knitr::opts_chunk$set(echo = TRUE)

library(MASS)
library(ISLR)

Exercise 2

Carefully explain the differences between the KNN classifier and KNN regression methods.

KNN classifiers assign the test observation a qualitative class. This is done by using surrounding observations (neighbors) in a training data set to estimate the conditional probability for class assignment.

KNN Regression is a non-parametric method that is similar to KNN classification. However, instead of classifying the variable, the regression attempts to predict the value of the variable through a local average.

Exercise 9

  1. This question involves the use of multiple linear regression on the Auto data set. Produce a scatterplot matrix which includes all of the variables in the data set.
attach(Auto)
pairs(Auto)

  1. Compute the matrix of correlations between the variables using the function cor(). You will need to exclude the name variable, cor() which is qualitative.
auto_num = subset(Auto, select=-name)
cor(auto_num)
##                     mpg  cylinders displacement horsepower     weight
## mpg           1.0000000 -0.7776175   -0.8051269 -0.7784268 -0.8322442
## cylinders    -0.7776175  1.0000000    0.9508233  0.8429834  0.8975273
## displacement -0.8051269  0.9508233    1.0000000  0.8972570  0.9329944
## horsepower   -0.7784268  0.8429834    0.8972570  1.0000000  0.8645377
## weight       -0.8322442  0.8975273    0.9329944  0.8645377  1.0000000
## acceleration  0.4233285 -0.5046834   -0.5438005 -0.6891955 -0.4168392
## year          0.5805410 -0.3456474   -0.3698552 -0.4163615 -0.3091199
## origin        0.5652088 -0.5689316   -0.6145351 -0.4551715 -0.5850054
##              acceleration       year     origin
## mpg             0.4233285  0.5805410  0.5652088
## cylinders      -0.5046834 -0.3456474 -0.5689316
## displacement   -0.5438005 -0.3698552 -0.6145351
## horsepower     -0.6891955 -0.4163615 -0.4551715
## weight         -0.4168392 -0.3091199 -0.5850054
## acceleration    1.0000000  0.2903161  0.2127458
## year            0.2903161  1.0000000  0.1815277
## origin          0.2127458  0.1815277  1.0000000
  1. Use the lm() function to perform a multiple linear regression with mpg as the response and all other variables except name as the predictors. Use the summary() function to print the results.
m1 = lm(mpg~., data=auto_num)
summary(m1)
## 
## Call:
## lm(formula = mpg ~ ., data = auto_num)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.5903 -2.1565 -0.1169  1.8690 13.0604 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -17.218435   4.644294  -3.707  0.00024 ***
## cylinders     -0.493376   0.323282  -1.526  0.12780    
## displacement   0.019896   0.007515   2.647  0.00844 ** 
## horsepower    -0.016951   0.013787  -1.230  0.21963    
## weight        -0.006474   0.000652  -9.929  < 2e-16 ***
## acceleration   0.080576   0.098845   0.815  0.41548    
## year           0.750773   0.050973  14.729  < 2e-16 ***
## origin         1.426141   0.278136   5.127 4.67e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.328 on 384 degrees of freedom
## Multiple R-squared:  0.8215, Adjusted R-squared:  0.8182 
## F-statistic: 252.4 on 7 and 384 DF,  p-value: < 2.2e-16
  1. Is there a relationship between the predictors and the response? Yes, the multiple R-squared indicates that 82% of the variance of the ?response can be explained by the predictors.

  2. Which predictors appear to have a statistically significant relationship to the response? displacement, weight, year, and origin are all significant using a p-value threshold of 0.05.

  3. What does the coefficient for the year variable suggest? The coefficient suggests that for a one unit increase in year, mpg is expected to increase by 0.75.

  1. Use the plot() function to produce diagnostic plots of the linear regression fit.
par(mfrow=c(2,2))
plot(m1)

  1. Use the `and:` symbols to fit linear regression models with interaction effects. Do any interactions appear to be statistically significant?
m2 = lm(mpg ~ year+origin+displacement*weight, data=auto_num)
summary(m2)
## 
## Call:
## lm(formula = mpg ~ year + origin + displacement * weight, data = auto_num)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10.6119  -1.7290  -0.0115   1.5609  12.5584 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         -8.007e+00  3.798e+00  -2.108   0.0357 *  
## year                 8.194e-01  4.518e-02  18.136  < 2e-16 ***
## origin               3.567e-01  2.574e-01   1.386   0.1666    
## displacement        -7.148e-02  9.176e-03  -7.790 6.27e-14 ***
## weight              -1.054e-02  6.530e-04 -16.146  < 2e-16 ***
## displacement:weight  2.104e-05  2.214e-06   9.506  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.016 on 386 degrees of freedom
## Multiple R-squared:  0.8526, Adjusted R-squared:  0.8507 
## F-statistic: 446.5 on 5 and 386 DF,  p-value: < 2.2e-16
  1. Try a few different transformations of the variables, such as log(X), √X, X2. Comment on your findings.
m3 = lm(mpg ~ log(year)+sqrt(origin)+I(displacement^2)*weight, data=auto_num)
summary(m3)
## 
## Call:
## lm(formula = mpg ~ log(year) + sqrt(origin) + I(displacement^2) * 
##     weight, data = auto_num)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -10.201  -1.943   0.005   1.559  12.791 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              -2.192e+02  1.517e+01 -14.456  < 2e-16 ***
## log(year)                 6.142e+01  3.483e+00  17.638  < 2e-16 ***
## sqrt(origin)              1.414e+00  6.894e-01   2.051   0.0409 *  
## I(displacement^2)        -1.407e-04  2.299e-05  -6.120 2.30e-09 ***
## weight                   -8.602e-03  4.483e-04 -19.190  < 2e-16 ***
## I(displacement^2):weight  4.124e-08  5.212e-09   7.913 2.69e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.062 on 386 degrees of freedom
## Multiple R-squared:  0.8481, Adjusted R-squared:  0.8461 
## F-statistic:   431 on 5 and 386 DF,  p-value: < 2.2e-16

