cp$cpuElapsedTimes
pr <- plot(cp)
op <- par(no.readonly = TRUE)
library(fmsb)
par(mfrow = c(1,2),xpd = TRUE,pty = "s",mar = c(1,1,1,1))
mNames <- names(cp$cpuElapsedTimes)
classRanks <- c(pr$minMaxMetrics$BER[1],pr$minMaxMetrics$ACC[2],pr$minMaxMetrics$AUC[2],pr$minMaxMetrics$SEN[2],pr$minMaxMetrics$SPE[2],min(cp$cpuElapsedTimes))
classRanks <- rbind(classRanks,c(pr$minMaxMetrics$BER[2],0,0,0,0,max(cp$cpuElapsedTimes)))
classRanks <- as.data.frame(rbind(classRanks,cbind(t(pr$metrics[c("BER","ACC","AUC","SEN","SPE"),mNames]),cp$cpuElapsedTimes)))
colnames(classRanks) <- c("BER","ACC","AUC","SEN","SPE","CPU")
classRanks$BER <- -classRanks$BER
classRanks$CPU <- -classRanks$CPU
colors_border = c( rgb(1.0,0.0,0.0,1.0), rgb(0.0,1.0,0.0,1.0) , rgb(0.0,0.0,1.0,1.0), rgb(0.2,0.2,0.0,1.0), rgb(0.0,1.0,1.0,1.0), rgb(1.0,0.0,1.0,1.0), rgb(0.0,0.0,0.0,1.0) )
colors_in = c( rgb(1.0,0.0,0.0,0.05), rgb(0.0,1.0,0.0,0.05) , rgb(0.0,0.0,1.0,0.05),rgb(1.0,1.0,0.0,0.05), rgb(0.0,1.0,1.0,0.05) , rgb(1.0,0.0,1.0,0.05), rgb(0.0,0.0,0.0,0.05) )
radarchart(classRanks,axistype = 0,maxmin = T,pcol = colors_border,pfcol = colors_in,plwd = c(6,2,2,2,2,2,2),plty = 1, cglcol = "grey", cglty = 1,axislabcol = "black",cglwd = 0.8, vlcex = 0.5 ,title = "Prediction Model")
legend("topleft",legend = rownames(classRanks[-c(1,2),]),bty = "n",pch = 20,col = colors_in,text.col = colors_border,cex = 0.5,pt.cex = 2)
filnames <- c("BSWiMS","LASSO_MIN","RF","IDI","tStudent","kendall","mRMR.classic")
filterRanks <- c(pr$minMaxMetrics$BER[1],pr$minMaxMetrics$ACC[2],pr$minMaxMetrics$AUC[2],pr$minMaxMetrics$SEN[2],pr$minMaxMetrics$SPE[2],max(cp$jaccard),min(cp$featsize));
filterRanks <- rbind(filterRanks,c(pr$minMaxMetrics$BER[2],0,0,0,0,min(cp$jaccard),max(cp$featsize)));
filterRanks <- as.data.frame(rbind(filterRanks,cbind(t(pr$metrics_filter[c("BER","ACC","AUC","SEN","SPE"),filnames]),cp$jaccard[filnames],cp$featsize[filnames])));
colnames(filterRanks) <- c("BER","ACC","AUC","SEN","SPE","Jaccard","SIZE")
filterRanks$BER <- -filterRanks$BER
filterRanks$SIZE <- -filterRanks$SIZE
colors_border = c( rgb(1.0,0.0,0.0,1.0), rgb(0.0,1.0,0.0,1.0) , rgb(0.0,0.0,1.0,1.0), rgb(0.2,0.2,0.0,1.0), rgb(0.0,1.0,1.0,1.0), rgb(1.0,0.0,1.0,1.0), rgb(0.0,0.0,0.0,1.0) )
