diagnostics

In this paper we present several methods useful for diagnosing violations of the basic regression assumptions. These diagnostic methods are primarily based on study of the model residuals . Methods for dealing with model inadequacies, as well as additional, more sophisticated diagnostics

Load Package

library(RcmdrMisc)
## Loading required package: car
## Loading required package: carData
## Loading required package: sandwich
library(Rcpp)
library(olsrr)
## 
## Attaching package: 'olsrr'
## The following object is masked from 'package:datasets':
## 
##     rivers
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
## 
##     recode
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(DataExplorer)
library(performance)
library(sjPlot)
## Registered S3 methods overwritten by 'parameters':
##   method                           from      
##   as.double.parameters_kurtosis    datawizard
##   as.double.parameters_skewness    datawizard
##   as.double.parameters_smoothness  datawizard
##   as.numeric.parameters_kurtosis   datawizard
##   as.numeric.parameters_skewness   datawizard
##   as.numeric.parameters_smoothness datawizard
##   print.parameters_distribution    datawizard
##   print.parameters_kurtosis        datawizard
##   print.parameters_skewness        datawizard
##   summary.parameters_kurtosis      datawizard
##   summary.parameters_skewness      datawizard
## Registered S3 methods overwritten by 'lme4':
##   method                          from
##   cooks.distance.influence.merMod car 
##   influence.merMod                car 
##   dfbeta.influence.merMod         car 
##   dfbetas.influence.merMod        car
## Learn more about sjPlot with 'browseVignettes("sjPlot")'.
library(fBasics)
## Loading required package: timeDate
## Loading required package: timeSeries
## 
## Attaching package: 'fBasics'
## The following object is masked from 'package:car':
## 
##     densityPlot
library(qqplotr)
## Loading required package: ggplot2
## 
## Attaching package: 'qqplotr'
## The following objects are masked from 'package:ggplot2':
## 
##     stat_qq_line, StatQqLine
library(ggstatsplot)
## You can cite this package as:
##      Patil, I. (2021). Visualizations with statistical details: The 'ggstatsplot' approach.
##      Journal of Open Source Software, 6(61), 3167, doi:10.21105/joss.03167
library(PerformanceAnalytics)
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following object is masked from 'package:timeSeries':
## 
##     time<-
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## 
## Attaching package: 'PerformanceAnalytics'
## The following objects are masked from 'package:timeDate':
## 
##     kurtosis, skewness
## The following object is masked from 'package:graphics':
## 
##     legend
library(see)

Longley’s Economic Regression Data

data(longley)
data1<-longley
str(data1)
## 'data.frame':    16 obs. of  7 variables:
##  $ GNP.deflator: num  83 88.5 88.2 89.5 96.2 ...
##  $ GNP         : num  234 259 258 285 329 ...
##  $ Unemployed  : num  236 232 368 335 210 ...
##  $ Armed.Forces: num  159 146 162 165 310 ...
##  $ Population  : num  108 109 110 111 112 ...
##  $ Year        : int  1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 ...
##  $ Employed    : num  60.3 61.1 60.2 61.2 63.2 ...
head(data1)
##      GNP.deflator     GNP Unemployed Armed.Forces Population Year Employed
## 1947         83.0 234.289      235.6        159.0    107.608 1947   60.323
## 1948         88.5 259.426      232.5        145.6    108.632 1948   61.122
## 1949         88.2 258.054      368.2        161.6    109.773 1949   60.171
## 1950         89.5 284.599      335.1        165.0    110.929 1950   61.187
## 1951         96.2 328.975      209.9        309.9    112.075 1951   63.221
## 1952         98.1 346.999      193.2        359.4    113.270 1952   63.639

Eksplorasi

plot_scatterplot(data = data1[,-6], by="Employed",geom_point_args= list(color="steelblue"))

ggcorrmat(data = data1 %>% select(-6,-Employed))

