Statistical Learning

Yi-Ting,Tsai

August 7, 2021

學習筆記

##CH4.Logistic Regression, LDA, QDA,and KNN
### 1.The stock Market Data

## [1] 1250    9
## [1] "Year"      "Lag1"      "Lag2"      "Lag3"      "Lag4"      "Lag5"     
## [7] "Volume"    "Today"     "Direction"
## [1] 8 8

Logistic Regression

## 
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + 
##     Volume, family = binomial, data = Smarket)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.446  -1.203   1.065   1.145   1.326  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.126000   0.240736  -0.523    0.601
## Lag1        -0.073074   0.050167  -1.457    0.145
## Lag2        -0.042301   0.050086  -0.845    0.398
## Lag3         0.011085   0.049939   0.222    0.824
## Lag4         0.009359   0.049974   0.187    0.851
## Lag5         0.010313   0.049511   0.208    0.835
## Volume       0.135441   0.158360   0.855    0.392
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1731.2  on 1249  degrees of freedom
## Residual deviance: 1727.6  on 1243  degrees of freedom
## AIC: 1741.6
## 
## Number of Fisher Scoring iterations: 3
##  (Intercept)         Lag1         Lag2         Lag3         Lag4 
## -0.126000257 -0.073073746 -0.042301344  0.011085108  0.009358938 
##         Lag5       Volume 
##  0.010313068  0.135440659
## (Intercept)        Lag1        Lag2        Lag3        Lag4        Lag5 
##   0.6006983   0.1452272   0.3983491   0.8243333   0.8514445   0.8349974 
##      Volume 
##   0.3924004
##         1         2         3         4         5         6         7 
## 0.5070841 0.4814679 0.4811388 0.5152224 0.5107812 0.5069565 0.4926509 
##         8         9        10 
## 0.5092292 0.5176135 0.4888378
##      Up
## Down  0
## Up    1
##         Direction
## glm.pred Down  Up
##     Down  145 141
##     Up    457 507
## [1] 0.5216
## [1] 0.5216
## [1] 252   9
##         Direction.2005
## glm.pred Down Up
##     Down   77 97
##     Up     34 44
## [1] 0.4801587
## [1] 0.5198413
##         Direction.2005
## glm.pred Down  Up
##     Down   35  35
##     Up     76 106
## [1] 0.5595238
## [1] 0.5824176
##         1         2 
## 0.4791462 0.4960939

Linear Discriminant Analysis

## Call:
## lda(Direction ~ Lag1 + Lag2, data = Smarket, subset = train)
## 
## Prior probabilities of groups:
##     Down       Up 
## 0.491984 0.508016 
## 
## Group means:
##             Lag1        Lag2
## Down  0.04279022  0.03389409
## Up   -0.03954635 -0.03132544
## 
## Coefficients of linear discriminants:
##             LD1
## Lag1 -0.6420190
## Lag2 -0.5135293

## [1] "class"     "posterior" "x"
##          Direction.2005
## lda.class Down  Up
##      Down   35  35
##      Up     76 106
## [1] 0.5595238
## [1] 70
## [1] 182
##       999      1000      1001      1002      1003      1004      1005 
## 0.4901792 0.4792185 0.4668185 0.4740011 0.4927877 0.4938562 0.4951016 
##      1006      1007      1008      1009      1010      1011      1012 
## 0.4872861 0.4907013 0.4844026 0.4906963 0.5119988 0.4895152 0.4706761 
##      1013      1014      1015      1016      1017      1018 
## 0.4744593 0.4799583 0.4935775 0.5030894 0.4978806 0.4886331
##  [1] Up   Up   Up   Up   Up   Up   Up   Up   Up   Up   Up   Down Up   Up  
## [15] Up   Up   Up   Down Up   Up  
## Levels: Down Up
## [1] 0

Quadratic Discriminant Analysis

## Call:
## qda(Direction ~ Lag1 + Lag2, data = Smarket, subset = train)
## 
## Prior probabilities of groups:
##     Down       Up 
## 0.491984 0.508016 
## 
## Group means:
##             Lag1        Lag2
## Down  0.04279022  0.03389409
## Up   -0.03954635 -0.03132544
##          Direction.2005
## qda.class Down  Up
##      Down   30  20
##      Up     81 121
## [1] 0.5992063

An Application to Caravan Insurance Data

ISLR中的Caravan資料集
資料集:5822個樣本數,85個變數
題目:本來只有約6%的人會購買Caravan保險,他們希望能找出購買保險的變數。

## [1] 5822   86
##   No  Yes 
## 5474  348
## [1] 0.05977327

KNN是依據資料點距離作為分類依據,而每個變數的單位不同,將變數縮放至1,可減少單位影響。(標準化)

## [1] 165.0378
## [1] 0.1647078
## [1] 1
## [1] 1
## [1] 5822   85
## [1] 0.118
## [1] 0.059
##         test.Y
## knn.pred  No Yes
##      No  873  50
##      Yes  68   9
## [1] 0.1168831
##         test.Y
## knn.pred  No Yes
##      No  920  54
##      Yes  21   5
## [1] 0.1923077
##         test.Y
## knn.pred  No Yes
##      No  930  55
##      Yes  11   4
## [1] 0.2666667
##         test.Y
## glm.pred  No Yes
##      No  934  59
##      Yes   7   0
##         test.Y
## glm.pred  No Yes
##      No  919  48
##      Yes  22  11
## [1] 0.3333333