Exercise 10

  1. This question should be answered using the Carseats data set. Fit a multiple regression model to predict Sales using Price, Urban, and US.
attach(Carseats)
fit=lm(Sales~Price+Urban+US)
summary(fit)
## 
## Call:
## lm(formula = Sales ~ Price + Urban + US)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9206 -1.6220 -0.0564  1.5786  7.0581 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.043469   0.651012  20.036  < 2e-16 ***
## Price       -0.054459   0.005242 -10.389  < 2e-16 ***
## UrbanYes    -0.021916   0.271650  -0.081    0.936    
## USYes        1.200573   0.259042   4.635 4.86e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.472 on 396 degrees of freedom
## Multiple R-squared:  0.2393, Adjusted R-squared:  0.2335 
## F-statistic: 41.52 on 3 and 396 DF,  p-value: < 2.2e-16
  1. Provide an interpretation of each coefficient in the model. Be careful—some of the variables in the model are qualitative!
  1. Write out the model in equation form, being careful to handle the qualitative variables properly.
  1. For which of the predictors can you reject the null hypothesis H0 : βj = 0?
  1. On the basis of your response to the previous question, fit a smaller model that only uses the predictors for which there is evidence of association with the outcome.
fit2=lm(Sales~Price+US)
summary(fit2)
## 
## Call:
## lm(formula = Sales ~ Price + US)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9269 -1.6286 -0.0574  1.5766  7.0515 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.03079    0.63098  20.652  < 2e-16 ***
## Price       -0.05448    0.00523 -10.416  < 2e-16 ***
## USYes        1.19964    0.25846   4.641 4.71e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.469 on 397 degrees of freedom
## Multiple R-squared:  0.2393, Adjusted R-squared:  0.2354 
## F-statistic: 62.43 on 2 and 397 DF,  p-value: < 2.2e-16
  1. How well do the models in (a) and (e) fit the data?
  1. Using the model from (e), obtain 95% confidence intervals for the coefficient(s).
confint(fit2)
##                   2.5 %      97.5 %
## (Intercept) 11.79032020 14.27126531
## Price       -0.06475984 -0.04419543
## USYes        0.69151957  1.70776632
  1. Is there evidence of outliers or high leverage observations in the model from (e)?
plot(fit2)

Exercise 12

  1. This problem involves simple linear regression without an intercept. Recall that the coefficient estimate βˆ for the linear regression of Y onto X without an intercept is given by (3.38). Under what circumstance is the coefficient estimate for the regression of X onto Y the same as the coefficient estimate for the regression of Y onto X?
  1. Generate an example in R with n = 100 observations in which the coefficient estimate for the regression of X onto Y is different from the coefficient estimate for the regression of Y onto X.
set.seed(42)
x = rnorm(100)
y = rbinom(100,5,.5)
xyset = lm(x~y+0)
summary(xyset)
## 
## Call:
## lm(formula = x ~ y + 0)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3.06848 -0.65508  0.07654  0.62229  2.21125 
## 
## Coefficients:
##   Estimate Std. Error t value Pr(>|t|)
## y  0.02513    0.04095   0.614    0.541
## 
## Residual standard error: 1.04 on 99 degrees of freedom
## Multiple R-squared:  0.00379,    Adjusted R-squared:  -0.006272 
## F-statistic: 0.3767 on 1 and 99 DF,  p-value: 0.5408
yxset = lm(y~x+0)
summary(yxset)
## 
## Call:
## lm(formula = y ~ x + 0)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.1239  1.2680  2.0358  3.0913  5.0182 
## 
## Coefficients:
##   Estimate Std. Error t value Pr(>|t|)
## x   0.1508     0.2458   0.614    0.541
## 
## Residual standard error: 2.548 on 99 degrees of freedom
## Multiple R-squared:  0.00379,    Adjusted R-squared:  -0.006272 
## F-statistic: 0.3767 on 1 and 99 DF,  p-value: 0.5408
  1. Generate an example in R with n = 100 observations in which the coefficient estimate for the regression of X onto Y is the same as the coefficient estimate for the regression of Y onto X.
x = 1:100
y = 100:1
xyset2 = lm(x~y+0)
summary(xyset2)
## 
## Call:
## lm(formula = x ~ y + 0)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -49.75 -12.44  24.87  62.18  99.49 
## 
## Coefficients:
##   Estimate Std. Error t value Pr(>|t|)    
## y   0.5075     0.0866    5.86 6.09e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 50.37 on 99 degrees of freedom
## Multiple R-squared:  0.2575, Adjusted R-squared:   0.25 
## F-statistic: 34.34 on 1 and 99 DF,  p-value: 6.094e-08
yxset2 = lm(y~x+0)
summary(yxset2)
## 
## Call:
## lm(formula = y ~ x + 0)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -49.75 -12.44  24.87  62.18  99.49 
## 
## Coefficients:
##   Estimate Std. Error t value Pr(>|t|)    
## x   0.5075     0.0866    5.86 6.09e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 50.37 on 99 degrees of freedom
## Multiple R-squared:  0.2575, Adjusted R-squared:   0.25 
## F-statistic: 34.34 on 1 and 99 DF,  p-value: 6.094e-08