Full Model

stargazer(plm(lead(log(budget_pc)) ~
                log(pop) +
                log(gdp_ppp_const) +
                log(us_exports_to_country) +
                log(us_imports_from_country) + 
                ideal_point_diff +
                polity_score +
                log(military_exp + 1) +
                log(tradeflow_imf_d_russia + 1) +
                log(tradeflow_imf_d_china + 1),
              index = c("cow_code", "year"),
              model = "within",
              data = my_df), type = "text")
## 
## ===========================================================
##                                     Dependent variable:    
##                                 ---------------------------
##                                    lead(log(budget_pc))    
## -----------------------------------------------------------
## log(pop)                                   0.953           
##                                           (0.869)          
##                                                            
## log(gdp_ppp_const)                         0.641           
##                                           (0.445)          
##                                                            
## log(us_exports_to_country)                0.205**          
##                                           (0.083)          
##                                                            
## log(us_imports_from_country)              -0.081           
##                                           (0.054)          
##                                                            
## ideal_point_diff                         -0.589***         
##                                           (0.163)          
##                                                            
## polity_score                              -0.008           
##                                           (0.018)          
##                                                            
## log(military_exp + 1)                      0.034           
##                                           (0.141)          
##                                                            
## log(tradeflow_imf_d_russia + 1)            0.037           
##                                           (0.026)          
##                                                            
## log(tradeflow_imf_d_china + 1)           0.141***          
##                                           (0.043)          
##                                                            
## -----------------------------------------------------------
## Observations                                960            
## R2                                         0.061           
## Adjusted R2                               -0.118           
## F Statistic                       5.768*** (df = 9; 806)   
## ===========================================================
## Note:                           *p<0.1; **p<0.05; ***p<0.01

Average over all years

my_df %<>% 
  filter(year != 2013) %>% 
  group_by(year) %>% 
  mutate(total_budget = sum(budget, na.rm = TRUE)) %>% 
  ungroup() %>% 
  group_by(cow_code, year) %>% 
  mutate(budget_proportion = budget / total_budget ) %>% 
  mutate(budget_percent = budget_proportion*100) %>% 
  ungroup() %>% 
  group_by(cow_code) %>% 
  mutate(avg_budget_all_yrs = mean(budget, na.rm = TRUE)) %>% 
  mutate(avg_budget_pc_all_yrs = mean(budget_pc, na.rm = TRUE)) %>% 
  mutate(avg_us_expt_all_yrs = mean(us_exports_to_country, na.rm = TRUE)) %>% 
  mutate(avg_us_impts_all_yrs = mean(us_imports_from_country, na.rm = TRUE)) %>% 
  mutate(avg_gdp_ppp_all_yrs = mean(gdp_ppp_const, na.rm = TRUE)) 


stargazer(lm(log(avg_budget_pc_all_yrs) ~
                log(avg_us_expt_all_yrs) + 
                log(avg_us_impts_all_yrs) +
                log(avg_gdp_ppp_all_yrs),
              data = my_df), type = "text")
## 
## =====================================================
##                               Dependent variable:    
##                           ---------------------------
##                           log(avg_budget_pc_all_yrs) 
## -----------------------------------------------------
## log(avg_us_expt_all_yrs)           0.088***          
##                                     (0.026)          
##                                                      
## log(avg_us_impts_all_yrs)          0.079***          
##                                     (0.024)          
##                                                      
## log(avg_gdp_ppp_all_yrs)           -0.487***         
##                                     (0.028)          
##                                                      
## Constant                           7.007***          
##                                     (0.432)          
##                                                      
## -----------------------------------------------------
## Observations                          983            
## R2                                   0.331           
## Adjusted R2                          0.329           
## Residual Std. Error            0.917 (df = 979)      
## F Statistic                161.610*** (df = 3; 979)  
## =====================================================
## Note:                     *p<0.1; **p<0.05; ***p<0.01
my_df %>% 
  filter(year == 2019) %>% 
  filter(!is.na(polity_score)) %>% 
  ggplot(aes(y = log(budget_pc), x = polity_score)) + 
  geom_point(aes(color = as.factor(freedom_house.x))) + 
  geom_smooth(method = "loess") + 
  theme(legend.position = "none") 
## `geom_smooth()` using formula 'y ~ x'

Economic Regression - Time fixed effects

stargazer(plm(log(budget + 1) ~
                log(gdp_ppp_const) + 
                log(us_exports_to_country + 1) +
                log(us_imports_from_country + 1),
              data = my_df,
              index = c("cow_code", "year"),
              model = "within", 
              effects = "time"), type = "text")
## 
## ============================================================
##                                      Dependent variable:    
##                                  ---------------------------
##                                        log(budget + 1)      
## ------------------------------------------------------------
## log(gdp_ppp_const)                        -0.744***         
##                                            (0.188)          
##                                                             
## log(us_exports_to_country + 1)             0.080*           
##                                            (0.043)          
##                                                             
## log(us_imports_from_country + 1)            0.014           
##                                            (0.031)          
##                                                             
## ------------------------------------------------------------
## Observations                                 983            
## R2                                          0.022           
## Adjusted R2                                -0.177           
## F Statistic                        6.039*** (df = 3; 816)   
## ============================================================
## Note:                            *p<0.1; **p<0.05; ***p<0.01

