Q3. Consider the Gini index, classification error, and cross-entropy in a simple setting with two classes. Create a single plot that displays each of these quantities as a function of \(p^m1\). The \(x\)-axis should display \(p^m1\), ranging from 0 to 1, and the y-axis should display the value of the Gini index, classification error, and entropy.
p <- seq(0, 1, 0.01)
gini.index <- 2 * p * (1 - p)
class.error <- 1 - pmax(p, 1 - p)
cross.entropy <- - (p * log(p) + (1 - p) * log(1 - p))
matplot(p, cbind(gini.index, class.error, cross.entropy), col = c("red", "green", "blue"))
Q8. In the lab, a classification tree was applied to the “Carseats” data set after converting “Sales” into a qualitative response variable. Now we will seek to predict “Sales” using regression trees and related approaches, treating the response as a quantitative variable.
library(ISLR)
## Warning: package 'ISLR' was built under R version 4.0.5
set.seed(1)
train <- sample(1:nrow(Carseats), nrow(Carseats) / 2)
Carseats.train <- Carseats[train, ]
Carseats.test <- Carseats[-train, ]
library(tree)
## Warning: package 'tree' was built under R version 4.0.5
tree.carseats <- tree(Sales ~ ., data = Carseats.train)
summary(tree.carseats)
##
## Regression tree:
## tree(formula = Sales ~ ., data = Carseats.train)
## Variables actually used in tree construction:
## [1] "ShelveLoc" "Price" "Age" "Advertising" "CompPrice"
## [6] "US"
## Number of terminal nodes: 18
## Residual mean deviance: 2.167 = 394.3 / 182
## Distribution of residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -3.88200 -0.88200 -0.08712 0.00000 0.89590 4.09900
plot(tree.carseats)
text(tree.carseats, pretty = 0)
yhat <- predict(tree.carseats, newdata = Carseats.test)
mean((yhat - Carseats.test$Sales)^2)
## [1] 4.922039
We may conclude that the Test MSE is about 4.15.
cv.carseats <- cv.tree(tree.carseats)
plot(cv.carseats$size, cv.carseats$dev, type = "b")
tree.min <- which.min(cv.carseats$dev)
points(tree.min, cv.carseats$dev[tree.min], col = "red", cex = 2, pch = 20)
In this case, the tree of size 8 is selected by cross-validation. We now prune the tree to obtain the 8-node tree.
prune.carseats <- prune.tree(tree.carseats, best = 8)
plot(prune.carseats)
text(prune.carseats, pretty = 0)
yhat <- predict(prune.carseats, newdata = Carseats.test)
mean((yhat - Carseats.test$Sales)^2)
## [1] 5.113254
We may see that pruning the tree increases the Test MSE to 5.1.
bag.carseats <- randomForest(Sales ~ ., data = Carseats.train, mtry = 10, ntree = 500, importance = TRUE)
yhat.bag <- predict(bag.carseats, newdata = Carseats.test)
mean((yhat.bag - Carseats.test$Sales)^2)
## [1] 2.657296
We may see that bagging decreases the Test MSE to 2.6.
importance(bag.carseats)
## %IncMSE IncNodePurity
## CompPrice 23.07909904 171.185734
## Income 2.82081527 94.079825
## Advertising 11.43295625 99.098941
## Population -3.92119532 59.818905
## Price 54.24314632 505.887016
## ShelveLoc 46.26912996 361.962753
## Age 14.24992212 159.740422
## Education -0.07662320 46.738585
## Urban 0.08530119 8.453749
## US 4.34349223 15.157608
We may conclude that “Price” and “ShelveLoc” are the two most important variables.
rf.carseats <- randomForest(Sales ~ ., data = Carseats.train, mtry = 3, ntree = 500, importance = TRUE)
yhat.rf <- predict(rf.carseats, newdata = Carseats.test)
mean((yhat.rf - Carseats.test$Sales)^2)
## [1] 3.049406
In this case, with \(m=p–√\), we have a Test MSE of 3.3.
importance(rf.carseats)
## %IncMSE IncNodePurity
## CompPrice 12.9489323 158.48521
## Income 2.2754686 129.59400
## Advertising 8.9977589 111.94374
## Population -2.2513981 102.84599
## Price 33.4226950 391.60804
## ShelveLoc 34.0233545 290.56502
## Age 12.2185108 171.83302
## Education 0.2592124 71.65413
## Urban 1.1382113 14.76798
## US 4.1925335 33.75554
We may conclude that, in this case also, “Price” and “ShelveLoc” are the two most important variables.