#melihat matriks korelasi
chart.Correlation(data1[,-c(6,7)], histogram=FALSE, pch=19)

model regresi berganda

regresi=lm(Employed~.,data=data1[,-6]) #full model
regresi
## 
## Call:
## lm(formula = Employed ~ ., data = data1[, -6])
## 
## Coefficients:
##  (Intercept)  GNP.deflator           GNP    Unemployed  Armed.Forces  
##    92.461308     -0.048463      0.072004     -0.004039     -0.005605  
##   Population  
##    -0.403509
summary(regresi)
## 
## Call:
## lm(formula = Employed ~ ., data = data1[, -6])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.55324 -0.36478  0.06106  0.20550  0.93359 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  92.461308  35.169248   2.629   0.0252 *
## GNP.deflator -0.048463   0.132248  -0.366   0.7217  
## GNP           0.072004   0.031734   2.269   0.0467 *
## Unemployed   -0.004039   0.004385  -0.921   0.3788  
## Armed.Forces -0.005605   0.002838  -1.975   0.0765 .
## Population   -0.403509   0.330264  -1.222   0.2498  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4832 on 10 degrees of freedom
## Multiple R-squared:  0.9874, Adjusted R-squared:  0.9811 
## F-statistic: 156.4 on 5 and 10 DF,  p-value: 3.699e-09
yduga=predict(regresi)
sisa=residuals(regresi)
std_sisa=rstandard(regresi) #standardized residual
stud_sisa=rstudent(regresi) #studentized residual
hii<-hatvalues(regresi) # hii
tabel=data.frame(data1[,-c(6,7)],std_sisa,hii)
tabel
##      GNP.deflator     GNP Unemployed Armed.Forces Population    std_sisa
## 1947         83.0 234.289      235.6        159.0    107.608  0.75794122
## 1948         88.5 259.426      232.5        145.6    108.632 -0.44157757
## 1949         88.2 258.054      368.2        161.6    109.773  0.23399140
## 1950         89.5 284.599      335.1        165.0    110.929 -1.01864180
## 1951         96.2 328.975      209.9        309.9    112.075 -1.07423034
## 1952         98.1 346.999      193.2        359.4    113.270 -1.37618542
## 1953         99.0 365.385      187.0        354.7    115.094  0.53847357
## 1954        100.0 363.112      357.8        335.0    116.219  0.62066911
## 1955        101.2 397.469      290.4        304.8    117.388  0.25505165
## 1956        104.6 419.180      282.2        285.7    118.734  2.13092045
## 1957        108.4 442.769      293.6        279.8    120.445  1.02074373
## 1958        110.8 444.546      468.1        263.7    121.950 -0.03227495
## 1959        112.6 482.704      381.3        255.2    123.366 -0.91281194
## 1960        114.2 502.601      393.1        251.4    125.368  0.07428342
## 1961        115.7 518.173      480.6        257.2    127.852  0.35388948
## 1962        116.9 554.894      400.7        282.7    130.081 -1.72338095
##            hii
## 1947 0.4244630
## 1948 0.5635065
## 1949 0.3607761
## 1950 0.3719606
## 1951 0.2225697
## 1952 0.3079432
## 1953 0.4025571
## 1954 0.4688132
## 1955 0.4531780
## 1956 0.1780468
## 1957 0.2236347
## 1958 0.4826071
## 1959 0.3474087
## 1960 0.2191841
## 1961 0.3452269
## 1962 0.6281243

Model Checking

check_normality(regresi,effects="random")
## OK: residuals appear as normally distributed (p = 0.791).
plot(check_normality(regresi,effects="random"))
## OK: residuals appear as normally distributed (p = 0.791).

#check_model(regresi,panel=F)
#check_distribution(regresi)
#plot(check_distribution(regresi))

=========titik leverage==============

as.data.frame(hatvalues(regresi, infl = influence(regresi)))
##      hatvalues(regresi, infl = influence(regresi))
## 1947                                     0.4244630
## 1948                                     0.5635065
## 1949                                     0.3607761
## 1950                                     0.3719606
## 1951                                     0.2225697
## 1952                                     0.3079432
## 1953                                     0.4025571
## 1954                                     0.4688132
## 1955                                     0.4531780
## 1956                                     0.1780468
## 1957                                     0.2236347
## 1958                                     0.4826071
## 1959                                     0.3474087
## 1960                                     0.2191841
## 1961                                     0.3452269
## 1962                                     0.6281243
p=6
n=16
batas_hat=2*(p/n)
batas_hat
## [1] 0.75
ols_plot_resid_lev(regresi)