colors_in = c( rgb(1.0,0.0,0.0,0.05), rgb(0.0,1.0,0.0,0.05) , rgb(0.0,0.0,1.0,0.05),rgb(1.0,1.0,0.0,0.05), rgb(0.0,1.0,1.0,0.05) , rgb(1.0,0.0,1.0,0.05), rgb(0.0,0.0,0.0,0.05) )
radarchart(filterRanks,axistype = 0,maxmin = T,pcol = colors_border,pfcol = colors_in,plwd = c(6,2,2,2,2,2,2),plty = 1, cglcol = "grey", cglty = 1,axislabcol = "black",cglwd = 0.8, vlcex = 0.6,title = "Filter Method" )
legend("topleft",legend = rownames(filterRanks[-c(1,2),]),bty = "n",pch = 20,col = colors_in,text.col = colors_border,cex = 0.5,pt.cex = 2)
detach("package:fmsb", unload=TRUE)
par(mfrow = c(1,1))
par(op)
rm <- rowMeans(cp$featureSelectionFrequency)
selFrequency <- cp$featureSelectionFrequency[rm > 0.1,]
gplots::heatmap.2(as.matrix(selFrequency),trace = "none",mar = c(10,10),main = "Features",cexRow = 0.5)
topFeat <- min(ncol(BSWiMSMODEL$bagging$formulaNetwork),30);
gplots::heatmap.2(BSWiMSMODEL$bagging$formulaNetwork[1:topFeat,1:topFeat],trace="none",mar = c(10,10),main = "B:SWiMS Formula Network")
pander::pander(summary(BSWiMSMODEL$bagging$bagged.model,caption="Colon",round = 3))
coefficients:
| Estimate | lower | OR | upper | u.Accuracy | r.Accuracy | |
|---|---|---|---|---|---|---|
| H06524 | -0.0005125 | 0.9994 | 0.9995 | 0.9996 | 0.7446 | 0.5403 |
| T51493 | 0.0009451 | 1.001 | 1.001 | 1.001 | 0.6183 | 0.6667 |
| H09719 | 0.001959 | 1.002 | 1.002 | 1.002 | 0.543 | 0.7581 |
| R64115 | 0.0001942 | 1 | 1 | 1 | 0.6559 | 0.6828 |
| U09564 | 0.001763 | 1.001 | 1.002 | 1.002 | 0.6935 | 0.7172 |
| J02854 | -0.0003363 | 0.9996 | 0.9997 | 0.9997 | 0.8086 | 0.6054 |
| Z50753 | -0.001888 | 0.9977 | 0.9981 | 0.9985 | 0.7548 | 0.7108 |
| L08069 | 0.0002504 | 1 | 1 | 1 | 0.586 | 0.6667 |
| T62947 | 0.00249 | 1.002 | 1.002 | 1.003 | 0.703 | 0.7433 |
| T56604 | 0.0002423 | 1 | 1 | 1 | 0.6935 | 0.7312 |
| U30825 | 0.001963 | 1.002 | 1.002 | 1.002 | 0.6753 | 0.6989 |
| X72727 | 0.0001356 | 1 | 1 | 1 | 0.6989 | 0.7204 |
| H20709 | -0.0001287 | 0.9998 | 0.9999 | 0.9999 | 0.6624 | 0.6398 |
| R08183 | 0.0002456 | 1 | 1 | 1 | 0.7204 | 0.6703 |
| X14958 | 0.0004282 | 1 | 1 | 1.001 | 0.7366 | 0.6957 |
| D16431 | 9.193e-05 | 1 | 1 | 1 | 0.629 | 0.7957 |
| U14631 | -9.399e-05 | 0.9999 | 0.9999 | 0.9999 | 0.7258 | 0.5323 |