Economic Regression - 2019 only

my_df %>% 
  filter(year == 2019) -> df19

stargazer(lm(log(budget_pc) ~
                log(gdp_ppp_const) + 
                log(us_exports_to_country + 1) +
                log(us_imports_from_country + 1),

              data = df19), type = "text")
## 
## ============================================================
##                                      Dependent variable:    
##                                  ---------------------------
##                                        log(budget_pc)       
## ------------------------------------------------------------
## log(gdp_ppp_const)                        -0.506***         
##                                            (0.079)          
##                                                             
## log(us_exports_to_country + 1)            0.189***          
##                                            (0.072)          
##                                                             
## log(us_imports_from_country + 1)            0.022           
##                                            (0.067)          
##                                                             
## Constant                                  6.487***          
##                                            (1.245)          
##                                                             
## ------------------------------------------------------------
## Observations                                 163            
## R2                                          0.278           
## Adjusted R2                                 0.264           
## Residual Std. Error                   1.074 (df = 159)      
## F Statistic                        20.383*** (df = 3; 159)  
## ============================================================
## Note:                            *p<0.1; **p<0.05; ***p<0.01
my_df %<>% 
  mutate(us_exports_pc = us_exports_to_country / pop )

my_df %>% 
  filter(year == 2019) %>%
  filter(!is.na(freedom_house.x)) %>% 
  ggplot(aes(y = log(budget_pc), x = log(us_exports_pc))) + 
  geom_point(aes(color = as.factor(freedom_house.x))) +
  facet_wrap(~freedom_house.x) +
  geom_smooth(method = "glm") + 
  theme(legend.position = "none") 
## `geom_smooth()` using formula 'y ~ x'

Economic Regression - average of all years

my_df %>% 
  filter(year == 2019) -> df19

stargazer(lm(log(avg_budget_pc_all_yrs) ~
                log(avg_gdp_ppp_all_yrs) + 
                log(avg_us_expt_all_yrs) +
                log(avg_us_impts_all_yrs ),

              data = my_df), type = "text")
## 
## =====================================================
##                               Dependent variable:    
##                           ---------------------------
##                           log(avg_budget_pc_all_yrs) 
## -----------------------------------------------------
## log(avg_gdp_ppp_all_yrs)           -0.487***         
##                                     (0.028)          
##                                                      
## log(avg_us_expt_all_yrs)           0.088***          
##                                     (0.026)          
##                                                      
## log(avg_us_impts_all_yrs)          0.079***          
##                                     (0.024)          
##                                                      
## Constant                           7.007***          
##                                     (0.432)          
##                                                      
## -----------------------------------------------------
## Observations                          983            
## R2                                   0.331           
## Adjusted R2                          0.329           
## Residual Std. Error            0.917 (df = 979)      
## F Statistic                161.610*** (df = 3; 979)  
## =====================================================
## Note:                     *p<0.1; **p<0.05; ***p<0.01

Political / security goals

my_df %<>% 
  dplyr::mutate(mil_aid_pc = sum_mil_aid / pop) %>% 
  dplyr::mutate(mil_exp_pc = military_exp / pop)

stargazer(plm(lead(log(budget_pc)) ~
                 polity_score + 
                 I(polity_score^2) + 

                 ideal_point_diff,
              data = my_df,
              index = c("cow_code", "year"),
              model = "within", 
              effects = "time"), type = "text")
## 
## ============================================
##                      Dependent variable:    
##                  ---------------------------
##                     lead(log(budget_pc))    
## --------------------------------------------
## polity_score               -0.016           
##                            (0.022)          
##                                             
## I(polity_score2)           -0.001           
##                            (0.003)          
##                                             
## ideal_point_diff           -0.221           
##                            (0.157)          
##                                             
## --------------------------------------------
## Observations                 963            
## R2                          0.004           
## Adjusted R2                -0.201           
## F Statistic          1.099 (df = 3; 798)    
## ============================================
## Note:            *p<0.1; **p<0.05; ***p<0.01

Political influence

stargazer(plm(budget_percent ~ 
              log(tradeflow_comtrade_d_china) +  
              log(distcap_china) +
              as.factor(heg_d_china),
              data = my_df,
              index = c("cow_code", "year"),
              model = "within", 
              effect = "time"), type = "text")
## 
## ===========================================================
##                                     Dependent variable:    
##                                 ---------------------------
##                                       budget_percent       
## -----------------------------------------------------------
## log(tradeflow_comtrade_d_china)          0.040***          
##                                           (0.013)          
##                                                            
## log(distcap_china)                       -0.499***         
##                                           (0.079)          
##                                                            
## as.factor(heg_d_china)1                  -1.497***         
##                                           (0.514)          
##                                                            
## -----------------------------------------------------------
## Observations                                849            
## R2                                         0.071           
## Adjusted R2                                0.063           
## F Statistic                       21.277*** (df = 3; 841)  
## ===========================================================
## Note:                           *p<0.1; **p<0.05; ***p<0.01

Russian influence

stargazer(plm(log(budget_pc) ~
              log(tradeflow_comtrade_d_russia) + 
              as.factor(soviet_iron_curtain) + 
              as.factor(soviet_republics),
              data = my_df,
              index = c("cow_code", "year"),
              model = "within", 
              effect = "time"), type = "text")
## 
## ============================================================
##                                      Dependent variable:    
##                                  ---------------------------
##                                        log(budget_pc)       
## ------------------------------------------------------------
## log(tradeflow_comtrade_d_russia)          -0.067***         
##                                            (0.008)          
##                                                             
## as.factor(soviet_iron_curtain)1           1.005***          
##                                            (0.139)          
##                                                             
## as.factor(soviet_republics)1              1.160***          
##                                            (0.128)          
##                                                             
## ------------------------------------------------------------
## Observations                                 996            
## R2                                          0.130           
## Adjusted R2                                 0.123           
## F Statistic                        49.307*** (df = 3; 987)  
## ============================================================
## Note:                            *p<0.1; **p<0.05; ***p<0.01