Here we are going to do classification on Spotify. When this approach was used,analyzing popularity overall, the regression and classification trees method indicated that rap and trap were the two most important features for our model.

#install.packages("rpart")
#install.packages("partykit")
#install.packages("randomForest")
#install.packages("xgboost")
#install.packages("caret")
library(rpart)
library(partykit)
## Loading required package: grid
## Loading required package: libcoin
## Loading required package: mvtnorm
library(randomForest)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## The following object is masked from 'package:dplyr':
## 
##     combine
library(xgboost)
## 
## Attaching package: 'xgboost'
## The following object is masked from 'package:dplyr':
## 
##     slice
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
## 
## Attaching package: 'ggplot2'
## The following object is masked from 'package:randomForest':
## 
##     margin
library(e1071)

Let us make sure we are in the right working directory.

getwd()
## [1] "C:/Users/Norge/Documents"

Let us define the dataset project by reading the csv file spotify2.

project<-read.csv("spotify2.csv",sep = ",",header = TRUE)
head(project)

Above we can see that our dataset consists of 17 columns. Besides the top eight genres, we included other variables such as fusion genres, artist,primary artist, track,streams and week starting.

The function summary is returning the five number summary for the quantitative variables and the lenght,class,and mode for the qualitative ones(character).

summary(project)
##     Track              Artist          Primary.Artist        Streams        
##  Length:4276        Length:4276        Length:4276        Min.   :  968095  
##  Class :character   Class :character   Class :character   1st Qu.: 1613945  
##  Mode  :character   Mode  :character   Mode  :character   Median : 2114108  
##                                                           Mean   : 3197605  
##                                                           3rd Qu.: 3511572  
##                                                           Max.   :30433574  
##  Week.Starting          rap              pop.rap              trap          
##  Length:4276        Length:4276        Length:4276        Length:4276       
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##      pop              hip.hop          post.teen.pop       dance.pop        
##  Length:4276        Length:4276        Length:4276        Length:4276       
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##  southern.hip.hop    pop.genre         hip.hop.genre       rap.genre        
##  Length:4276        Length:4276        Length:4276        Length:4276       
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##   popularity       
##  Length:4276       
##  Class :character  
##  Mode  :character  
##                    
##                    
## 

Let us make sure we understand and realize the data type for each column.

str(project)
## 'data.frame':    4276 obs. of  17 variables:
##  $ Track           : chr  "Caroline" "Chill Bill (feat. J. Davi$ & Spooks)" "Jingle Bell Rock" "Juju on That Beat (TZ Anthem)" ...
##  $ Artist          : chr  "Amin?" "Rob $tone" "Bobby Helms" "Zay Hilfigerrr, Zayion McCall" ...
##  $ Primary.Artist  : chr  "Amin?" "Rob $tone" "Bobby Helms" "Zay Hilfigerrr" ...
##  $ Streams         : int  4865290 3536430 2904013 1880453 1773788 1581791 1554969 1326118 1234946 1066962 ...
##  $ Week.Starting   : chr  "Thursday, December 29, 2016" "Thursday, December 29, 2016" "Thursday, December 29, 2016" "Thursday, December 29, 2016" ...
##  $ rap             : chr  "no" "no" "no" "no" ...
##  $ pop.rap         : chr  "no" "no" "no" "no" ...
##  $ trap            : chr  "no" "no" "no" "no" ...
##  $ pop             : chr  "no" "no" "no" "no" ...
##  $ hip.hop         : chr  "no" "no" "no" "no" ...
##  $ post.teen.pop   : chr  "no" "no" "no" "no" ...
##  $ dance.pop       : chr  "no" "no" "no" "no" ...
##  $ southern.hip.hop: chr  "no" "no" "no" "no" ...
##  $ pop.genre       : chr  "no" "no" "no" "no" ...
##  $ hip.hop.genre   : chr  "no" "no" "no" "no" ...
##  $ rap.genre       : chr  "yes" "yes" "no" "no" ...
##  $ popularity      : chr  "very popular" "very popular" "popular" "popular" ...