=========amatan berpengaruh============

# cook's distance
as.data.frame(cooks.distance(regresi, infl = influence(regresi)))
##      cooks.distance(regresi, infl = influence(regresi))
## 1947                                       0.0706132785
## 1948                                       0.0419550199
## 1949                                       0.0051503090
## 1950                                       0.1024240224
## 1951                                       0.0550615298
## 1952                                       0.1404531598
## 1953                                       0.0325618145
## 1954                                       0.0566658657
## 1955                                       0.0089852023
## 1956                                       0.1639345021
## 1957                                       0.0500213292
## 1958                                       0.0001619397
## 1959                                       0.0739283229
## 1960                                       0.0002581623
## 1961                                       0.0110051954
## 1962                                       0.8361015775
Ftabel=qf(0.95,6,10) #db1=p, db2=n-p
Ftabel
## [1] 3.217175
ols_plot_cooksd_chart(regresi)

ols_plot_cooksd_bar(regresi)

# dfbetas
dfbetas(regresi, infl = lm.influence(regresi))
##       (Intercept) GNP.deflator          GNP   Unemployed Armed.Forces
## 1947 -0.076044853 -0.151290868 -0.036044008 -0.122295705 -0.106310745
## 1948  0.202912490 -0.283119810  0.229983526  0.297985833  0.341998133
## 1949 -0.014013077  0.007122133 -0.021342769  0.035525956  0.009896758
## 1950 -0.463028332  0.489722493 -0.467902986 -0.490863841  0.042767889
## 1951 -0.126922997 -0.053800678 -0.080838022 -0.018414783 -0.071814249
## 1952  0.096791853 -0.187016359  0.136677078  0.173573140 -0.405349920
## 1953 -0.222542891  0.122298477 -0.208546078 -0.250802846  0.146750933
## 1954 -0.095536758 -0.001636120 -0.102136332  0.137441854  0.477768534
## 1955  0.176966919 -0.191190444  0.187368845  0.158850255  0.079500386
## 1956  0.783802966 -0.550322375  0.795301512  0.381028563 -0.198901123
## 1957 -0.084467319  0.269671379 -0.111370954 -0.245016873 -0.292812974
## 1958  0.004858942 -0.014573089  0.007912321 -0.004259813 -0.002127949
## 1959 -0.388292141  0.098825004 -0.355724004 -0.263768280  0.281947794
## 1960  0.003402199  0.004250879  0.003492294 -0.002427692 -0.020032704
## 1961 -0.105691268  0.046058189 -0.092580380 -0.035751025  0.020562633
## 1962  0.795718616  0.476862405  0.432515991  0.783663928 -0.097809891
##        Population
## 1947  0.140061578
## 1948 -0.176589611
## 1949  0.015754603
## 1950  0.414444598
## 1951  0.160481336
## 1952 -0.066183552
## 1953  0.232351082
## 1954  0.106173660
## 1955 -0.160630899
## 1956 -0.779907323
## 1957  0.033763485
## 1958 -0.001702178
## 1959  0.433990038
## 1960 -0.005135299
## 1961  0.110472541
## 1962 -1.053100413
batas_dfbetas=2/sqrt(n)
batas_dfbetas
## [1] 0.5
ols_plot_dfbetas(regresi)

# dffits
as.data.frame(dffits(regresi, infl=influence(regresi)))
##      dffits(regresi, infl = influence(regresi))
## 1947                                 0.63604419
## 1948                                -0.48068973
## 1949                                 0.16722674
## 1950                                -0.78557271
## 1951                                -0.57975811
## 1952                                -0.96728910
## 1953                                 0.42554014
## 1954                                 0.56414169
## 1955                                 0.22099274
## 1956                                 1.27341052
## 1957                                 0.54911963
## 1958                                -0.02957305
## 1959                                -0.65992417
## 1960                                 0.03734764
## 1961                                 0.24531971
## 1962                                -2.53425337
batas_dffits=2*sqrt(p/n)
batas_dffits
## [1] 1.224745
ols_plot_dffits(regresi)

