Exercise 6 In this exercise, you will further analyze the Wage data set considered throughout this chapter. (a) Perform polynomial regression to predict wage using age. Use cross-validation to select the optimal degree d for the polynomial. What degree was chosen, and how does this compare to the results of hypothesis testing using ANOVA? Make a plot of the resulting polynomial fit to the data.
pr1 = rep(NA, 10)
for (i in 1:10) {
glm.model = glm(wage~poly(age, i), data=Wage)
pr1[i] = cv.glm(Wage, glm.model, K=10)$delta[2]
}
data = data.table(seq(1:10),pr1,keep.rownames = TRUE)
which.min(pr1)
## [1] 7
plot(1:10, pr1, xlab="Degree", ylab="CV error", type="l", pch=20, lwd=2, ylim=c(1590, 1700))
fit.1 = lm(wage~poly(age, 1), data=Wage)
fit.2 = lm(wage~poly(age, 2), data=Wage)
fit.3 = lm(wage~poly(age, 3), data=Wage)
fit.4 = lm(wage~poly(age, 4), data=Wage)
fit.5 = lm(wage~poly(age, 5), data=Wage)
fit.6 = lm(wage~poly(age, 6), data=Wage)
fit.7 = lm(wage~poly(age, 7), data=Wage)
fit.8 = lm(wage~poly(age, 8), data=Wage)
fit.9 = lm(wage~poly(age, 9), data=Wage)
fit.10 = lm(wage~poly(age, 10), data=Wage)
anova(fit.1, fit.2, fit.3, fit.4, fit.5, fit.6, fit.7, fit.8, fit.9, fit.10)
## Analysis of Variance Table
##
## Model 1: wage ~ poly(age, 1)
## Model 2: wage ~ poly(age, 2)
## Model 3: wage ~ poly(age, 3)
## Model 4: wage ~ poly(age, 4)
## Model 5: wage ~ poly(age, 5)
## Model 6: wage ~ poly(age, 6)
## Model 7: wage ~ poly(age, 7)
## Model 8: wage ~ poly(age, 8)
## Model 9: wage ~ poly(age, 9)
## Model 10: wage ~ poly(age, 10)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 2998 5022216
## 2 2997 4793430 1 228786 143.7638 < 2.2e-16 ***
## 3 2996 4777674 1 15756 9.9005 0.001669 **
## 4 2995 4771604 1 6070 3.8143 0.050909 .
## 5 2994 4770322 1 1283 0.8059 0.369398
## 6 2993 4766389 1 3932 2.4709 0.116074
## 7 2992 4763834 1 2555 1.6057 0.205199
## 8 2991 4763707 1 127 0.0796 0.777865
## 9 2990 4756703 1 7004 4.4014 0.035994 *
## 10 2989 4756701 1 3 0.0017 0.967529
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(wage~age, data=Wage, col="grey")
agelims = range(Wage$age)
age.grid = seq(from=agelims[1], to=agelims[2])
lm.fitd3 = lm(wage~poly(age, 3), data=Wage)
lm.fitd4 = lm(wage~poly(age, 4), data=Wage)
lm.fitd9 = lm(wage~poly(age, 9), data=Wage)
lm.predd3 = predict(lm.fitd3, data.frame(age=age.grid))
lm.predd4 = predict(lm.fitd4, data.frame(age=age.grid))
lm.predd9 = predict(lm.fitd9, data.frame(age=age.grid))
lines(age.grid, lm.predd3, col="blue", lwd=2)
lines(age.grid, lm.predd4, col="red", lwd=2)
lines(age.grid, lm.predd9, col="black", lwd=2)
cv1 = rep(NA, 10)
for (i in 2:10) {
Wage$age.cut = cut(Wage$age, i)
lm.fit = glm(wage~age.cut, data=Wage)
cv1[i] = cv.glm(Wage, lm.fit, K=10)$delta[2]
}
plot(2:10, cv1[-1], xlab="Number of cuts", ylab="CV error", type="l", pch=20, lwd=2)
plot(wage ~ age, data = Wage, col = "grey")
fit = glm(wage ~ cut(age, 8), data = Wage)
preds = predict(fit, list(age = age.grid))
lines(age.grid, preds, col = "red", lwd = 2)
Exercise 10 This question relates to the College data set. (a) Split the data into a training set and a test set. Using out-of-state tuition as the response and the other variables as the predictors, perform forward stepwise selection on the training set in order to identify a satisfactory model that uses just a subset of the predictors.