We observed that popularity is a character, so let us delete any missing value and then proceed to make our dependent variable a factor.

mydata1<-na.omit(project)
#View(mydata1)
mydata1$popularity<-ifelse(mydata1$Streams>=2500000,"very popular","popular")
str(mydata1)
## 'data.frame':    4276 obs. of  17 variables:
##  $ Track           : chr  "Caroline" "Chill Bill (feat. J. Davi$ & Spooks)" "Jingle Bell Rock" "Juju on That Beat (TZ Anthem)" ...
##  $ Artist          : chr  "Amin?" "Rob $tone" "Bobby Helms" "Zay Hilfigerrr, Zayion McCall" ...
##  $ Primary.Artist  : chr  "Amin?" "Rob $tone" "Bobby Helms" "Zay Hilfigerrr" ...
##  $ Streams         : int  4865290 3536430 2904013 1880453 1773788 1581791 1554969 1326118 1234946 1066962 ...
##  $ Week.Starting   : chr  "Thursday, December 29, 2016" "Thursday, December 29, 2016" "Thursday, December 29, 2016" "Thursday, December 29, 2016" ...
##  $ rap             : chr  "no" "no" "no" "no" ...
##  $ pop.rap         : chr  "no" "no" "no" "no" ...
##  $ trap            : chr  "no" "no" "no" "no" ...
##  $ pop             : chr  "no" "no" "no" "no" ...
##  $ hip.hop         : chr  "no" "no" "no" "no" ...
##  $ post.teen.pop   : chr  "no" "no" "no" "no" ...
##  $ dance.pop       : chr  "no" "no" "no" "no" ...
##  $ southern.hip.hop: chr  "no" "no" "no" "no" ...
##  $ pop.genre       : chr  "no" "no" "no" "no" ...
##  $ hip.hop.genre   : chr  "no" "no" "no" "no" ...
##  $ rap.genre       : chr  "yes" "yes" "no" "no" ...
##  $ popularity      : chr  "very popular" "very popular" "very popular" "popular" ...
mydata1$popularity<-as.factor(mydata1$popularity)
data1<-mydata1[,-c(1:5)]
#View(data1)
mydata2<-data1[,-c(9:11)]
#View(mydata2)
str(mydata2)
## 'data.frame':    4276 obs. of  9 variables:
##  $ rap             : chr  "no" "no" "no" "no" ...
##  $ pop.rap         : chr  "no" "no" "no" "no" ...
##  $ trap            : chr  "no" "no" "no" "no" ...
##  $ pop             : chr  "no" "no" "no" "no" ...
##  $ hip.hop         : chr  "no" "no" "no" "no" ...
##  $ post.teen.pop   : chr  "no" "no" "no" "no" ...
##  $ dance.pop       : chr  "no" "no" "no" "no" ...
##  $ southern.hip.hop: chr  "no" "no" "no" "no" ...
##  $ popularity      : Factor w/ 2 levels "popular","very popular": 2 2 2 1 1 1 1 1 1 1 ...
mydata3 <-mydata2 %>% 
              mutate_if(is.character, factor)

Train and Test Data

The purpose of creating two different datasets from the original one is to improve our ability so as to accurately predict the previously unused or unseen data.

There are a number of ways to proportionally split our data into train and test sets: 50/50, 60/40, 70/30, 80/20, and so forth. The data split that you select should be based on your experience and judgment. For this exercise, we will use a 80/20 split, as follows:

set.seed(123)  # random number generator
ind <- sample(2, nrow(mydata3), replace = TRUE, prob = c(0.8, 0.2))
train1 <- mydata3[ind==1, ]  #the training set

test1 <- mydata3[ind==2, ]   # the testing set 
dim(train1)
## [1] 3406    9
dim(test1)
## [1] 870   9
table(train1$popularity)
## 
##      popular very popular 
##         2090         1316
table(test1$popularity)
## 
##      popular very popular 
##          542          328
tree.data<-rpart(popularity~.,data = train1)
tree.data$cptable
##          CP nsplit rel error    xerror       xstd
## 1 0.0406535      0  1.000000 1.0000000 0.02159349
## 2 0.0100000      2  0.918693 0.9179331 0.02121627
plot(as.party(tree.data))