# mengeluarkan semua nilai
influence.measures(regresi, infl = influence(regresi))
## Influence measures of
##   lm(formula = Employed ~ ., data = data1[, -6]) :
## 
##        dfb.1_ dfb.GNP.  dfb.GNP dfb.Unmp dfb.Ar.F dfb.Pplt   dffit  cov.r
## 1947 -0.07604 -0.15129 -0.03604 -0.12230 -0.10631  0.14006  0.6360 2.2925
## 1948  0.20291 -0.28312  0.22998  0.29799  0.34200 -0.17659 -0.4807 3.8305
## 1949 -0.01401  0.00712 -0.02134  0.03553  0.00990  0.01575  0.1672 2.8483
## 1950 -0.46303  0.48972 -0.46790 -0.49086  0.04277  0.41444 -0.7856 1.5527
## 1951 -0.12692 -0.05380 -0.08084 -0.01841 -0.07181  0.16048 -0.5798 1.1598
## 1952  0.09679 -0.18702  0.13668  0.17357 -0.40535 -0.06618 -0.9673 0.7714
## 1953 -0.22254  0.12230 -0.20855 -0.25080  0.14675  0.23235  0.4255 2.6398
## 1954 -0.09554 -0.00164 -0.10214  0.13744  0.47777  0.10617  0.5641 2.7985
## 1955  0.17697 -0.19119  0.18737  0.15885  0.07950 -0.16063  0.2210 3.3090
## 1956  0.78380 -0.55032  0.79530  0.38103 -0.19890 -0.77991  1.2734 0.0606
## 1957 -0.08447  0.26967 -0.11137 -0.24502 -0.29281  0.03376  0.5491 1.2525
## 1958  0.00486 -0.01457  0.00791 -0.00426 -0.00213 -0.00170 -0.0296 3.6346
## 1959 -0.38829  0.09883 -0.35572 -0.26377  0.28195  0.43399 -0.6599 1.7108
## 1960  0.00340  0.00425  0.00349 -0.00243 -0.02003 -0.00514  0.0373 2.4019
## 1961 -0.10569  0.04606 -0.09258 -0.03575  0.02056  0.11047  0.2453 2.6645
## 1962  0.79572  0.47686  0.43252  0.78366 -0.09781 -1.05310 -2.5343 0.6108
##        cook.d   hat inf
## 1947 0.070613 0.424    
## 1948 0.041955 0.564   *
## 1949 0.005150 0.361   *
## 1950 0.102424 0.372    
## 1951 0.055062 0.223    
## 1952 0.140453 0.308    
## 1953 0.032562 0.403    
## 1954 0.056666 0.469    
## 1955 0.008985 0.453   *
## 1956 0.163935 0.178    
## 1957 0.050021 0.224    
## 1958 0.000162 0.483   *
## 1959 0.073928 0.347    
## 1960 0.000258 0.219    
## 1961 0.011005 0.345    
## 1962 0.836102 0.628   *
#regresi tanpa amatan berpengaruh
#reg_tanpa9=lm(y~x1+x2,data=antar[-9,])
#reg_tanpa22=lm(y~x1+x2,data=antar[-22,])
#reg_tanpa9dan22=lm(y~x1+x2,data=antar[-c(9,22),])
#anova(reg_ganda)
#anova(reg_tanpa9) 
#anova(reg_tanpa22)
#anova(reg_tanpa9dan22)

