Set Working Directory, Load in Data, and Load Library for Functions

setwd("H:/Legacy/Data to Analyze")
dat <- read.csv("Legacy Survey Data 3 Waves.csv")
library(lavaan)
## This is lavaan 0.6-8
## lavaan is FREE software! Please report any bugs.
library(semTools)
## 
## ###############################################################################
## This is semTools 0.5-4
## All users of R (or SEM) are invited to submit functions or ideas for functions.
## ###############################################################################

Reverse Code Variables

dat$W1_regfoc2 <- 6 - dat$W1_regfoc2
dat$W2_regfoc2 <- 6 - dat$W2_regfoc2
dat$W3_regfoc2 <- 6 - dat$W3_regfoc2
dat$W1_regfoc7 <- 6 - dat$W1_regfoc7
dat$W2_regfoc7 <- 6 - dat$W2_regfoc7
dat$W3_regfoc7 <- 6 - dat$W3_regfoc7
dat$W1_regfoc8 <- 6 - dat$W1_regfoc8
dat$W2_regfoc8 <- 6 - dat$W2_regfoc8
dat$W3_regfoc8 <- 6 - dat$W3_regfoc8

LONGITUDINAL INVARIANCE - REGULATORY FOCUS

CONFIGURAL - REGULATORY FOCUS (prevention orientation) - CFI = .985, df = 39

9: Reg Focus: How true (1-9) I am anxious that I will fall short of my responsibilities and obligations.

11: Reg Focus: How true (1-9) I often think about the person I am afraid I might become in the future.

13: Reg Focus: How true (1-9) I often imagine myself experiencing bad things that I fear might happen to me.

14: Reg Focus: How true (1-9) I frequently think about how I can prevent failures in my life.

config.regfoc <- '

RF_c1 =~ W1_regfoc9 + W1_regfoc11 + W1_regfoc13 + W1_regfoc14 #prevention


RF_c2 =~ W2_regfoc9 + W2_regfoc11 + W2_regfoc13 + W2_regfoc14 #prevetion


RF_c3 =~ W3_regfoc9 + W3_regfoc11 + W3_regfoc13 + W3_regfoc14 #prevention


'

longFacNames.rf <- list(RF = c("RF_c1","RF_c2", "RF_c3"))

syntax.config.regfoc <- measEq.syntax(configural.model = config.regfoc,
                                      data = dat, 
                                      ID.fac = "std.lv",
                                      longFacNames = longFacNames.rf)
## Fit a model to the data either in a subsequent step (recommended):
syntax.config.regfoc <- as.character(syntax.config.regfoc)