| D25217 | -0.0001172 | 0.9999 | 0.9999 | 0.9999 | 0.6667 | 0.6022 |
| X12671 | 0.0004157 | 1 | 1 | 1 | 0.7151 | 0.7312 |
| D14812 | 0.0003633 | 1 | 1 | 1 | 0.5394 | 0.7437 |
| T86444 | 0.0002764 | 1 | 1 | 1 | 0.5161 | 0.8118 |
| X54942 | 0.0003626 | 1 | 1 | 1 | 0.6505 | 0.7312 |
| T41204 | 0.0005383 | 1 | 1.001 | 1.001 | 0.5323 | 0.7258 |
| H78386 | -0.001099 | 0.9986 | 0.9989 | 0.9992 | 0.6237 | 0.7339 |
| T92451 | -0.0001061 | 0.9999 | 0.9999 | 0.9999 | 0.7935 | 0.6462 |
| L11706 | 0.000177 | 1 | 1 | 1 | 0.6505 | 0.6613 |
| U28686 | 0.0004601 | 1 | 1 | 1.001 | 0.6022 | 0.6667 |
| X53586 | 0.0003978 | 1 | 1 | 1.001 | 0.7097 | 0.7366 |
| T86473 | 0.0006366 | 1 | 1.001 | 1.001 | 0.7258 | 0.7083 |
| D31885 | 7.092e-05 | 1 | 1 | 1 | 0.672 | 0.7527 |
| X12369 | -0.0002737 | 0.9996 | 0.9997 | 0.9998 | 0.7097 | 0.707 |
| R84411 | 0.0002126 | 1 | 1 | 1 | 0.6864 | 0.7294 |
| H64489 | -8e-05 | 0.9999 | 0.9999 | 0.9999 | 0.7339 | 0.6935 |
| U21090 | 0.0001649 | 1 | 1 | 1 | 0.7097 | 0.7204 |
| M36634 | -0.0008204 | 0.999 | 0.9992 | 0.9994 | 0.7462 | 0.6688 |
| H11084 | 7.077e-05 | 1 | 1 | 1 | 0.6452 | 0.7204 |
| R88740 | -0.0001172 | 0.9998 | 0.9999 | 0.9999 | 0.672 | 0.7366 |
| M76378.1 | -0.0001753 | 0.9998 | 0.9998 | 0.9999 | 0.8172 | 0.7043 |
| T47383 | -0.0007364 | 0.999 | 0.9993 | 0.9995 | 0.6478 | 0.6882 |
| H55916 | 0.0006002 | 1 | 1.001 | 1.001 | 0.664 | 0.7903 |
| T94579 | 8.9e-05 | 1 | 1 | 1 | 0.5269 | 0.8118 |
| T51261 | 9.528e-05 | 1 | 1 | 1 | 0.6828 | 0.6989 |
| H64807 | -0.0009621 | 0.9987 | 0.999 | 0.9994 | 0.6344 | 0.7177 |
| R44301 | -0.000262 | 0.9996 | 0.9997 | 0.9998 | 0.7204 | 0.6452 |
| T61661 | -0.0001023 | 0.9999 | 0.9999 | 0.9999 | 0.681 | 0.7079 |
| R67343 | -0.000618 | 0.9992 | 0.9994 | 0.9996 | 0.6855 | 0.6855 |
| M22382 | 0.0002529 | 1 | 1 | 1 | 0.7581 | 0.7742 |
| T71025 | -0.0001647 | 0.9998 | 0.9998 | 0.9999 | 0.7677 | 0.6989 |
| R54097 | 0.0004602 | 1 | 1 | 1.001 | 0.6048 | 0.8038 |
| M80815 | -0.000895 | 0.9988 | 0.9991 | 0.9994 | 0.7245 | 0.7043 |
| X63629 | 0.001868 | 1.001 | 1.002 | 1.003 | 0.7774 | 0.786 |
| J05032 | 0.001288 | 1.001 | 1.001 | 1.002 | 0.7011 | 0.7667 |
| J04102 | 0.0002824 | 1 | 1 | 1 | 0.6344 | 0.7366 |
| M76378.2 | -0.0002113 | 0.9997 | 0.9998 | 0.9999 | 0.8022 | 0.7645 |
