Dataset
URL: https://clinicaltrials.gov/ct2/results?cntry=US&age_v=&gndr=&type=&rslt=&phase=4&phase=0&phase=1&phase=2&phase=3&Search=Apply
# Read csv. text file (top 1000 searching from clinicaltrials.gov)
csv <- read.csv("C:/Users/Anhuynh/Desktop/Data Science Project/Clinical_Trial_Bitotech/SearchResults.csv")
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
dt <- csv[, c(2,5,6,7,8,9,10,13,14,15,16,19,20,21,22,24)]
dt$Start.Date <- mdy(dt$Start.Date)
dt$Primary.Completion.Date <- mdy(dt$Primary.Completion.Date)
dt$Completion.Date <- mdy(dt$Completion.Date)
dt$First.Posted <- mdy(dt$First.Posted)
dt$Last.Update.Posted <- mdy(dt$Last.Update.Posted)
today <- today()
dt <- dt %>%
mutate(Primary_timediff = difftime(Primary.Completion.Date, Start.Date, units = "days")) %>%
mutate(Completion_timediff = difftime(Completion.Date, Start.Date, units = "days"))
library(ggplot2)
# First Posted
# Area plot
ggplot(dt, aes(x = First.Posted, y = Primary_timediff)) +
geom_area(aes(color = Study.Results, fill = Study.Results),
alpha = 0.5, position = position_dodge(0.8)) +
scale_color_manual(values = c("#00AFBB", "#E7B800")) +
scale_fill_manual(values = c("#00AFBB", "#E7B800")) +
labs( x="First Posted Year",y="Time Diff. of Start vs. Completion (Days)", subtitle = "clinicaltrials.gov - updated August 9, 2021")
## Don't know how to automatically pick scale for object of type difftime. Defaulting to continuous.

# Last Update Posted
# Area plot
ggplot(dt,aes(x = Last.Update.Posted, y = Primary_timediff)) +
geom_area(aes(color = Study.Results, fill = Study.Results),
alpha = 0.5, position = position_dodge(0.8)) +
scale_color_manual(values = c("#00AFBB", "#E7B800")) +
scale_fill_manual(values = c("#00AFBB", "#E7B800")) +
labs( x="Last Update Posted Year",y="Time Diff. of Start vs. Completion (Days)", subtitle = "clinicaltrials.gov - updated August 9, 2021")
## Don't know how to automatically pick scale for object of type difftime. Defaulting to continuous.

# library
library(ggplot2)
library(viridis)
## Loading required package: viridisLite
library(hrbrthemes)
## NOTE: Either Arial Narrow or Roboto Condensed fonts are required to use these themes.
## Please use hrbrthemes::import_roboto_condensed() to install Roboto Condensed and
## if Arial Narrow is not on your system, please see https://bit.ly/arialnarrow
library(dplyr)
library(scales)
##
## Attaching package: 'scales'
## The following object is masked from 'package:viridis':
##
## viridis_pal
library(stringr)
sub = dt[order(dt$Primary_timediff, decreasing = FALSE), ]
dt_pha <- sub[sub$Primary_timediff <= 365, ]
dt_pha <- dt_pha[, c(2,8,17)]
# Data Viz
ggplot(dt_pha, aes(fill=Phases, y=Primary_timediff, x=Status)) +
geom_bar(position="stack", stat="identity") +
scale_fill_viridis(discrete = T) +
ggtitle("Status of clinical trials within 01 year") +
theme_ipsum() +
xlab("") +
labs( x="Status",y="Time Diff. of Start vs. Completion (Days)", subtitle = "clinicaltrials.gov - updated August 9, 2021") +
theme(legend.title = element_blank(), axis.text.x=element_text(angle=45,hjust=1,vjust=1)) +
geom_hline(yintercept=0, linetype="dashed", color = "red")
## Don't know how to automatically pick scale for object of type difftime. Defaulting to continuous.
## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family not
## found in Windows font database
## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family not
## found in Windows font database
## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family not
## found in Windows font database
## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family not
## found in Windows font database
## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family not
## found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

library(ggplot2)
sub = dt[order(dt$Primary_timediff, decreasing = FALSE), ]
dt_sub <- head(sub, 20)
ggplot(dt_sub, aes(x = Primary_timediff, y = Sponsor.Collaborators, fill = Phases, label = Primary_timediff)) +
geom_col() +
scale_fill_viridis(discrete = T) +
geom_text(position = position_stack(vjust = 0.5), size = 3, color = "#ffffff") +
labs(x= "Time Diff (days)", title="Top 20 clinical trials being completed soon", subtitle = "clinicaltrials.gov - updated August 9, 2021") +
theme(axis.text = element_text(size = 4.75))
## Don't know how to automatically pick scale for object of type difftime. Defaulting to continuous.
## Don't know how to automatically pick scale for object of type difftime. Defaulting to continuous.
## Don't know how to automatically pick scale for object of type difftime. Defaulting to continuous.