fit.config.regfoc <- cfa(syntax.config.regfoc, 
                     data = dat,
                     missing = "ML",
                     std.lv = TRUE)
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: some cases are empty and will be ignored:
##   16 67 78 88 98 125 143 144 154 161 167 170 172 187 212 214 235 245 253 254 256 284 317 323 325 339 396 397 399 438 439 450 463 486 504 522
summary(fit.config.regfoc, fit.measures = TRUE)
## lavaan 0.6-8 ended normally after 80 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        51
##                                                       
##                                                   Used       Total
##   Number of observations                           486         522
##   Number of missing patterns                        64            
##                                                                   
## Model Test User Model:
##                                                       
##   Test statistic                                61.978
##   Degrees of freedom                                39
##   P-value (Chi-square)                           0.011
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1581.695
##   Degrees of freedom                                66
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.985
##   Tucker-Lewis Index (TLI)                       0.974
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10514.526
##   Loglikelihood unrestricted model (H1)     -10483.538
##                                                       
##   Akaike (AIC)                               21131.053
##   Bayesian (BIC)                             21344.549
##   Sample-size adjusted Bayesian (BIC)        21182.678
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.035
##   90 Percent confidence interval - lower         0.017
##   90 Percent confidence interval - upper         0.051
##   P-value RMSEA <= 0.05                          0.943
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.030
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   RF_c1 =~                                            
##     W1_rgf9 (l.1_)    1.756    0.129   13.634    0.000
##     W1_rg11 (l.2_)    2.260    0.138   16.386    0.000
##     W1_rg13 (l.3_)    2.533    0.132   19.123    0.000
##     W1_rg14 (l.4_)    0.805    0.136    5.911    0.000
##   RF_c2 =~                                            
##     W2_rgf9 (l.5_)    1.786    0.135   13.204    0.000
##     W2_rg11 (l.6_)    2.073    0.142   14.636    0.000
##     W2_rg13 (l.7_)    2.073    0.138   14.990    0.000
##     W2_rg14 (l.8_)    0.455    0.143    3.189    0.001
##   RF_c3 =~                                            
##     W3_rgf9 (l.9_)    1.890    0.133   14.229    0.000
##     W3_rg11 (l.10)    2.314    0.134   17.265    0.000
##     W3_rg13 (l.11)    2.142    0.133   16.104    0.000
##     W3_rg14 (l.12)    1.334    0.142    9.408    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##  .W1_regfoc9 ~~                                       
##    .W2_r9   (t.5_)    1.431    0.287    4.995    0.000
##    .W3_r9  (t.9_1)    1.135    0.268    4.235    0.000
##  .W1_regfoc11 ~~                                      
##    .W2_11   (t.6_)    0.549    0.273    2.012    0.044
##    .W3_11 (t.10_2)    0.677    0.244    2.779    0.005
##  .W1_regfoc13 ~~                                      
##    .W2_13   (t.7_)   -0.232    0.240   -0.970    0.332
##    .W3_13 (t.11_3)    0.038    0.222    0.173    0.863
##  .W1_regfoc14 ~~                                      
##    .W2_14   (t.8_)    1.636    0.358    4.572    0.000
##    .W3_14 (t.12_4)    1.464    0.355    4.124    0.000
##  .W2_regfoc9 ~~                                       
##    .W3_r9  (t.9_5)    0.815    0.261    3.129    0.002
##  .W2_regfoc11 ~~                                      
##    .W3_11 (t.10_6)    0.611    0.252    2.426    0.015
##  .W2_regfoc13 ~~                                      
##    .W3_13 (t.11_7)    0.352    0.250    1.408    0.159
##  .W2_regfoc14 ~~                                      
##    .W3_14 (t.12_8)    1.802    0.353    5.111    0.000
##   RF_c1 ~~                                            
##     RF_c2   (p.2_)    0.475    0.055    8.702    0.000
##     RF_c3  (p.3_1)    0.508    0.052    9.680    0.000
##   RF_c2 ~~                                            
##     RF_c3  (p.3_2)    0.605    0.050   12.110    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .W1_rgf9 (nu.1)    4.230    0.134   31.620    0.000
##    .W1_rg11 (nu.2)    4.819    0.143   33.601    0.000
##    .W1_rg13 (nu.3)    4.556    0.137   33.241    0.000
##    .W1_rg14 (nu.4)    5.956    0.128   46.373    0.000
##    .W2_rgf9 (nu.5)    4.255    0.134   31.639    0.000
##    .W2_rg11 (nu.6)    4.752    0.139   34.151    0.000
##    .W2_rg13 (nu.7)    4.673    0.136   34.450    0.000
##    .W2_rg14 (nu.8)    5.959    0.129   46.231    0.000
##    .W3_rgf9 (nu.9)    4.687    0.139   33.621    0.000
##    .W3_rg11 (n.10)    4.878    0.144   33.800    0.000
##    .W3_rg13 (n.11)    4.642    0.141   32.994    0.000
##    .W3_rg14 (n.12)    5.368    0.141   38.042    0.000
##     RF_c1   (al.1)    0.000                           
##     RF_c2   (al.2)    0.000                           
##     RF_c3   (al.3)    0.000                           
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .W1_rgf9 (t.1_)    4.762    0.378   12.606    0.000
##    .W1_rg11 (t.2_)    4.005    0.404    9.908    0.000
##    .W1_rg13 (t.3_)    1.898    0.398    4.765    0.000
##    .W1_rg14 (t.4_)    6.497    0.454   14.319    0.000
##    .W2_rgf9 (t.5_)    4.095    0.381   10.746    0.000
##    .W2_rg11 (t.6_)    3.457    0.401    8.613    0.000
##    .W2_rg13 (t.7_)    3.008    0.383    7.858    0.000
##    .W2_rg14 (t.8_)    6.329    0.459   13.790    0.000
##    .W3_rgf9 (t.9_)    3.571    0.340   10.489    0.000
##    .W3_rg11 (t.10)    2.388    0.333    7.170    0.000
##    .W3_rg13 (t.11)    2.684    0.326    8.235    0.000
##    .W3_rg14 (t.12)    5.397    0.438   12.337    0.000
##     RF_c1   (p.1_)    1.000                           
##     RF_c2   (p.2_)    1.000                           
##     RF_c3   (p.3_)    1.000