| T61661.1 | -2.964e-05 | 1 | 1 | 1 | 0.6505 | 0.7258 |
| M63391 | -7.888e-05 | 0.9999 | 0.9999 | 0.9999 | 0.8527 | 0.7548 |
| M76378 | -0.0001392 | 0.9998 | 0.9999 | 0.9999 | 0.8161 | 0.729 |
| R36977 | 0.001039 | 1.001 | 1.001 | 1.001 | 0.7441 | 0.8366 |
| R87126 | -0.0003403 | 0.9995 | 0.9997 | 0.9998 | 0.829 | 0.7753 |
| M26697 | 1.646e-05 | 1 | 1 | 1 | 0.7043 | 0.7312 |
| M35878 | 0.0001967 | 1 | 1 | 1 | 0.5484 | 0.7957 |
| Z49269 | -8.413e-05 | 0.9999 | 0.9999 | 0.9999 | 0.6989 | 0.6828 |
| H43887 | -0.0001385 | 0.9998 | 0.9999 | 0.9999 | 0.7441 | 0.7086 |
| M94132 | -1.932e-05 | 1 | 1 | 1 | 0.6747 | 0.6855 |
| U25138 | -0.0001469 | 0.9998 | 0.9999 | 0.9999 | 0.7634 | 0.672 |
| M64110 | -5.604e-05 | 0.9999 | 0.9999 | 1 | 0.7204 | 0.7312 |
| T67077 | -0.0002232 | 0.9997 | 0.9998 | 0.9999 | 0.7312 | 0.6882 |
| H40095 | 0.0001929 | 1 | 1 | 1 | 0.7247 | 0.771 |
| T47377 | 0.0001805 | 1 | 1 | 1 | 0.729 | 0.7882 |
| H08393 | 0.002531 | 1.001 | 1.003 | 1.004 | 0.7817 | 0.8344 |
| T60155 | -1.133e-05 | 1 | 1 | 1 | 0.7742 | 0.6828 |
| full.Accuracy | u.AUC | r.AUC | full.AUC | IDI | NRI | |
|---|---|---|---|---|---|---|
| H06524 | 0.8952 | 0.7134 | 0.5687 | 0.9068 | 0.6243 | 1.717 |
| T51493 | 0.8978 | 0.6428 | 0.6496 | 0.897 | 0.5492 | 1.533 |
| H09719 | 0.9301 | 0.5742 | 0.7545 | 0.9356 | 0.5446 | 1.8 |
| R64115 | 0.8387 | 0.6754 | 0.6723 | 0.858 | 0.5462 | 1.467 |
| U09564 | 0.8753 | 0.7175 | 0.6867 | 0.8829 | 0.4954 | 1.363 |
| J02854 | 0.886 | 0.7726 | 0.6246 | 0.8871 | 0.4758 | 1.437 |
| Z50753 | 0.8968 | 0.7405 | 0.7315 | 0.8995 | 0.4172 | 1.413 |
| L08069 | 0.8333 | 0.628 | 0.6496 | 0.8367 | 0.4904 | 1.3 |
| T62947 | 0.8535 | 0.7204 | 0.7175 | 0.8549 | 0.4437 | 1.342 |
| T56604 | 0.8387 | 0.7216 | 0.7235 | 0.8477 | 0.426 | 1.367 |
| U30825 | 0.8505 | 0.6992 | 0.6814 | 0.8569 | 0.4282 | 1.3 |
| X72727 | 0.828 | 0.7189 | 0.7049 | 0.8428 | 0.4269 | 1.233 |
| H20709 | 0.8677 | 0.6504 | 0.6663 | 0.8695 | 0.4305 | 1.293 |
| R08183 | 0.8477 | 0.7333 | 0.6649 | 0.8649 | 0.4138 | 1.294 |
| X14958 | 0.8656 | 0.7624 | 0.6653 | 0.8727 | 0.3905 | 1.253 |
| D16431 | 0.9194 | 0.6511 | 0.7735 | 0.917 | 0.3459 | 1.25 |
| U14631 | 0.8333 | 0.6989 | 0.5455 | 0.847 | 0.3786 | 1.317 |