backward Elimination

bkward=ols_step_backward_p(regresi, prem = 0.1,details = TRUE)
## Backward Elimination Method 
## ---------------------------
## 
## Candidate Terms: 
## 
## 1 . GNP.deflator 
## 2 . GNP 
## 3 . Unemployed 
## 4 . Armed.Forces 
## 5 . Population 
## 
## We are eliminating variables based on p value...
## 
## - GNP.deflator 
## 
## Backward Elimination: Step 1 
## 
##  Variable GNP.deflator Removed 
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.994       RMSE               0.464 
## R-Squared               0.987       Coef. Var          0.710 
## Adj. R-Squared          0.983       MSE                0.215 
## Pred R-Squared          0.972       MAE                0.309 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                ANOVA                                 
## --------------------------------------------------------------------
##                Sum of                                               
##               Squares        DF    Mean Square       F         Sig. 
## --------------------------------------------------------------------
## Regression    182.642         4         45.661    212.231    0.0000 
## Residual        2.367        11          0.215                      
## Total         185.009        15                                     
## --------------------------------------------------------------------
## 
##                                    Parameter Estimates                                     
## ------------------------------------------------------------------------------------------
##        model      Beta    Std. Error    Std. Beta      t        Sig      lower      upper 
## ------------------------------------------------------------------------------------------
##  (Intercept)    82.613        21.775                  3.794    0.003    34.687    130.539 
##          GNP     0.062         0.016        1.758     3.888    0.003     0.027      0.097 
##   Unemployed    -0.005         0.003       -0.138    -1.783    0.102    -0.012      0.001 
## Armed.Forces    -0.006         0.003       -0.117    -2.277    0.044    -0.012      0.000 
##   Population    -0.325         0.241       -0.644    -1.347    0.205    -0.856      0.206 
## ------------------------------------------------------------------------------------------
## 
## 
## - Population 
## 
## Backward Elimination: Step 2 
## 
##  Variable Population Removed 
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.993       RMSE               0.479 
## R-Squared               0.985       Coef. Var          0.734 
## Adj. R-Squared          0.981       MSE                0.230 
## Pred R-Squared          0.976       MAE                0.289 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                ANOVA                                 
## --------------------------------------------------------------------
##                Sum of                                               
##               Squares        DF    Mean Square       F         Sig. 
## --------------------------------------------------------------------
## Regression    182.252         3         60.751    264.449    0.0000 
## Residual        2.757        12          0.230                      
## Total         185.009        15                                     
## --------------------------------------------------------------------
## 
##                                    Parameter Estimates                                    
## -----------------------------------------------------------------------------------------
##        model      Beta    Std. Error    Std. Beta      t        Sig      lower     upper 
## -----------------------------------------------------------------------------------------
##  (Intercept)    53.306         0.716                 74.415    0.000    51.746    54.867 
##          GNP     0.041         0.002        1.154    18.485    0.000     0.036     0.046 
##   Unemployed    -0.008         0.002       -0.212    -3.734    0.003    -0.013    -0.003 
## Armed.Forces    -0.005         0.003       -0.096    -1.892    0.083    -0.010     0.001 
## -----------------------------------------------------------------------------------------
## 
## 
## 
## No more variables satisfy the condition of p value = 0.1
## 
## 
## Variables Removed: 
## 
## - GNP.deflator 
## - Population 
## 
## 
## Final Model Output 
## ------------------
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.993       RMSE               0.479 
## R-Squared               0.985       Coef. Var          0.734 
## Adj. R-Squared          0.981       MSE                0.230 
## Pred R-Squared          0.976       MAE                0.289 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                ANOVA                                 
## --------------------------------------------------------------------
##                Sum of                                               
##               Squares        DF    Mean Square       F         Sig. 
## --------------------------------------------------------------------
## Regression    182.252         3         60.751    264.449    0.0000 
## Residual        2.757        12          0.230                      
## Total         185.009        15                                     
## --------------------------------------------------------------------
## 
##                                    Parameter Estimates                                    
## -----------------------------------------------------------------------------------------
##        model      Beta    Std. Error    Std. Beta      t        Sig      lower     upper 
## -----------------------------------------------------------------------------------------
##  (Intercept)    53.306         0.716                 74.415    0.000    51.746    54.867 
##          GNP     0.041         0.002        1.154    18.485    0.000     0.036     0.046 
##   Unemployed    -0.008         0.002       -0.212    -3.734    0.003    -0.013    -0.003 
## Armed.Forces    -0.005         0.003       -0.096    -1.892    0.083    -0.010     0.001 
## -----------------------------------------------------------------------------------------