Remaining invariance tests for regulatory focus

METRIC - REGULATORY FOCUS - CFI = .970, df = 45

## METRIC model: test equivalence of loadings
syntax.metric.rf <- measEq.syntax(configural.model = config.regfoc,
                               data = dat,
                               ID.fac = "std.lv", 
                               longFacNames = longFacNames.rf,
                               long.equal  = c("thresholds","loadings"))
## Fit a model to the data:
mod.metric.rf <- as.character(syntax.metric.rf)
fit.metric.rf <- cfa(mod.metric.rf, 
                     data = dat,
                     missing = "ML")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: some cases are empty and will be ignored:
##   16 67 78 88 98 125 143 144 154 161 167 170 172 187 212 214 235 245 253 254 256 284 317 323 325 339 396 397 399 438 439 450 463 486 504 522
summary(fit.metric.rf, fit.measures = TRUE)
## lavaan 0.6-8 ended normally after 77 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        53
##   Number of equality constraints                     8
##                                                       
##                                                   Used       Total
##   Number of observations                           486         522
##   Number of missing patterns                        64            
##                                                                   
## Model Test User Model:
##                                                       
##   Test statistic                                90.286
##   Degrees of freedom                                45
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1581.695
##   Degrees of freedom                                66
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.970
##   Tucker-Lewis Index (TLI)                       0.956
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10528.680
##   Loglikelihood unrestricted model (H1)     -10483.538
##                                                       
##   Akaike (AIC)                               21147.361
##   Bayesian (BIC)                             21335.740
##   Sample-size adjusted Bayesian (BIC)        21192.913
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.046
##   90 Percent confidence interval - lower         0.032
##   90 Percent confidence interval - upper         0.059
##   P-value RMSEA <= 0.05                          0.691
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.054
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   RF_c1 =~                                            
##     W1_rgf9 (l.1_)    1.884    0.107   17.684    0.000
##     W1_rg11 (l.2_)    2.341    0.116   20.103    0.000
##     W1_rg13 (l.3_)    2.341    0.116   20.227    0.000
##     W1_rg14 (l.4_)    0.940    0.100    9.371    0.000
##   RF_c2 =~                                            
##     W2_rgf9 (l.1_)    1.884    0.107   17.684    0.000
##     W2_rg11 (l.2_)    2.341    0.116   20.103    0.000
##     W2_rg13 (l.3_)    2.341    0.116   20.227    0.000
##     W2_rg14 (l.4_)    0.940    0.100    9.371    0.000
##   RF_c3 =~                                            
##     W3_rgf9 (l.1_)    1.884    0.107   17.684    0.000
##     W3_rg11 (l.2_)    2.341    0.116   20.103    0.000
##     W3_rg13 (l.3_)    2.341    0.116   20.227    0.000
##     W3_rg14 (l.4_)    0.940    0.100    9.371    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##  .W1_regfoc9 ~~                                       
##    .W2_r9   (t.5_)    1.388    0.288    4.811    0.000
##    .W3_r9  (t.9_1)    1.114    0.269    4.136    0.000
##  .W1_regfoc11 ~~                                      
##    .W2_11   (t.6_)    0.442    0.268    1.650    0.099
##    .W3_11 (t.10_2)    0.600    0.244    2.460    0.014
##  .W1_regfoc13 ~~                                      
##    .W2_13   (t.7_)   -0.122    0.238   -0.511    0.609
##    .W3_13 (t.11_3)    0.090    0.225    0.401    0.688
##  .W1_regfoc14 ~~                                      
##    .W2_14   (t.8_)    1.656    0.364    4.553    0.000
##    .W3_14 (t.12_4)    1.434    0.362    3.966    0.000
##  .W2_regfoc9 ~~                                       
##    .W3_r9  (t.9_5)    0.836    0.262    3.190    0.001
##  .W2_regfoc11 ~~                                      
##    .W3_11 (t.10_6)    0.593    0.252    2.349    0.019
##  .W2_regfoc13 ~~                                      
##    .W3_13 (t.11_7)    0.332    0.253    1.311    0.190
##  .W2_regfoc14 ~~                                      
##    .W3_14 (t.12_8)    1.649    0.357    4.614    0.000
##   RF_c1 ~~                                            
##     RF_c2   (p.2_)    0.429    0.054    7.877    0.000
##     RF_c3  (p.3_1)    0.503    0.059    8.508    0.000
##   RF_c2 ~~                                            
##     RF_c3  (p.3_2)    0.530    0.072    7.332    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .W1_rgf9 (nu.1)    4.230    0.137   30.980    0.000
##    .W1_rg11 (nu.2)    4.817    0.144   33.443    0.000
##    .W1_rg13 (nu.3)    4.557    0.134   34.070    0.000
##    .W1_rg14 (nu.4)    5.955    0.130   45.790    0.000
##    .W2_rgf9 (nu.5)    4.257    0.133   32.096    0.000
##    .W2_rg11 (nu.6)    4.752    0.138   34.321    0.000
##    .W2_rg13 (nu.7)    4.673    0.136   34.353    0.000
##    .W2_rg14 (nu.8)    5.963    0.133   44.678    0.000
##    .W3_rgf9 (nu.9)    4.684    0.138   33.931    0.000
##    .W3_rg11 (n.10)    4.875    0.144   33.807    0.000
##    .W3_rg13 (n.11)    4.640    0.145   31.950    0.000
##    .W3_rg14 (n.12)    5.362    0.135   39.691    0.000
##     RF_c1   (al.1)    0.000                           
##     RF_c2   (al.2)    0.000                           
##     RF_c3   (al.3)    0.000                           
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .W1_rgf9 (t.1_)    4.635    0.374   12.400    0.000
##    .W1_rg11 (t.2_)    3.721    0.372   10.005    0.000
##    .W1_rg13 (t.3_)    2.430    0.332    7.323    0.000
##    .W1_rg14 (t.4_)    6.453    0.454   14.224    0.000
##    .W2_rgf9 (t.5_)    4.266    0.369   11.572    0.000
##    .W2_rg11 (t.6_)    3.346    0.364    9.202    0.000
##    .W2_rg13 (t.7_)    3.022    0.349    8.667    0.000
##    .W2_rg14 (t.8_)    6.328    0.467   13.544    0.000
##    .W3_rgf9 (t.9_)    3.597    0.335   10.745    0.000
##    .W3_rg11 (t.10)    2.464    0.326    7.569    0.000
##    .W3_rg13 (t.11)    2.526    0.321    7.873    0.000
##    .W3_rg14 (t.12)    5.651    0.450   12.563    0.000
##     RF_c1   (p.1_)    1.000                           
##     RF_c2   (p.2_)    0.791    0.093    8.551    0.000
##     RF_c3   (p.3_)    0.959    0.108    8.844    0.000