| D25217 | 0.8333 | 0.6633 | 0.6337 | 0.8265 | 0.4046 | 1.167 |
| X12671 | 0.8656 | 0.7383 | 0.7058 | 0.8754 | 0.3842 | 1.187 |
| D14812 | 0.8943 | 0.5703 | 0.7116 | 0.9033 | 0.3948 | 1.239 |
| T86444 | 0.9247 | 0.5432 | 0.7758 | 0.9314 | 0.3719 | 1.417 |
| X54942 | 0.8441 | 0.6814 | 0.6877 | 0.8468 | 0.3742 | 1.183 |
| T41204 | 0.8333 | 0.5455 | 0.6989 | 0.847 | 0.3641 | 1.333 |
| H78386 | 0.8844 | 0.5839 | 0.7631 | 0.89 | 0.3588 | 1.467 |
| T92451 | 0.8774 | 0.7684 | 0.6549 | 0.8777 | 0.3604 | 1.237 |
| L11706 | 0.8817 | 0.6712 | 0.6489 | 0.8674 | 0.3854 | 1.233 |
| U28686 | 0.8333 | 0.6337 | 0.6633 | 0.8265 | 0.3825 | 1.3 |
| X53586 | 0.9086 | 0.7307 | 0.7277 | 0.9155 | 0.3585 | 1.383 |
| T86473 | 0.8374 | 0.7457 | 0.6768 | 0.8475 | 0.3419 | 1.087 |
| D31885 | 0.8548 | 0.6811 | 0.7231 | 0.8534 | 0.3527 | 1.317 |
| X12369 | 0.8723 | 0.6864 | 0.7303 | 0.8789 | 0.34 | 1.35 |
| R84411 | 0.7939 | 0.691 | 0.7085 | 0.8153 | 0.3415 | 1.067 |
| H64489 | 0.8763 | 0.7051 | 0.7173 | 0.8837 | 0.3069 | 1.317 |
| U21090 | 0.828 | 0.7307 | 0.7049 | 0.8462 | 0.3141 | 1.117 |
| M36634 | 0.857 | 0.7133 | 0.6888 | 0.8605 | 0.2914 | 1.177 |
| H11084 | 0.8602 | 0.6807 | 0.6913 | 0.8644 | 0.2677 | 1.083 |
| R88740 | 0.8387 | 0.6436 | 0.7515 | 0.8477 | 0.2947 | 1.15 |
| M76378.1 | 0.8591 | 0.7765 | 0.7272 | 0.8561 | 0.2917 | 1.183 |
| T47383 | 0.8575 | 0.6129 | 0.7106 | 0.8589 | 0.3127 | 1.233 |
| H55916 | 0.8817 | 0.6509 | 0.7659 | 0.8794 | 0.2858 | 0.8083 |
| T94579 | 0.871 | 0.5311 | 0.7826 | 0.8659 | 0.2925 | 1.233 |
| T51261 | 0.8226 | 0.7098 | 0.6644 | 0.8352 | 0.2976 | 0.9667 |
| H64807 | 0.8172 | 0.6263 | 0.7438 | 0.8259 | 0.2899 | 0.925 |
| R44301 | 0.8602 | 0.6913 | 0.6807 | 0.8644 | 0.2535 | 1.017 |
| T61661 | 0.8369 | 0.6823 | 0.7122 | 0.8486 | 0.2885 | 1.161 |
| R67343 | 0.8414 | 0.671 | 0.7068 | 0.8566 | 0.2839 | 1.1 |
| M22382 | 0.8366 | 0.7777 | 0.72 | 0.8413 | 0.2707 | 1.057 |
| T71025 | 0.8559 | 0.7641 | 0.7251 | 0.8563 | 0.2656 | 1.203 |
| R54097 | 0.8817 | 0.6324 | 0.7644 | 0.8845 | 0.2749 | 1.225 |
| M80815 | 0.836 | 0.7132 | 0.724 | 0.8422 | 0.2614 | 1.062 |
| X63629 | 0.8763 | 0.79 | 0.7578 | 0.8735 | 0.2695 | 1.093 |
| J05032 | 0.8581 | 0.7179 | 0.7455 | 0.8566 | 0.249 | 0.9833 |