data(College)
attach(College)
set.seed(1)
train = sample(dim(College)[1], dim(College)[1]/2)
test = -train
College.train = College[train, ]
College.test = College[test, ]
regfit.fwd = regsubsets(Outstate ~., data = College.train, nvmax = 18, method = "forward")
summary(regfit.fwd)
## Subset selection object
## Call: regsubsets.formula(Outstate ~ ., data = College.train, nvmax = 18,
## method = "forward")
## 17 Variables (and intercept)
## Forced in Forced out
## PrivateYes FALSE FALSE
## Apps FALSE FALSE
## Accept FALSE FALSE
## Enroll FALSE FALSE
## Top10perc FALSE FALSE
## Top25perc FALSE FALSE
## F.Undergrad FALSE FALSE
## P.Undergrad FALSE FALSE
## Room.Board FALSE FALSE
## Books FALSE FALSE
## Personal FALSE FALSE
## PhD FALSE FALSE
## Terminal FALSE FALSE
## S.F.Ratio FALSE FALSE
## perc.alumni FALSE FALSE
## Expend FALSE FALSE
## Grad.Rate FALSE FALSE
## 1 subsets of each size up to 17
## Selection Algorithm: forward
## PrivateYes Apps Accept Enroll Top10perc Top25perc F.Undergrad
## 1 ( 1 ) " " " " " " " " " " " " " "
## 2 ( 1 ) " " " " " " " " " " " " " "
## 3 ( 1 ) " " " " " " " " " " " " " "
## 4 ( 1 ) "*" " " " " " " " " " " " "
## 5 ( 1 ) "*" " " " " " " " " " " " "
## 6 ( 1 ) "*" " " " " " " " " " " " "
## 7 ( 1 ) "*" " " " " " " " " " " " "
## 8 ( 1 ) "*" " " " " " " "*" " " " "
## 9 ( 1 ) "*" " " " " " " "*" " " " "
## 10 ( 1 ) "*" " " " " " " "*" " " " "
## 11 ( 1 ) "*" " " "*" " " "*" " " " "
## 12 ( 1 ) "*" "*" "*" " " "*" " " " "
## 13 ( 1 ) "*" "*" "*" "*" "*" " " " "
## 14 ( 1 ) "*" "*" "*" "*" "*" "*" " "
## 15 ( 1 ) "*" "*" "*" "*" "*" "*" " "
## 16 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
## 17 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
## P.Undergrad Room.Board Books Personal PhD Terminal S.F.Ratio
## 1 ( 1 ) " " "*" " " " " " " " " " "
## 2 ( 1 ) " " "*" " " " " " " " " " "
## 3 ( 1 ) " " "*" " " " " " " " " " "
## 4 ( 1 ) " " "*" " " " " " " " " " "
## 5 ( 1 ) " " "*" " " " " " " " " " "
## 6 ( 1 ) " " "*" " " " " " " "*" " "
## 7 ( 1 ) " " "*" " " "*" " " "*" " "
## 8 ( 1 ) " " "*" " " "*" " " "*" " "
## 9 ( 1 ) " " "*" " " "*" " " "*" "*"
## 10 ( 1 ) " " "*" "*" "*" " " "*" "*"
## 11 ( 1 ) " " "*" "*" "*" " " "*" "*"
## 12 ( 1 ) " " "*" "*" "*" " " "*" "*"
## 13 ( 1 ) " " "*" "*" "*" " " "*" "*"
## 14 ( 1 ) " " "*" "*" "*" " " "*" "*"
## 15 ( 1 ) "*" "*" "*" "*" " " "*" "*"
## 16 ( 1 ) "*" "*" "*" "*" " " "*" "*"
## 17 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
## perc.alumni Expend Grad.Rate
## 1 ( 1 ) " " " " " "
## 2 ( 1 ) "*" " " " "
## 3 ( 1 ) "*" "*" " "
## 4 ( 1 ) "*" "*" " "
## 5 ( 1 ) "*" "*" "*"
## 6 ( 1 ) "*" "*" "*"
## 7 ( 1 ) "*" "*" "*"
## 8 ( 1 ) "*" "*" "*"
## 9 ( 1 ) "*" "*" "*"
## 10 ( 1 ) "*" "*" "*"
## 11 ( 1 ) "*" "*" "*"
## 12 ( 1 ) "*" "*" "*"
## 13 ( 1 ) "*" "*" "*"
## 14 ( 1 ) "*" "*" "*"
## 15 ( 1 ) "*" "*" "*"
## 16 ( 1 ) "*" "*" "*"
## 17 ( 1 ) "*" "*" "*"
gam.fit = gam(Outstate~ Private + s(Room.Board, 2) + s(Terminal, 2) + s(perc.alumni, 2) + s(Expend, 2) + s(Grad.Rate, 2), data = College.train)