SCALAR - REGULATORY FOCUS - CFI = .953, df = 51

## SCALAR model: test equivalence of intercepts, given equal  loadings
syntax.scalar.rf <- measEq.syntax(configural.model = config.regfoc,
                               data = dat,
                               ID.fac = "std.lv", 
                               longFacNames = longFacNames.rf,
                               long.equal  = c("thresholds","loadings","intercepts"))
## Fit a model to the data:
mod.scalar.rf <- as.character(syntax.scalar.rf)
fit.scalar.rf <- cfa(mod.scalar.rf, 
                     data = dat,
                     missing = "ML")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: some cases are empty and will be ignored:
##   16 67 78 88 98 125 143 144 154 161 167 170 172 187 212 214 235 245 253 254 256 284 317 323 325 339 396 397 399 438 439 450 463 486 504 522
summary(fit.scalar.rf, fit.measures = TRUE)
## lavaan 0.6-8 ended normally after 76 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        55
##   Number of equality constraints                    16
##                                                       
##                                                   Used       Total
##   Number of observations                           486         522
##   Number of missing patterns                        64            
##                                                                   
## Model Test User Model:
##                                                       
##   Test statistic                               122.598
##   Degrees of freedom                                51
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1581.695
##   Degrees of freedom                                66
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.953
##   Tucker-Lewis Index (TLI)                       0.939
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10544.837
##   Loglikelihood unrestricted model (H1)     -10483.538
##                                                       
##   Akaike (AIC)                               21167.673
##   Bayesian (BIC)                             21330.935
##   Sample-size adjusted Bayesian (BIC)        21207.151
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.054
##   90 Percent confidence interval - lower         0.042
##   90 Percent confidence interval - upper         0.066
##   P-value RMSEA <= 0.05                          0.291
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.058
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   RF_c1 =~                                            
##     W1_rgf9 (l.1_)    1.887    0.107   17.650    0.000
##     W1_rg11 (l.2_)    2.343    0.117   20.090    0.000
##     W1_rg13 (l.3_)    2.344    0.116   20.206    0.000
##     W1_rg14 (l.4_)    0.923    0.101    9.160    0.000
##   RF_c2 =~                                            
##     W2_rgf9 (l.1_)    1.887    0.107   17.650    0.000
##     W2_rg11 (l.2_)    2.343    0.117   20.090    0.000
##     W2_rg13 (l.3_)    2.344    0.116   20.206    0.000
##     W2_rg14 (l.4_)    0.923    0.101    9.160    0.000
##   RF_c3 =~                                            
##     W3_rgf9 (l.1_)    1.887    0.107   17.650    0.000
##     W3_rg11 (l.2_)    2.343    0.117   20.090    0.000
##     W3_rg13 (l.3_)    2.344    0.116   20.206    0.000
##     W3_rg14 (l.4_)    