| J04102 | 0.8387 | 0.6417 | 0.7004 | 0.8477 | 0.2376 | 0.85 |
| M76378.2 | 0.8624 | 0.7662 | 0.7827 | 0.8592 | 0.2455 | 0.95 |
| T61661.1 | 0.8333 | 0.6269 | 0.7466 | 0.8606 | 0.2289 | 0.95 |
| M63391 | 0.8742 | 0.8252 | 0.782 | 0.8793 | 0.2407 | 1.26 |
| M76378 | 0.8495 | 0.7805 | 0.7559 | 0.8465 | 0.2236 | 0.8933 |
| R36977 | 0.8785 | 0.7758 | 0.8106 | 0.8847 | 0.2318 | 0.8633 |
| R87126 | 0.8806 | 0.813 | 0.7904 | 0.8782 | 0.2441 | 1.237 |
| M26697 | 0.8011 | 0.7197 | 0.7235 | 0.8015 | 0.2399 | 0.75 |
| M35878 | 0.871 | 0.575 | 0.7633 | 0.8591 | 0.2086 | 1.033 |
| Z49269 | 0.8226 | 0.6644 | 0.7098 | 0.8352 | 0.2236 | 1.133 |
| H43887 | 0.8387 | 0.7117 | 0.7244 | 0.8464 | 0.2057 | 1.027 |
| M94132 | 0.8387 | 0.6405 | 0.7153 | 0.8494 | 0.2094 | 0.8667 |
| U25138 | 0.8387 | 0.7212 | 0.6947 | 0.8375 | 0.206 | 1.017 |
| M64110 | 0.8333 | 0.6811 | 0.7473 | 0.8402 | 0.2002 | 0.8833 |
| T67077 | 0.8011 | 0.703 | 0.6902 | 0.8254 | 0.1994 | 1.067 |
| H40095 | 0.843 | 0.7594 | 0.7461 | 0.8456 | 0.1927 | 0.7467 |
| T47377 | 0.8452 | 0.7477 | 0.7547 | 0.8377 | 0.1883 | 0.8967 |
| H08393 | 0.8806 | 0.7954 | 0.8151 | 0.8768 | 0.1994 | 1.013 |
| T60155 | 0.7796 | 0.7432 | 0.6996 | 0.8087 | 0.1799 | 1.033 |
| z.IDI | z.NRI | Frequency | |
|---|---|---|---|
| H06524 | 12.07 | 15.66 | 0.4 |
| T51493 | 10.3 | 11 | 0.2 |
| H09719 | 9.901 | 18.87 | 0.2 |
| R64115 | 9.893 | 11.38 | 0.2 |
| U09564 | 9.334 | 9.486 | 1 |
| J02854 | 9.032 | 10.48 | 1 |
| Z50753 | 8.779 | 12.27 | 1 |
| L08069 | 8.508 | 7.855 | 0.2 |
| T62947 | 8.245 | 8.978 | 0.8 |
| T56604 | 8.099 | 9.687 | 0.2 |
| U30825 | 7.996 | 8.785 | 1 |
| X72727 | 7.894 | 7.254 | 0.2 |
| H20709 | 7.78 | 8.027 | 1 |
| R08183 | 7.737 | 8.208 | 0.6 |
| X14958 | 7.702 | 8.286 | 1 |
| D16431 | 7.367 | 7.497 | 0.2 |
| U14631 | 7.358 | 9.073 | 0.2 |
| D25217 | 7.337 | 6.761 | 0.2 |
| X12671 | 7.331 | 7.329 | 1 |
| D14812 | 7.331 | 7.544 | 0.6 |
| T86444 | 7.315 | 9.11 | 0.2 |
| X54942 | 7.198 | 7.431 | 0.4 |
| T41204 | 7.15 | 8.421 | 0.2 |
| H78386 | 7.15 | 9.983 | 0.4 |
| T92451 | 7.124 | 7.665 | 1 |
| L11706 | 7.015 | 7.208 | 0.2 |
| U28686 | 6.979 | 7.747 | 0.2 |
| X53586 | 6.835 | 8.911 | 0.2 |
| T86473 | 6.77 | 6.668 | 0.8 |
| D31885 | 6.722 | 7.898 | 0.2 |
| X12369 | 6.605 | 8.768 | 0.8 |