cp<-min(tree.data$cptable[1,])
prune.tree.data<-prune(tree.data,cp<-cp)
plot(as.party(prune.tree.data))

rparty.test<-predict(tree.data,newdata = test1,
                      type ="class")
table(rparty.test,test1$popularity)
##               
## rparty.test    popular very popular
##   popular          485          249
##   very popular      57           79
rparty<-as.factor(rparty.test)
rparty
##            4            5            8           11           16           20 
##      popular      popular      popular      popular      popular      popular 
##           21           24           31           32           50           59 
##      popular      popular      popular      popular      popular      popular 
##           65           67           68           87           88           89 
##      popular      popular      popular      popular      popular      popular 
##          104          106          107          111          114          118 
##      popular      popular      popular      popular      popular      popular 
##          126          132          137          139          145          151 
##      popular      popular      popular      popular      popular      popular 
##          173          179          181          189          190          193 
##      popular      popular      popular      popular      popular      popular 
##          195          202          206          219          220          222 
##      popular      popular      popular      popular      popular      popular 
##          230          238          240          248          249          260 
##      popular      popular      popular      popular      popular      popular 
##          261          262          264          271          277          294 
##      popular      popular      popular      popular      popular      popular 
##          296          297          316          317          320          321 
##      popular      popular      popular      popular very popular very popular 
##          327          330          334          340          347          352 
## very popular very popular very popular very popular very popular very popular 
##          356          360          363          373          376          380 
## very popular very popular very popular very popular very popular very popular 
##          386          391          400          401          403          412 
## very popular very popular very popular very popular very popular very popular 
##          417          425          430          431          434          445 
##      popular      popular      popular      popular      popular      popular 
##          456          457          461          470          472          482 
##      popular      popular      popular      popular      popular      popular 
##          485          490          491          496          509          513 
##      popular      popular      popular      popular      popular      popular 
##          520          527          529          531          534          538 
##      popular very popular very popular      popular      popular      popular 
##          541          543          546          548          549          554 
##      popular      popular      popular      popular      popular      popular 
##          562          568          570          572          575          581 
##      popular      popular      popular      popular      popular      popular 
##          582          583          585          589          593          596 
##      popular      popular      popular      popular      popular      popular 
##          599          606          608          614          617          619 
##      popular      popular      popular      popular      popular      popular 
##          621          622          628          632          637          639 
##      popular      popular very popular very popular very popular      popular 
##          643          652          656          657          661          662 
##      popular      popular      popular      popular      popular      popular 
##          667          677          683          684          685          701 
##      popular      popular      popular      popular      popular      popular 
##          704          719          724          727          732          734 
##      popular      popular      popular      popular      popular      popular 
##          737          738          741          750          758          771 
##      popular      popular      popular      popular      popular      popular 
##          772          774          780          782          785          790 
##      popular      popular      popular      popular      popular      popular 
##          791          795          806          814          824          841 
##      popular      popular      popular      popular      popular      popular 
##          847          853          857          860          875          879 
##      popular      popular      popular      popular      popular      popular 
##          882          886          895          901          903          908 
##      popular      popular      popular      popular      popular      popular 
##          909          913          916          921          924          931 
##      popular      popular      popular      popular      popular      popular 
##          935          938          939          941          953          956 
##      popular      popular      popular      popular      popular      popular 
##          965          973          977          983          985          996 
##      popular      popular      popular      popular      popular      popular 
##         1004         1005         1025         1041         1049         1050 
##      popular      popular      popular      popular      popular      popular 
##         1052         1053         1069         1072         1073         1074 
##      popular      popular      popular      popular      popular      popular 
##         1089         1091         1097         1101         1105         1108 
##      popular      popular      popular      popular      popular      popular 
##         1109         1112         1118         1127         1132         1141 
##      popular      popular      popular      popular      popular      popular 
##         1144         1151         1154         1158         1170         1174 
##      popular      popular      popular very popular very popular very popular 
##         1184         1197         1199         1201         1202         1206 
## very popular very popular very popular very popular very popular very popular 
##         1212         1216         1218         1220         1224         1225 
## very popular very popular very popular very popular very popular very popular 
##         1229         1239         1245         1251         1256         1259 
## very popular very popular very popular very popular very popular very popular 
##         1268         1270         1275         1282         1291         1294 
## very popular very popular very popular very popular very popular very popular 
##         1299         1304         1313         1321         1323         1325 
## very popular very popular very popular      popular      popular      popular 
##         1339         1346         1358         1363         1376         1378 
##      popular      popular      popular      popular      popular      popular 
##         1383         1385         1388         1391         1396         1408 
##      popular      popular      popular      popular      popular      popular 
##         1410         1412         1421         1424         1428         1429 
##      popular      popular      popular      popular      popular      popular 
##         1431         1434         1438         1459         1461         1463 
##      popular      popular      popular      