forward Selection

forward=ols_step_forward_p(regresi, penter = 0.1,details = TRUE)
## Forward Selection Method    
## ---------------------------
## 
## Candidate Terms: 
## 
## 1. GNP.deflator 
## 2. GNP 
## 3. Unemployed 
## 4. Armed.Forces 
## 5. Population 
## 
## We are selecting variables based on p value...
## 
## 
## Forward Selection: Step 1 
## 
## - GNP 
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.984       RMSE               0.657 
## R-Squared               0.967       Coef. Var          1.005 
## Adj. R-Squared          0.965       MSE                0.431 
## Pred R-Squared          0.959       MAE                0.511 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                ANOVA                                 
## --------------------------------------------------------------------
##                Sum of                                               
##               Squares        DF    Mean Square       F         Sig. 
## --------------------------------------------------------------------
## Regression    178.973         1        178.973    415.103    0.0000 
## Residual        6.036        14          0.431                      
## Total         185.009        15                                     
## --------------------------------------------------------------------
## 
##                                   Parameter Estimates                                    
## ----------------------------------------------------------------------------------------
##       model      Beta    Std. Error    Std. Beta      t        Sig      lower     upper 
## ----------------------------------------------------------------------------------------
## (Intercept)    51.844         0.681                 76.087    0.000    50.382    53.305 
##         GNP     0.035         0.002        0.984    20.374    0.000     0.031     0.038 
## ----------------------------------------------------------------------------------------
## 
## 
## 
## Forward Selection: Step 2 
## 
## - Unemployed 
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.990       RMSE               0.525 
## R-Squared               0.981       Coef. Var          0.803 
## Adj. R-Squared          0.978       MSE                0.275 
## Pred R-Squared          0.973       MAE                0.362 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                ANOVA                                 
## --------------------------------------------------------------------
##                Sum of                                               
##               Squares        DF    Mean Square       F         Sig. 
## --------------------------------------------------------------------
## Regression    181.430         2         90.715    329.498    0.0000 
## Residual        3.579        13          0.275                      
## Total         185.009        15                                     
## --------------------------------------------------------------------
## 
##                                   Parameter Estimates                                    
## ----------------------------------------------------------------------------------------
##       model      Beta    Std. Error    Std. Beta      t        Sig      lower     upper 
## ----------------------------------------------------------------------------------------
## (Intercept)    52.382         0.574                 91.330    0.000    51.143    53.621 
##         GNP     0.038         0.002        1.071    22.120    0.000     0.034     0.042 
##  Unemployed    -0.005         0.002       -0.145    -2.987    0.010    -0.009    -0.002 
## ----------------------------------------------------------------------------------------
## 
## 
## 
## Forward Selection: Step 3 
## 
## - Armed.Forces 
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.993       RMSE               0.479 
## R-Squared               0.985       Coef. Var          0.734 
## Adj. R-Squared          0.981       MSE                0.230 
## Pred R-Squared          0.976       MAE                0.289 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                ANOVA                                 
## --------------------------------------------------------------------
##                Sum of                                               
##               Squares        DF    Mean Square       F         Sig. 
## --------------------------------------------------------------------
## Regression    182.252         3         60.751    264.449    0.0000 
## Residual        2.757        12          0.230                      
## Total         185.009        15                                     
## --------------------------------------------------------------------
## 
##                                    Parameter Estimates                                    
## -----------------------------------------------------------------------------------------
##        model      Beta    Std. Error    Std. Beta      t        Sig      lower     upper 
## -----------------------------------------------------------------------------------------
##  (Intercept)    53.306         0.716                 74.415    0.000    51.746    54.867 
##          GNP     0.041         0.002        1.154    18.485    0.000     0.036     0.046 
##   Unemployed    -0.008         0.002       -0.212    -3.734    0.003    -0.013    -0.003 
## Armed.Forces    -0.005         0.003       -0.096    -1.892    0.083    -0.010     0.001 
## -----------------------------------------------------------------------------------------
## 
## 
## 
## No more variables to be added.
## 
## Variables Entered: 
## 
## + GNP 
## + Unemployed 
## + Armed.Forces 
## 
## 
## Final Model Output 
## ------------------
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.993       RMSE               0.479 
## R-Squared               0.985       Coef. Var          0.734 
## Adj. R-Squared          0.981       MSE                0.230 
## Pred R-Squared          0.976       MAE                0.289 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                ANOVA                                 
## --------------------------------------------------------------------
##                Sum of                                               
##               Squares        DF    Mean Square       F         Sig. 
## --------------------------------------------------------------------
## Regression    182.252         3         60.751    264.449    0.0000 
## Residual        2.757        12          0.230                      
## Total         185.009        15                                     
## --------------------------------------------------------------------
## 
##                                    Parameter Estimates                                    
## -----------------------------------------------------------------------------------------
##        model      Beta    Std. Error    Std. Beta      t        Sig      lower     upper 
## -----------------------------------------------------------------------------------------
##  (Intercept)    53.306         0.716                 74.415    0.000    51.746    54.867 
##          GNP     0.041         0.002        1.154    18.485    0.000     0.036     0.046 
##   Unemployed    -0.008         0.002       -0.212    -3.734    0.003    -0.013    -0.003 
## Armed.Forces    -0.005         0.003       -0.096    -1.892    0.083    -0.010     0.001 
## -----------------------------------------------------------------------------------------