| R84411 | 6.342 | 5.999 | 0.6 |
| H64489 | 6.306 | 8.879 | 0.8 |
| U21090 | 6.098 | 6.427 | 0.2 |
| M36634 | 6.046 | 7.368 | 1 |
| H11084 | 6.029 | 6.442 | 0.2 |
| R88740 | 5.999 | 6.648 | 0.2 |
| M76378.1 | 5.975 | 7.345 | 1 |
| T47383 | 5.969 | 7.311 | 0.4 |
| H55916 | 5.926 | 3.999 | 0.4 |
| T94579 | 5.909 | 7.764 | 0.2 |
| T51261 | 5.876 | 5.348 | 0.2 |
| H64807 | 5.868 | 5.169 | 0.4 |
| R44301 | 5.739 | 5.575 | 0.2 |
| T61661 | 5.729 | 6.695 | 0.6 |
| R67343 | 5.607 | 6.361 | 0.4 |
| M22382 | 5.567 | 6.435 | 1 |
| T71025 | 5.537 | 7.329 | 1 |
| R54097 | 5.457 | 7.182 | 0.4 |
| M80815 | 5.448 | 6.19 | 0.8 |
| X63629 | 5.392 | 6.989 | 1 |
| J05032 | 5.281 | 5.256 | 1 |
| J04102 | 5.236 | 4.242 | 0.2 |
| M76378.2 | 5.059 | 5.432 | 1 |
| T61661.1 | 5.033 | 5.317 | 0.2 |
| M63391 | 5.022 | 8.509 | 1 |
| M76378 | 4.995 | 5.139 | 1 |
| R36977 | 4.98 | 4.596 | 1 |
| R87126 | 4.969 | 7.773 | 1 |
| M26697 | 4.888 | 3.702 | 0.2 |
| M35878 | 4.828 | 5.536 | 0.2 |
| Z49269 | 4.825 | 6.44 | 0.2 |
| H43887 | 4.812 | 6.023 | 1 |
| M94132 | 4.769 | 4.725 | 0.4 |
| U25138 | 4.648 | 5.912 | 0.2 |
| M64110 | 4.569 | 4.855 | 0.2 |
| T67077 | 4.527 | 5.925 | 0.2 |
| H40095 | 4.405 | 4.134 | 1 |
| T47377 | 4.342 | 4.707 | 1 |
| H08393 | 4.275 | 6.074 | 1 |
| T60155 | 4.204 | 5.559 | 0.2 |
Accuracy: 0.9032
tAUC: 0.9045
sensitivity: 0.9
specificity: 0.9091
bootstrap:
hm <- heatMaps(Outcome = theOutcome,data = theData[,c(theOutcome,rownames(selFrequency))],title = "Heat Map",Scale = TRUE,hCluster = "col",cexRow = 0.25,cexCol = 0.75,srtCol = 45)
vlist <- rownames(selFrequency)
vlist <- cbind(vlist,vlist)
univ <- univariateRankVariables(variableList = vlist,formula = paste(theOutcome,"~1"),Outcome = theOutcome,data = theData,type = "LOGIT",rankingTest = "zIDI",uniType = "Binary")[,c("controlMean","controlStd","caseMean","caseStd","ROCAUC","WilcoxRes.p")]
100 : H15813 200 : M65105
cnames <- colnames(univ);
univ <- cbind(univ,rm[rownames(univ)])
colnames(univ) <- c(cnames,"Frequency")
univ <- univ[order(-univ[,5]),]
pander::pander(univ[1:topFeat,],caption = "Features",round = 4)
| controlMean | controlStd | caseMean | caseStd | ROCAUC | |
|---|---|---|---|---|---|
| R87126 | 806.5 | 546.1 | 271.7 | 185.5 | 0.8841 |