popular      popular      popular 
##         1466         1467         1478         1479         1480         1483 
##      popular      popular      popular      popular      popular      popular 
##         1484         1485         1490         1493         1496         1497 
##      popular      popular      popular      popular      popular      popular 
##         1501         1502         1512         1513         1531         1533 
##      popular      popular      popular      popular      popular      popular 
##         1539         1550         1551         1560         1563         1568 
##      popular very popular very popular very popular very popular very popular 
##         1570         1585         1592         1604         1605         1607 
## very popular      popular      popular      popular      popular      popular 
##         1614         1615         1626         1630         1635         1636 
##      popular      popular      popular      popular      popular      popular 
##         1642         1644         1646         1648         1658         1661 
##      popular      popular      popular      popular      popular      popular 
##         1667         1683         1690         1694         1695         1696 
##      popular      popular      popular      popular      popular      popular 
##         1697         1704         1705         1709         1714         1716 
##      popular      popular      popular      popular      popular      popular 
##         1719         1721         1731         1734         1735         1738 
##      popular      popular      popular      popular      popular      popular 
##         1739         1740         1742         1747         1749         1751 
##      popular      popular      popular      popular      popular      popular 
##         1752         1755         1757         1760         1766         1767 
##      popular      popular      popular      popular      popular      popular 
##         1770         1787         1790         1794         1798         1802 
##      popular      popular      popular      popular      popular      popular 
##         1807         1809         1821         1824         1826         1828 
##      popular      popular      popular      popular      popular      popular 
##         1831         1833         1839         1851         1852         1857 
##      popular      popular      popular      popular      popular      popular 
##         1860         1864         1868         1872         1876         1879 
##      popular      popular      popular      popular      popular      popular 
##         1881         1892         1895         1898         1904         1919 
##      popular      popular      popular      popular      popular      popular 
##         1923         1930         1938         1946         1949         1961 
##      popular      popular      popular      popular      popular      popular 
##         1969         1972         1979         1993         1996         2011 
##      popular      popular      popular      popular      popular      popular 
##         2015         2021         2023         2038         2039         2045 
##      popular      popular      popular      popular      popular      popular 
##         2046         2047         2053         2055         2062         2064 
##      popular      popular very popular      popular      popular      popular 
##         2069         2070         2072         2079         2088         2097 
##      popular      popular      popular      popular      popular very popular 
##         2104         2109         2110         2120         2121         2125 
##      popular      popular      popular      popular      popular      popular 
##         2127         2130         2138         2139         2152         2158 
##      popular      popular      popular      popular      popular      popular 
##         2161         2166         2168         2175         2178         2181 
##      popular      popular      popular      popular      popular      popular 
##         2187         2194         2195         2201         2223         2225 
##      popular      popular      popular      popular      popular      popular 
##         2229         2232         2237         2240         2244         2245 
##      popular      popular      popular      popular      popular      popular 
##         2246         2251         2252         2260         2262         2268 
##      popular      popular      popular      popular      popular      popular 
##         2275         2276         2277         2282         2292         2295 
##      popular      popular      popular      popular very popular very popular 
##         2298         2300         2302         2309         2316         2338 
## very popular very popular very popular very popular very popular very popular 
##         2339         2340         2343         2344         2352         2364 
## very popular very popular very popular very popular very popular very popular 
##         2371         2377         2380         2383         2385         2395 
##      popular      popular      popular      popular      popular      popular 
##         2396         2400         2404         2405         2411         2415 
##      popular      popular      popular      popular      popular      popular 
##         2422         2428         2446         2451         2455         2456 
##      popular      popular      popular      popular      popular      popular 
##         2463         2479         2485         2494         2496         2497 
##      popular very popular very popular      popular      popular      popular 
##         2501         2509         2526         2530         2531         2535 
##      popular      popular      popular      popular      popular      popular 
##         2539         2540         2541         2546         2548         2555 
##      popular      popular      popular      popular      popular      popular 
##         2562         2566         2570         2583         2587         2588 
##      popular      popular      popular      popular      popular      popular 
##         2596         2599         2604         2620         2621         2637 
##      popular      popular      popular      popular      popular      popular 
##         2642         2645         2647         2651         2652         2653 
##      popular      popular      popular      popular      popular      popular 
##         2678         2683         2684         2688         2690         2696 
##      popular      popular      popular      popular      popular      popular 
##         2698         2700         2706         2707         2708         2709 
##      popular      popular      popular      popular      popular      popular 
##         2711         2716         2721         2724         2725         2726 
##      popular      popular      popular      popular      popular      popular 
##         2733         2735         2740         2745         2758         2776 
##      popular      popular      popular      popular      popular      popular 
##         2784         2785         2787         2790         2795         2800 
##      popular      popular      popular      popular      popular      popular 
##         2808         2810         2811         2814         2815         2818 
##      popular      popular      popular      popular      popular      popular 
##         2824         2834         2837         2840         2843         2851 
##      popular      popular      popular      popular      popular      popular 
##         2855         2858         2868         2876         2880         2883 
##      popular      popular      popular      popular      popular      popular 
##         2886         2890         2892         2901         2905         2907 
##      popular      popular      popular      popular      popular      popular 