Q9. This problem involves the “OJ” data set which is part of the “ISLR” package.
set.seed(1)
train <- sample(1:nrow(OJ), 800)
OJ.train <- OJ[train, ]
OJ.test <- OJ[-train, ]
tree.oj <- tree(Purchase ~ ., data = OJ.train)
summary(tree.oj)
##
## Classification tree:
## tree(formula = Purchase ~ ., data = OJ.train)
## Variables actually used in tree construction:
## [1] "LoyalCH" "PriceDiff" "SpecialCH" "ListPriceDiff"
## [5] "PctDiscMM"
## Number of terminal nodes: 9
## Residual mean deviance: 0.7432 = 587.8 / 791
## Misclassification error rate: 0.1588 = 127 / 800
The fitted tree has 8 terminal nodes and a training error rate of 0.165.
tree.oj
## node), split, n, deviance, yval, (yprob)
## * denotes terminal node
##
## 1) root 800 1073.00 CH ( 0.60625 0.39375 )
## 2) LoyalCH < 0.5036 365 441.60 MM ( 0.29315 0.70685 )
## 4) LoyalCH < 0.280875 177 140.50 MM ( 0.13559 0.86441 )
## 8) LoyalCH < 0.0356415 59 10.14 MM ( 0.01695 0.98305 ) *
## 9) LoyalCH > 0.0356415 118 116.40 MM ( 0.19492 0.80508 ) *
## 5) LoyalCH > 0.280875 188 258.00 MM ( 0.44149 0.55851 )
## 10) PriceDiff < 0.05 79 84.79 MM ( 0.22785 0.77215 )
## 20) SpecialCH < 0.5 64 51.98 MM ( 0.14062 0.85938 ) *
## 21) SpecialCH > 0.5 15 20.19 CH ( 0.60000 0.40000 ) *
## 11) PriceDiff > 0.05 109 147.00 CH ( 0.59633 0.40367 ) *
## 3) LoyalCH > 0.5036 435 337.90 CH ( 0.86897 0.13103 )
## 6) LoyalCH < 0.764572 174 201.00 CH ( 0.73563 0.26437 )
## 12) ListPriceDiff < 0.235 72 99.81 MM ( 0.50000 0.50000 )
## 24) PctDiscMM < 0.196197 55 73.14 CH ( 0.61818 0.38182 ) *
## 25) PctDiscMM > 0.196197 17 12.32 MM ( 0.11765 0.88235 ) *
## 13) ListPriceDiff > 0.235 102 65.43 CH ( 0.90196 0.09804 ) *
## 7) LoyalCH > 0.764572 261 91.20 CH ( 0.95785 0.04215 ) *
We pick the node labelled 8, which is a terminal node because of the asterisk. The split criterion is LoyalCH < 0.035, the number of observations in that branch is 57 with a deviance of 10.07 and an overall prediction for the branch of MM. Less than 2% of the observations in that branch take the value of CH, and the remaining 98% take the value of MM.
plot(tree.oj)
text(tree.oj, pretty = 0)
We may see that the most important indicator of “Purchase” appears to be “LoyalCH”, since the first branch differentiates the intensity of customer brand loyalty to CH. In fact, the top three nodes contain “LoyalCH”.
tree.pred <- predict(tree.oj, OJ.test, type = "class")
table(tree.pred, OJ.test$Purchase)
##
## tree.pred CH MM
## CH 160 38
## MM 8 64
1 - (147 + 62) / 270
## [1] 0.2259259
We may conclude that the test error rate is about 22%.
cv.oj <- cv.tree(tree.oj, FUN = prune.misclass)
cv.oj
## $size
## [1] 9 8 7 4 2 1
##
## $dev
## [1] 150 150 149 158 172 315
##
## $k
## [1] -Inf 0.000000 3.000000 4.333333 10.500000 151.000000
##
## $method
## [1] "misclass"
##
## attr(,"class")
## [1] "prune" "tree.sequence"
plot(cv.oj$size, cv.oj$dev, type = "b", xlab = "Tree size", ylab = "Deviance")
h. Which tree size corresponds to the lowest cross-validated classification error rate?
We may see that the 2-node tree is the smallest tree with the lowest classification error rate.
prune.oj <- prune.misclass(tree.oj, best = 2)
plot(prune.oj)
text(prune.oj, pretty = 0)
j. Compare the training error rates between the pruned and unpruned trees. Which is higher?
summary(tree.oj)
##
## Classification tree:
## tree(formula = Purchase ~ ., data = OJ.train)
## Variables actually used in tree construction:
## [1] "LoyalCH" "PriceDiff" "SpecialCH" "ListPriceDiff"
## [5] "PctDiscMM"
## Number of terminal nodes: 9
## Residual mean deviance: 0.7432 = 587.8 / 791
## Misclassification error rate: 0.1588 = 127 / 800
summary(prune.oj)
##
## Classification tree:
## snip.tree(tree = tree.oj, nodes = 3:2)
## Variables actually used in tree construction:
## [1] "LoyalCH"
## Number of terminal nodes: 2
## Residual mean deviance: 0.9768 = 779.5 / 798
## Misclassification error rate: 0.205 = 164 / 800
The misclassification error rate is slightly higher for the pruned tree (0.1825 vs 0.165).
prune.pred <- predict(prune.oj, OJ.test, type = "class")
table(prune.pred, OJ.test$Purchase)
##
## prune.pred CH MM
## CH 142 24
## MM 26 78
1 - (119 + 81) / 270
## [1] 0.2592593
In this case, the pruning process increased the test error rate to about 26%, but it produced a way more interpretable tree.