0.923    0.101    9.160    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##  .W1_regfoc9 ~~                                       
##    .W2_r9   (t.5_)    1.394    0.291    4.799    0.000
##    .W3_r9  (t.9_1)    1.092    0.272    4.009    0.000
##  .W1_regfoc11 ~~                                      
##    .W2_11   (t.6_)    0.430    0.268    1.606    0.108
##    .W3_11 (t.10_2)    0.594    0.244    2.428    0.015
##  .W1_regfoc13 ~~                                      
##    .W2_13   (t.7_)   -0.122    0.238   -0.513    0.608
##    .W3_13 (t.11_3)    0.103    0.225    0.458    0.647
##  .W1_regfoc14 ~~                                      
##    .W2_14   (t.8_)    1.681    0.368    4.563    0.000
##    .W3_14 (t.12_4)    1.265    0.368    3.439    0.001
##  .W2_regfoc9 ~~                                       
##    .W3_r9  (t.9_5)    0.837    0.266    3.141    0.002
##  .W2_regfoc11 ~~                                      
##    .W3_11 (t.10_6)    0.590    0.253    2.333    0.020
##  .W2_regfoc13 ~~                                      
##    .W3_13 (t.11_7)    0.332    0.254    1.308    0.191
##  .W2_regfoc14 ~~                                      
##    .W3_14 (t.12_8)    1.550    0.364    4.259    0.000
##   RF_c1 ~~                                            
##     RF_c2   (p.2_)    0.429    0.054    7.885    0.000
##     RF_c3  (p.3_1)    0.502    0.059    8.505    0.000
##   RF_c2 ~~                                            
##     RF_c3  (p.3_2)    0.530    0.072    7.345    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .W1_rgf9 (nu.1)    4.361    0.120   36.258    0.000
##    .W1_rg11 (nu.2)    4.765    0.132   36.001    0.000
##    .W1_rg13 (nu.3)    4.572    0.126   36.178    0.000
##    .W1_rg14 (nu.4)    5.747    0.100   57.634    0.000
##    .W2_rgf9 (nu.1)    4.361    0.120   36.258    0.000
##    .W2_rg11 (nu.2)    4.765    0.132   36.001    0.000
##    .W2_rg13 (nu.3)    4.572    0.126   36.178    0.000
##    .W2_rg14 (nu.4)    5.747    0.100   57.634    0.000
##    .W3_rgf9 (nu.1)    4.361    0.120   36.258    0.000
##    .W3_rg11 (nu.2)    4.765    0.132   36.001    0.000
##    .W3_rg13 (nu.3)    4.572    0.126   36.178    0.000
##    .W3_rg14 (nu.4)    5.747    0.100   57.634    0.000
##     RF_c1   (al.1)    0.000                           
##     RF_c2   (al.2)    0.014    0.058    0.233    0.816
##     RF_c3   (al.3)    0.052    0.059    0.869    0.385
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .W1_rgf9 (t.1_)    4.647    0.375   12.377    0.000
##    .W1_rg11 (t.2_)    3.724    0.373    9.993    0.000
##    .W1_rg13 (t.3_)    2.424    0.333    7.290    0.000
##    .W1_rg14 (t.4_)    6.503    0.458   14.187    0.000
##    .W2_rgf9 (t.5_)    4.281    0.370   11.555    0.000
##    .W2_rg11 (t.6_)    3.347    0.364    9.186    0.000
##    .W2_rg13 (t.7_)    3.029    0.350    8.656    0.000
##    .W2_rg14 (t.8_)    6.366    0.471   13.515    0.000
##    .W3_rgf9 (t.9_)    3.683    0.345   10.665    0.000
##    .W3_rg11 (t.10)    2.472    0.328    7.537    0.000
##    .W3_rg13 (t.11)    2.528    0.323    7.828    0.000
##    .W3_rg14 (t.12)    5.828    0.469   12.420    0.000
##     RF_c1   (p.1_)    1.000                           
##     RF_c2   (p.2_)    0.790    0.092    8.550    0.000
##     RF_c3   (p.3_)    0.954    0.108    8.831    0.000