##         2913         2915         2928         2942         2946         2953 
##      popular      popular      popular      popular      popular      popular 
##         2956         2961         2967         2977         2979         2986 
##      popular      popular      popular very popular very popular      popular 
##         2987         2993         2995         2997         3002         3009 
##      popular      popular      popular      popular      popular      popular 
##         3010         3011         3017         3019         3026         3027 
## very popular      popular      popular      popular      popular      popular 
##         3028         3030         3040         3050         3053         3056 
##      popular      popular      popular      popular      popular      popular 
##         3060         3061         3068         3071         3072         3076 
##      popular      popular      popular      popular      popular      popular 
##         3081         3087         3091         3102         3107         3109 
##      popular      popular      popular      popular      popular      popular 
##         3116         3118         3123         3124         3126         3130 
##      popular      popular      popular      popular      popular      popular 
##         3133         3141         3148         3152         3163         3174 
##      popular      popular      popular      popular      popular      popular 
##         3177         3180         3182         3194         3195         3213 
##      popular very popular very popular very popular very popular very popular 
##         3215         3217         3219         3221         3223         3235 
## very popular very popular very popular very popular very popular very popular 
##         3237         3243         3244         3246         3247         3255 
## very popular very popular very popular very popular very popular very popular 
##         3258         3259         3266         3267         3273         3275 
## very popular very popular very popular very popular very popular very popular 
##         3276         3285         3287         3289         3297         3300 
## very popular very popular very popular      popular      popular      popular 
##         3305         3314         3317         3321         3328         3333 
##      popular      popular      popular      popular      popular      popular 
##         3335         3339         3342         3343         3348         3349 
##      popular      popular      popular      popular      popular      popular 
##         3351         3353         3359         3364         3367         3374 
##      popular      popular      popular      popular      popular      popular 
##         3376         3378         3381         3387         3396         3407 
##      popular      popular very popular      popular      popular      popular 
##         3409         3414         3415         3417         3419         3423 
##      popular      popular      popular      popular      popular      popular 
##         3437         3438         3461         3466         3467         3480 
##      popular      popular      popular      popular      popular      popular 
##         3487         3488         3489         3494         3497         3503 
##      popular      popular      popular      popular      popular very popular 
##         3510         3511         3529         3530         3532         3537 
## very popular very popular very popular very popular very popular very popular 
##         3542         3545         3546         3551         3554         3556 
## very popular very popular very popular very popular very popular very popular 
##         3566         3568         3571         3574         3575         3584 
## very popular very popular very popular very popular very popular very popular 
##         3585         3596         3598         3606         3607         3609 
## very popular very popular      popular      popular      popular      popular 
##         3626         3635         3643         3646         3650         3651 
##      popular      popular      popular      popular      popular      popular 
##         3655         3659         3664         3674         3675         3677 
##      popular      popular      popular      popular      popular      popular 
##         3682         3684         3687         3688         3689         3703 
##      popular      popular      popular      popular      popular      popular 
##         3705         3713         3718         3721         3724         3731 
##      popular      popular      popular      popular      popular      popular 
##         3736         3737         3739         3741         3743         3751 
##      popular      popular      popular      popular      popular      popular 
##         3753         3762         3764         3766         3768         3771 
##      popular      popular      popular      popular      popular      popular 
##         3772         3773         3776         3777         3783         3785 
##      popular      popular      popular      popular      popular      popular 
##         3794         3796         3798         3801         3806         3807 
##      popular      popular      popular      popular      popular      popular 
##         3819         3821         3825         3831         3836         3843 
##      popular      popular      popular      popular      popular      popular 
##         3850         3851         3863         3868         3870         3872 
##      popular      popular      popular      popular      popular      popular 
##         3875         3880         3881         3885         3899         3908 
##      popular      popular      popular      popular      popular      popular 
##         3909         3919         3920         3923         3927         3930 
##      popular      popular      popular      popular      popular      popular 
##         3931         3932         3933         3936         3941         3947 
##      popular      popular      popular      popular      popular      popular 
##         3948         3951         3952         3963         3969         3972 
##      popular      popular      popular      popular      popular      popular 
##         3974         3975         3978         3979         3983         3986 
##      popular      popular      popular      popular      popular      popular 
##         3994         4002         4004         4007         4010         4012 
##      popular      popular      popular      popular      popular      popular 
##         4016         4017         4031         4036         4043         4045 
##      popular      popular      popular      popular      popular      popular 
##         4050         4057         4075         4076         4077         4078 
##      popular      popular      popular      popular      popular      popular 
##         4084         4086         4098         4104         4107         4110 
##      popular very popular very popular      popular      popular      popular 
##         4120         4121         4122         4125         4126         4134 
## very popular very popular very popular      popular      popular      popular 
##         4140         4153         4154         4160         4170         4172 
##      popular      popular      popular      popular      popular      popular 
##         4181         4184         4198         4208         4212         4229 
##      popular      popular      popular      popular      popular      popular 
##         4234         4242         4247         4249         4250         4251 
##      popular      popular      popular      popular      popular      popular 
##         4254         4256         4266         4267         4270         4272 
##      popular      popular      popular very popular      popular      popular 
## Levels: popular very popular