library("tm")
## Loading required package: NLP
##
## Attaching package: 'NLP'
## The following object is masked from 'package:ggplot2':
##
## annotate
library("SnowballC")
library("wordcloud")
## Loading required package: RColorBrewer
library("RColorBrewer")
library("syuzhet")
##
## Attaching package: 'syuzhet'
## The following object is masked from 'package:scales':
##
## rescale
library("ggplot2")
library(reshape2)
library(tidytext)
# Convert text to corpus
TextDoc <- Corpus(VectorSource(dt$Outcome.Measures))
# Clean corpus
#Replacing "/", "@" and "|" with space
toSpace <- content_transformer(function (x , pattern ) gsub(pattern, " ", x))
TextDoc <- tm_map(TextDoc, toSpace, "/")
## Warning in tm_map.SimpleCorpus(TextDoc, toSpace, "/"): transformation drops
## documents
TextDoc <- tm_map(TextDoc, toSpace, "@")
## Warning in tm_map.SimpleCorpus(TextDoc, toSpace, "@"): transformation drops
## documents
TextDoc <- tm_map(TextDoc, toSpace, "\\|")
## Warning in tm_map.SimpleCorpus(TextDoc, toSpace, "\\|"): transformation drops
## documents
# Convert the text to lower case
TextDoc <- tm_map(TextDoc, content_transformer(tolower))
## Warning in tm_map.SimpleCorpus(TextDoc, content_transformer(tolower)):
## transformation drops documents
# Remove numbers
TextDoc <- tm_map(TextDoc, removeNumbers)
## Warning in tm_map.SimpleCorpus(TextDoc, removeNumbers): transformation drops
## documents
# Remove english common stopwords
TextDoc <- tm_map(TextDoc, removeWords, stopwords("english"))
## Warning in tm_map.SimpleCorpus(TextDoc, removeWords, stopwords("english")):
## transformation drops documents
# Remove your own stop word
# specify your custom stopwords as a character vector
TextDoc <- tm_map(TextDoc, removeWords, c("s", "company", "team"))
## Warning in tm_map.SimpleCorpus(TextDoc, removeWords, c("s", "company", "team")):
## transformation drops documents
# Remove punctuations
TextDoc <- tm_map(TextDoc, removePunctuation)
## Warning in tm_map.SimpleCorpus(TextDoc, removePunctuation): transformation drops
## documents
# Eliminate extra white spaces
TextDoc <- tm_map(TextDoc, stripWhitespace)
## Warning in tm_map.SimpleCorpus(TextDoc, stripWhitespace): transformation drops
## documents
# Text stemming - which reduces words to their root form
TextDoc <- tm_map(TextDoc, stemDocument)
## Warning in tm_map.SimpleCorpus(TextDoc, stemDocument): transformation drops
## documents
# Build a term-document matrix
TextDoc_dtm <- TermDocumentMatrix(TextDoc)
dtm_m <- as.matrix(TextDoc_dtm)
# Sort by descreasing value of frequency
dtm_v <- sort(rowSums(dtm_m),decreasing=TRUE)
dtm_df <- data.frame(word = names(dtm_v),freq=dtm_v)
# Plot the most frequent words
barplot(dtm_df[1:5,]$freq, las = 2, names.arg = dtm_df[1:5,]$word,
col ="lightgreen", main ="Top 5 most frequent words in Outcome measures ",
ylab = "Word frequencies")

#generate word cloud
set.seed(1234)
wordcloud(words = dtm_df$word, freq = dtm_df$freq, min.freq = 5,
max.words=100, random.order=FALSE, rot.per=0.40,
colors=brewer.pal(8, "Dark2"))

Emotion Classification
d <- get_nrc_sentiment(dt$Outcome.Measures)
# head(d,10) - to see top 10 lines of the get_nrc_sentiment dataframe
head (d,10)
## anger anticipation disgust fear joy sadness surprise trust negative positive
## 1 2 3 2 2 1 3 0 2 2 2
## 2 3 1 3 3 1 4 0 1 3 1
## 3 2 4 2 3 1 3 1 1 4 4
## 4 0 1 0 0 0 2 0 0 3 1
## 5 0 0 0 0 0 0 0 1 0 0
## 6 0 0 0 1 0 0 0 0 1 1
## 7 1 1 1 1 1 1 0 3 2 5
## 8 1 1 1 2 1 2 0 1 1 2
## 9 1 1 1 2 0 1 0 0 2 1
## 10 1 1 1 1 1 2 0 3 1 3
# This bar plot allows for a quick and easy comparison of the proportion of words associated with each emotion in the text.
#Plot two - count of words associated with each sentiment, expressed as a percentage
barplot(
sort(colSums(prop.table(d[, 1:8]))),
horiz = TRUE,
cex.names = 0.7,
las = 1,
main = "Emotions in description of Outcome measures", xlab="Percentage"
)