summary(gam.fit)
##
## Call: gam(formula = Outstate ~ Private + s(Room.Board, 2) + s(Terminal,
## 2) + s(perc.alumni, 2) + s(Expend, 2) + s(Grad.Rate, 2),
## data = College.train)
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -6632.2 -1268.4 -125.7 1362.1 8676.0
##
## (Dispersion Parameter for gaussian family taken to be 3959960)
##
## Null Deviance: 6989966760 on 387 degrees of freedom
## Residual Deviance: 1488945983 on 376.0003 degrees of freedom
## AIC: 7009.303
##
## Number of Local Scoring Iterations: NA
##
## Anova for Parametric Effects
## Df Sum Sq Mean Sq F value Pr(>F)
## Private 1 1848374254 1848374254 466.766 < 2.2e-16 ***
## s(Room.Board, 2) 1 1732263048 1732263048 437.445 < 2.2e-16 ***
## s(Terminal, 2) 1 358063651 358063651 90.421 < 2.2e-16 ***
## s(perc.alumni, 2) 1 365964119 365964119 92.416 < 2.2e-16 ***
## s(Expend, 2) 1 470210508 470210508 118.741 < 2.2e-16 ***
## s(Grad.Rate, 2) 1 89293627 89293627 22.549 2.918e-06 ***
## Residuals 376 1488945983 3959960
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Anova for Nonparametric Effects
## Npar Df Npar F Pr(F)
## (Intercept)
## Private
## s(Room.Board, 2) 1 1.737 0.1883
## s(Terminal, 2) 1 0.718 0.3973
## s(perc.alumni, 2) 1 0.310 0.5780
## s(Expend, 2) 1 50.821 5.218e-12 ***
## s(Grad.Rate, 2) 1 0.900 0.3434
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
par(mfrow = c(2, 3))
plot(gam.fit, se = T)
gam.pred = predict(gam.fit, College.test)
gam.error = mean((College.test$Outstate - gam.pred)^2)
gam.error
## [1] 3456745
summary(gam.fit)
##
## Call: gam(formula = Outstate ~ Private + s(Room.Board, 2) + s(Terminal,
## 2) + s(perc.alumni, 2) + s(Expend, 2) + s(Grad.Rate, 2),
## data = College.train)
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -6632.2 -1268.4 -125.7 1362.1 8676.0
##
## (Dispersion Parameter for gaussian family taken to be 3959960)
##
## Null Deviance: 6989966760 on 387 degrees of freedom
## Residual Deviance: 1488945983 on 376.0003 degrees of freedom
## AIC: 7009.303
##
## Number of Local Scoring Iterations: NA
##
## Anova for Parametric Effects
## Df Sum Sq Mean Sq F value Pr(>F)
## Private 1 1848374254 1848374254 466.766 < 2.2e-16 ***
## s(Room.Board, 2) 1 1732263048 1732263048 437.445 < 2.2e-16 ***
## s(Terminal, 2) 1 358063651 358063651 90.421 < 2.2e-16 ***
## s(perc.alumni, 2) 1 365964119 365964119 92.416 < 2.2e-16 ***
## s(Expend, 2) 1 470210508 470210508 118.741 < 2.2e-16 ***
## s(Grad.Rate, 2) 1 89293627 89293627 22.549 2.918e-06 ***
## Residuals 376 1488945983 3959960
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Anova for Nonparametric Effects
## Npar Df Npar F Pr(F)
## (Intercept)
## Private
## s(Room.Board, 2) 1 1.737 0.1883
## s(Terminal, 2) 1 0.718 0.3973
## s(perc.alumni, 2) 1 0.310 0.5780
## s(Expend, 2) 1 50.821 5.218e-12 ***
## s(Grad.Rate, 2) 1 0.900 0.3434
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1