Modeling and Evaluation

We will use the function glm() (from base R) for the logistic regression model.

An R installation comes with the glm() function fitting the generalized linear models, which are a class of models that includes logistic regression. The code syntax is similar to the lm() function that we used for linear regression. One difference is that we must use the family = binomial argument in the function, which tells R to run a logistic regression method instead of the other versions of the generalized linear models. We will start by creating a model that includes all of the features on the train set and see how it performs on the test set:

full.fit <- glm(popularity ~ ., family = binomial, data = train1)

Create a summary of the model:

summary(full.fit)
## 
## Call:
## glm(formula = popularity ~ ., family = binomial, data = train1)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.5521  -0.9465  -0.7698   1.2568   2.0634  
## 
## Coefficients:
##                     Estimate Std. Error z value Pr(>|z|)    
## (Intercept)         -0.79116    0.07181 -11.017  < 2e-16 ***
## rapyes               1.43177    0.13488  10.615  < 2e-16 ***
## pop.rapyes          -0.28682    0.10067  -2.849  0.00439 ** 
## trapyes             -0.82543    0.12776  -6.461 1.04e-10 ***
## popyes               0.49432    0.11852   4.171 3.04e-05 ***
## hip.hopyes          -0.14558    0.11874  -1.226  0.22017    
## post.teen.popyes     0.57953    0.13878   4.176 2.97e-05 ***
## dance.popyes        -0.85361    0.13473  -6.336 2.36e-10 ***
## southern.hip.hopyes -0.44750    0.15311  -2.923  0.00347 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 4544.3  on 3405  degrees of freedom
## Residual deviance: 4318.6  on 3397  degrees of freedom
## AIC: 4336.6
## 
## Number of Fisher Scoring iterations: 4

You cannot translate the coefficients in logistic regression as “the change in Y is based on one-unit change in X”.