| H08393 | 55.01 | 24.97 | 132.6 | 80.18 | 0.875 |
| R36977 | 125.7 | 63.3 | 375.6 | 340.1 | 0.8648 |
| M22382 | 405.2 | 220.3 | 1142 | 868.5 | 0.8648 |
| M26383 | 114.9 | 168.6 | 398.1 | 475.6 | 0.8534 |
| H40095 | 319.1 | 215.5 | 800.5 | 529.5 | 0.8409 |
| X63629 | 57.35 | 31.71 | 154.8 | 108.2 | 0.8352 |
| J05032 | 81.3 | 55.47 | 194.7 | 120.5 | 0.833 |
| X12671 | 333.3 | 263.5 | 850.5 | 582.4 | 0.8295 |
| Z50753 | 447.6 | 216.3 | 233.9 | 119 | 0.8284 |
| J02854 | 907.3 | 682.6 | 222.9 | 266.8 | 0.8261 |
| U09564 | 116.4 | 63.94 | 262.9 | 176.3 | 0.8239 |
| H43887 | 850.5 | 547.3 | 330.4 | 414.5 | 0.8216 |
| M63391 | 2303 | 1538 | 597.1 | 568.4 | 0.8205 |
| M76378.2 | 1052 | 844.1 | 260.3 | 172 | 0.8136 |
| M36634 | 214.5 | 146.9 | 93.32 | 96.29 | 0.8125 |
| T86473 | 156.4 | 94.12 | 407 | 323.7 | 0.8114 |
| X14958 | 350.8 | 209.1 | 716.1 | 434.5 | 0.8102 |
| M76378 | 1283 | 798.5 | 465.9 | 357.5 | 0.8068 |
| T47377 | 259.1 | 265.6 | 930.2 | 813.4 | 0.8057 |
| M26697 | 852.3 | 478.3 | 1848 | 1101 | 0.8023 |
| R84411 | 338.9 | 225.6 | 747.4 | 483.9 | 0.7989 |
| T71025 | 1892 | 697.2 | 1103 | 675.2 | 0.7977 |
| X54942 | 123 | 86.76 | 337.1 | 299.6 | 0.7932 |
| R08183 | 356.8 | 248.3 | 840.3 | 593.4 | 0.7932 |
| M76378.1 | 1306 | 805.3 | 490.9 | 375.2 | 0.792 |
| D31885 | 354.3 | 252.2 | 768.2 | 563.3 | 0.7886 |
| H06524 | 362.9 | 272.6 | 144.6 | 183 | 0.7875 |
| X55715 | 851.7 | 464.2 | 1555 | 833.8 | 0.7852 |
| H77597 | 777.6 | 691 | 356.3 | 407.9 | 0.7841 |
| WilcoxRes.p | Frequency | |
|---|---|---|
| R87126 | 0 | 0.64 |
| H08393 | 0 | 0.52 |
| R36977 | 0 | 0.46 |
| M22382 | 0 | 0.46 |
| M26383 | 1e-04 | 0.72 |
| H40095 | 0 | 0.32 |
| X63629 | 0 | 0.62 |
| J05032 | 0 | 0.44 |
| X12671 | 0 | 0.3 |
| Z50753 | 0 | 0.52 |
| J02854 | 0 | 0.36 |
| U09564 | 0 | 0.16 |
| H43887 | 0 | 0.52 |
| M63391 | 0 | 0.58 |
| M76378.2 | 0 | 0.48 |
| M36634 | 0 | 0.2 |
| T86473 | 0 | 0.2 |
| X14958 | 0 | 0.18 |
| M76378 | 0 | 0.34 |
| T47377 | 1e-04 | 0.6 |
| M26697 | 1e-04 | 0.2 |
| R84411 | 1e-04 | 0.28 |
| T71025 | 0 | 0.64 |
| X54942 | 1e-04 | 0.2 |
| R08183 | 1e-04 | 0.42 |
| M76378.1 | 0 | 0.3 |
| D31885 | 2e-04 | 0.12 |
| H06524 | 1e-04 | 0.14 |
| X55715 | 2e-04 | 0.12 |
| H77597 | 2e-04 | 0.22 |