stepwise regression

stepw=ols_step_both_p(regresi, penter = 0.15, prem = 0.15,details = TRUE)
## Stepwise Selection Method   
## ---------------------------
## 
## Candidate Terms: 
## 
## 1. GNP.deflator 
## 2. GNP 
## 3. Unemployed 
## 4. Armed.Forces 
## 5. Population 
## 
## We are selecting variables based on p value...
## 
## 
## Stepwise Selection: Step 1 
## 
## - GNP added 
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.984       RMSE               0.657 
## R-Squared               0.967       Coef. Var          1.005 
## Adj. R-Squared          0.965       MSE                0.431 
## Pred R-Squared          0.959       MAE                0.511 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                ANOVA                                 
## --------------------------------------------------------------------
##                Sum of                                               
##               Squares        DF    Mean Square       F         Sig. 
## --------------------------------------------------------------------
## Regression    178.973         1        178.973    415.103    0.0000 
## Residual        6.036        14          0.431                      
## Total         185.009        15                                     
## --------------------------------------------------------------------
## 
##                                   Parameter Estimates                                    
## ----------------------------------------------------------------------------------------
##       model      Beta    Std. Error    Std. Beta      t        Sig      lower     upper 
## ----------------------------------------------------------------------------------------
## (Intercept)    51.844         0.681                 76.087    0.000    50.382    53.305 
##         GNP     0.035         0.002        0.984    20.374    0.000     0.031     0.038 
## ----------------------------------------------------------------------------------------
## 
## 
## 
## Stepwise Selection: Step 2 
## 
## - Unemployed added 
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.990       RMSE               0.525 
## R-Squared               0.981       Coef. Var          0.803 
## Adj. R-Squared          0.978       MSE                0.275 
## Pred R-Squared          0.973       MAE                0.362 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                ANOVA                                 
## --------------------------------------------------------------------
##                Sum of                                               
##               Squares        DF    Mean Square       F         Sig. 
## --------------------------------------------------------------------
## Regression    181.430         2         90.715    329.498    0.0000 
## Residual        3.579        13          0.275                      
## Total         185.009        15                                     
## --------------------------------------------------------------------
## 
##                                   Parameter Estimates                                    
## ----------------------------------------------------------------------------------------
##       model      Beta    Std. Error    Std. Beta      t        Sig      lower     upper 
## ----------------------------------------------------------------------------------------
## (Intercept)    52.382         0.574                 91.330    0.000    51.143    53.621 
##         GNP     0.038         0.002        1.071    22.120    0.000     0.034     0.042 
##  Unemployed    -0.005         0.002       -0.145    -2.987    0.010    -0.009    -0.002 
## ----------------------------------------------------------------------------------------
## 
## 
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.990       RMSE               0.525 
## R-Squared               0.981       Coef. Var          0.803 
## Adj. R-Squared          0.978       MSE                0.275 
## Pred R-Squared          0.973       MAE                0.362 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                ANOVA                                 
## --------------------------------------------------------------------
##                Sum of                                               
##               Squares        DF    Mean Square       F         Sig. 
## --------------------------------------------------------------------
## Regression    181.430         2         90.715    329.498    0.0000 
## Residual        3.579        13          0.275                      
## Total         185.009        15                                     
## --------------------------------------------------------------------
## 
##                                   Parameter Estimates                                    
## ----------------------------------------------------------------------------------------
##       model      Beta    Std. Error    Std. Beta      t        Sig      lower     upper 
## ----------------------------------------------------------------------------------------
## (Intercept)    52.382         0.574                 91.330    0.000    51.143    53.621 
##         GNP     0.038         0.002        1.071    22.120    0.000     0.034     0.042 
##  Unemployed    -0.005         0.002       -0.145    -2.987    0.010    -0.009    -0.002 
## ----------------------------------------------------------------------------------------
## 
## 
## 
## Stepwise Selection: Step 3 
## 
## - Armed.Forces added 
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.993       RMSE               0.479 