This is where the odds ratio can be quite helpful. The beta coefficients from the log function can be converted to odds ratios with an exponent (beta).

In order to produce the odds ratios in R, we will use the following exp(coef()) syntax:

exp(coef(full.fit))
##         (Intercept)              rapyes          pop.rapyes             trapyes 
##           0.4533196           4.1861184           0.7506500           0.4380450 
##              popyes          hip.hopyes    post.teen.popyes        dance.popyes 
##           1.6393866           0.8645207           1.7852023           0.4258764 
## southern.hip.hopyes 
##           0.6392221

The interpretation of an odds ratio is the change in the outcome odds resulting from a unit change in the feature. If the value is greater than 1, it indicates that, as the feature increases, the odds of the outcome increase. Conversely, a value less than 1 would mean that, as the feature increases, the odds of the outcome decrease.

Testing the model

You will first have to create a vector of the predicted probabilities, as follows:

train.probs <- predict(full.fit, type = "response")
# inspect the first 5 probabilities
#train.probs[1:5]

Next, we need to evaluate how well the model performed in training and then evaluate how it fits on the test set. A quick way to do this is to produce a confusion matrix. The default value by which the function selects either very popular or popular is 0.50, which is to say that any probability at or above 0.50 is classified as very popular:

y <- ifelse(mydata3$popularity == "very popular", 1, 0)
trainY1<-y[ind==1]
testY1<-y[ind==2]
#install.packages("InformationValue")
library(InformationValue)
## 
## Attaching package: 'InformationValue'
## The following objects are masked from 'package:caret':
## 
##     confusionMatrix, precision, sensitivity, specificity
confusionMatrix(trainY1,train.probs)
misClassError(trainY1, train.probs)
## [1] 0.3526
test.probs <- predict(full.fit, newdata = test1, type = "response")
#misclassification error
misClassError(testY1, test.probs)
## [1] 0.3414
# confusion matrix
confusionMatrix(testY1, test.probs)
#install.packages("nnet")
library(nnet)
modelANN<-nnet(popularity~.,data=train1,size = 3,decay = 0.0001,maxit = 500)
## # weights:  31
## initial  value 2633.427934 
## iter  10 value 2166.139977
## iter  20 value 2136.416823
## iter  30 value 2126.094577
## iter  40 value 2122.224012
## iter  50 value 2121.374062
## iter  60 value 2121.003099
## iter  70 value 2120.725536
## iter  80 value 2120.546573
## iter  90 value 2120.080351
## iter 100 value 2119.951912
## iter 110 value 2119.778207
## iter 120 value 2119.763345
## iter 130 value 2119.743264
## iter 140 value 2119.741148
## iter 150 value 2119.691713
## iter 160 value 2119.273908
## iter 170 value 2119.162497
## iter 180 value 2119.129043
## iter 190 value 2119.122976
## final  value 2119.119594 
## converged
test1$pred_nnet<-predict(modelANN,test1,type="class")
#confmat<-data.frame("Prediction"=test1$pred_nnet,"Actual"=te#st1$popularity)
#accuracyANN<-data.frame("Accuracy"=nrow(subset(confumatNaive#,Actual==Prediction))/nrow(confumatNaive))
#accuracyANN
#Function for different sizes and different samples in ANN
accuracyANNsize<-function(trials){
acc <- data.frame(i = integer(),j= integer(),Accuracy= integer())
for(i in 450:trials) {
# random sample
smp_size <- floor(0.80 * nrow(mydata3))



