Df Sum Sq Mean Sq F value Pr(>F)    
X1SEX           1   5102    5102    2911 <2e-16 ***
Residuals   20208  35416       2                   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
                Df Sum Sq Mean Sq F value Pr(>F)    
X3HSCOMPSTAT     4    267   66.73    33.5 <2e-16 ***
Residuals    20205  40251    1.99                   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
              Df Sum Sq Mean Sq F value   Pr(>F)    
S3WORKFT       2    123   61.69   30.08 9.59e-14 ***
Residuals   8766  17981    2.05                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
              Df Sum Sq Mean Sq F value   Pr(>F)    
S3CURJOBFT     2     29  14.611   8.783 0.000155 ***
Residuals   8035  13368   1.664                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
                  Df Sum Sq Mean Sq F value Pr(>F)    
P1INCOMECATBIN     9    335   37.21    19.8 <2e-16 ***
Residuals      14644  27526    1.88                   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
                  Df Sum Sq Mean Sq F value Pr(>F)    
X1FAMINCOMEBIN     9    355   39.40   21.02 <2e-16 ***
Residuals      15540  29131    1.87                   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
                  Df Sum Sq Mean Sq F value Pr(>F)    
X2FAMINCOMEBIN     9    292   32.46   16.59 <2e-16 ***
Residuals      17907  35043    1.96                   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
               Df Sum Sq Mean Sq F value Pr(>F)    
X1RACE          7    249   35.59   17.86 <2e-16 ***
Residuals   20202  40269    1.99                   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

#PLOT data

#Plot both data

#Linear regression 2 types for weighted GPA


Call:
lm(formula = S1HRVIDEO ~ X3TAGPAWGT, data = gpa_weighted)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.5631 -0.8773 -0.6030  0.2598  4.8084 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  2.70022    0.03337   80.91   <2e-16 ***
X3TAGPAWGT  -0.13715    0.00491  -27.93   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.389 on 18833 degrees of freedom
Multiple R-squared:  0.03978,   Adjusted R-squared:  0.03973 
F-statistic: 780.1 on 1 and 18833 DF,  p-value: < 2.2e-16

#Linear Regressions for Total GPA


Call:
lm(formula = S1HRVIDEO ~ X3TGPATOT, data = GPA_total)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.6678 -0.8843 -0.5708  0.2724  4.5859 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  2.824529   0.039469   71.56   <2e-16 ***
X3TGPATOT   -0.156710   0.005902  -26.55   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.391 on 18848 degrees of freedom
Multiple R-squared:  0.03605,   Adjusted R-squared:  0.036 
F-statistic:   705 on 1 and 18848 DF,  p-value: < 2.2e-16
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6DQogIGh0bWxfbm90ZWJvb2s6IGRlZmF1bHQNCiAgcGRmX2RvY3VtZW50OiBkZWZhdWx0DQotLS0NCg0KDQoNCmBgYHtyfQ0Kc2V4YW5vdmEgPC0gYW92KFMxSFJWSURFTyB+IFgxU0VYLCBkYXRhID0gc2V4ZGF0YSkNCnN1bW1hcnkoc2V4YW5vdmEpDQpgYGANCg0KYGBge3J9DQpoc2RlZ3Jjb21wLmFub3ZhIDwtIGFvdihTMUhSVklERU8gfiBYM0hTQ09NUFNUQVQsIGRhdGEgPSBoc19jb21wbGV0aW9uKQ0Kc3VtbWFyeShoc2RlZ3Jjb21wLmFub3ZhKQ0KYGBgDQoNCmBgYHtyfQ0Kd29ya0ZUYW5vdmE8LSBhb3YoUzFIUlZJREVPIH4gUzNXT1JLRlQsIGRhdGEgPSB3b3JrRlQpDQpzdW1tYXJ5KHdvcmtGVGFub3ZhKQ0KYGBgDQpgYGB7cn0NCmN1cmZ0IDwtIGFvdihTMUhSVklERU8gfiBTM0NVUkpPQkZULCBkYXRhID0gUzNDVVJKT0JGVCkNCnN1bW1hcnkoY3VyZnQpDQpgYGANCmBgYHtyfQ0KeDIwMDhpbmNvbWUgPC0gYW92KFMxSFJWSURFTyB+IFAxSU5DT01FQ0FUQklOLCBkYXRhID0gWDIwMDhfaW5jb21lX2NhdCkNCnN1bW1hcnkoeDIwMDhpbmNvbWUpDQpgYGANCmBgYHtyfQ0KZmFtMjAwOGluY29tZSA8LSBhb3YoUzFIUlZJREVPIH4gWDFGQU1JTkNPTUVCSU4sIGRhdGEgPSBYMjAwX2NvbWJpbmVkX2ZhbV9pbmNvbWUpDQpzdW1tYXJ5KGZhbTIwMDhpbmNvbWUpDQpgYGANCmBgYHtyfQ0KZmFtMjAxMWluY29tZTwtIGFvdihTMUhSVklERU8gfiBYMkZBTUlOQ09NRUJJTiwgZGF0YSA9IFgyMDExX2ZhbV9pbmNvbWUpDQpzdW1tYXJ5KGZhbTIwMTFpbmNvbWUpDQpgYGANCmBgYHtyfQ0KcmFjZWNhdDwtIGFvdihTMUhSVklERU8gfiBYMVJBQ0UsIGRhdGE9IHJhY2UpDQpzdW1tYXJ5KHJhY2VjYXQpDQpgYGANCg0KI1BMT1QgZGF0YQ0KDQpgYGB7cn0NCmdncGxvdCAoR1BBX3RvdGFsLCBhZXMoeD1YM1RHUEFUT1QpKSArIGdlb21fZGVuc2l0eSgpDQpnZ3Bsb3QgKEdQQV90b3RhbCwgYWVzKHg9WDNUR1BBVE9UKSkgKyBnZW9tX2hpc3RvZ3JhbShiaW53aWR0aD0uNSkNCmBgYA0KDQoNCiNQbG90IGJvdGggZGF0YQ0KYGBge3J9DQpnZ3Bsb3QgKGdwYV93ZWlnaHRlZCwgYWVzKHg9WDNUQUdQQVdHVCkpICsgZ2VvbV9kZW5zaXR5KCkNCmdncGxvdCAoZ3BhX3dlaWdodGVkLCBhZXMoeD1YM1RBR1BBV0dUKSkgKyBnZW9tX2hpc3RvZ3JhbShiaW53aWR0aD0uNSkNCmBgYA0KI0xpbmVhciByZWdyZXNzaW9uIDIgdHlwZXMgZm9yIHdlaWdodGVkIEdQQQ0KYGBge3J9DQpncGF3ZWlnaHRlZC5sbSA8LSBsbShTMUhSVklERU8gfiBYM1RBR1BBV0dULCBkYXRhID0gZ3BhX3dlaWdodGVkKQ0Kc3VtbWFyeShncGF3ZWlnaHRlZC5sbSkNCmBgYA0KI0xpbmVhciBSZWdyZXNzaW9ucyBmb3IgVG90YWwgR1BBDQpgYGB7cn0NCmdwYXRvdGFsLmxtIDwtIGxtKFMxSFJWSURFTyB+IFgzVEdQQVRPVCwgZGF0YSA9IEdQQV90b3RhbCkNCnN1bW1hcnkoZ3BhdG90YWwubG0pDQpgYGANCg0KDQo=