## R-Squared               0.985       Coef. Var          0.734 
## Adj. R-Squared          0.981       MSE                0.230 
## Pred R-Squared          0.976       MAE                0.289 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                ANOVA                                 
## --------------------------------------------------------------------
##                Sum of                                               
##               Squares        DF    Mean Square       F         Sig. 
## --------------------------------------------------------------------
## Regression    182.252         3         60.751    264.449    0.0000 
## Residual        2.757        12          0.230                      
## Total         185.009        15                                     
## --------------------------------------------------------------------
## 
##                                    Parameter Estimates                                    
## -----------------------------------------------------------------------------------------
##        model      Beta    Std. Error    Std. Beta      t        Sig      lower     upper 
## -----------------------------------------------------------------------------------------
##  (Intercept)    53.306         0.716                 74.415    0.000    51.746    54.867 
##          GNP     0.041         0.002        1.154    18.485    0.000     0.036     0.046 
##   Unemployed    -0.008         0.002       -0.212    -3.734    0.003    -0.013    -0.003 
## Armed.Forces    -0.005         0.003       -0.096    -1.892    0.083    -0.010     0.001 
## -----------------------------------------------------------------------------------------
## 
## 
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.993       RMSE               0.479 
## R-Squared               0.985       Coef. Var          0.734 
## Adj. R-Squared          0.981       MSE                0.230 
## Pred R-Squared          0.976       MAE                0.289 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                ANOVA                                 
## --------------------------------------------------------------------
##                Sum of                                               
##               Squares        DF    Mean Square       F         Sig. 
## --------------------------------------------------------------------
## Regression    182.252         3         60.751    264.449    0.0000 
## Residual        2.757        12          0.230                      
## Total         185.009        15                                     
## --------------------------------------------------------------------
## 
##                                    Parameter Estimates                                    
## -----------------------------------------------------------------------------------------
##        model      Beta    Std. Error    Std. Beta      t        Sig      lower     upper 
## -----------------------------------------------------------------------------------------
##  (Intercept)    53.306         0.716                 74.415    0.000    51.746    54.867 
##          GNP     0.041         0.002        1.154    18.485    0.000     0.036     0.046 
##   Unemployed    -0.008         0.002       -0.212    -3.734    0.003    -0.013    -0.003 
## Armed.Forces    -0.005         0.003       -0.096    -1.892    0.083    -0.010     0.001 
## -----------------------------------------------------------------------------------------
## 
## 
## 
## No more variables to be added/removed.
## 
## 
## Final Model Output 
## ------------------
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.993       RMSE               0.479 
## R-Squared               0.985       Coef. Var          0.734 
## Adj. R-Squared          0.981       MSE                0.230 
## Pred R-Squared          0.976       MAE                0.289 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                ANOVA                                 
## --------------------------------------------------------------------
##                Sum of                                               
##               Squares        DF    Mean Square       F         Sig. 
## --------------------------------------------------------------------
## Regression    182.252         3         60.751    264.449    0.0000 
## Residual        2.757        12          0.230                      
## Total         185.009        15                                     
## --------------------------------------------------------------------
## 
##                                    Parameter Estimates                                    
## -----------------------------------------------------------------------------------------
##        model      Beta    Std. Error    Std. Beta      t        Sig      lower     upper 
## -----------------------------------------------------------------------------------------
##  (Intercept)    53.306         0.716                 74.415    0.000    51.746    54.867 
##          GNP     0.041         0.002        1.154    18.485    0.000     0.036     0.046 
##   Unemployed    -0.008         0.002       -0.212    -3.734    0.003    -0.013    -0.003 
## Armed.Forces    -0.005         0.003       -0.096    -1.892    0.083    -0.010     0.001 
## -----------------------------------------------------------------------------------------