## set the seed to make the partition reproducible
set.seed(i)
train_ind <- sample(seq_len(nrow(mydata3)), size = smp_size)



trainC <- mydata3[train_ind, ]
testC <- mydata3[-train_ind, ]
for(j in 2:8){
modelANNC<-nnet(popularity~.,data=trainC,size = j,decay = 0.0001,maxit = 500)
testC$pred_nnet<-predict(modelANNC,testC,type="class")
confmatC<-data.frame(Prediction=testC$pred_nnet,Actual=testC$popularity)
accuracy<-nrow(subset(confmatC,Actual==Prediction))/nrow(confmatC)
Size=j
trial=i
attempt <- data.frame(Trial = trial, Size=Size,Accuracy = accuracy)
acc <- rbind(acc,attempt)
}
}
return(acc)
}
#Running the function for 77 combinations between sizes and random samples
accuracyANN10<-accuracyANNsize(460)
## # weights:  21
## initial  value 2285.669929 
## iter  10 value 2169.799526
## iter  20 value 2149.310337
## iter  30 value 2137.800580
## iter  40 value 2135.736108
## iter  50 value 2135.291595
## iter  60 value 2134.961070
## iter  70 value 2134.460388
## iter  80 value 2133.970086
## iter  90 value 2133.011088
## iter 100 value 2132.585407
## iter 110 value 2132.128143
## iter 120 value 2132.053523
## iter 130 value 2132.032270
## final  value 2132.027689 
## converged
## # weights:  31
## initial  value 2382.220713 
## iter  10 value 2156.730592
## iter  20 value 2141.012998
## iter  30 value 2136.703801
## iter  40 value 2129.039271
## iter  50 value 2123.888584
## iter  60 value 2122.910207
## iter  70 value 2122.448305
## iter  80 value 2121.979721
## iter  90 value 2121.443005
## iter 100 value 2121.192757
## iter 110 value 2121.073344
## iter 120 value 2120.933567
## iter 130 value 2120.810453
## iter 140 value 2120.766834
## iter 150 value 2120.552084
## iter 160 value 2120.311118
## iter 170 value 2120.097929
## iter 180 value 2119.923607
## iter 190 value 2119.760400
## iter 200 value 2119.755151
## iter 210 value 2119.725489
## iter 220 value 2119.587414
## iter 230 value 2119.512632
## iter 240 value 2119.446070
## iter 250 value 2119.391278
## iter 260 value 2119.358776
## iter 270 value 2119.355726
## iter 280 value 2119.317761
## iter 290 value 2119.170466
## iter 300 value 2119.035502
## iter 310 value 2118.985257
## iter 320 value 2118.978512
## iter 320 value 2118.978501
## iter 320 value 2118.978495
## final  value 2118.978495 
## converged
## # weights:  41
## initial  value 2343.220261 
## iter  10 value 2186.690211
## iter  20 value 2146.909495
## iter  30 value 2137.760610
## iter  40 value 2133.359712
## iter  50 value 2131.378189
## iter  60 value 2130.528792
## iter  70 value 2129.789400
## iter  80 value 2128.374049
## iter  90 value 2128.171682
## iter 100 value 2127.968699
## iter 110 value 2126.963175
## iter 120 value 2126.424488
## iter 130 value 2126.003348
## iter 140 value 2125.236806
## iter 150 value 2124.128036
## iter 160 value 2123.581364
## iter 170 value 2123.368587
## iter 180 value 2123.269509
## iter 190 value 2122.902867
## iter 200 value 2122.677912
## iter 210 value 2122.618267
## iter 220 value 2122.572365
## iter 230 value 2122.521943
## iter 240 value 2122.406544
## iter 250 value 2122.362374
## final  value 2122.362004 
## converged
## # weights:  51
## initial  value 2860.733667 
## iter  10 value 2153.942064
## iter  20 value 2138.309438
## iter  30 value 2131.477183
## iter  40 value 2124.469059
## iter  50 value 2122.390518
## iter  60 value 2121.854296
## iter  70 value 2121.614764
## iter  80 value 2120.780364
## iter  90 value 2119.613989
## iter 100 value 2119.324278
## iter 110 value 2119.230676
## iter 120 value 2119.199563
## iter 130 value 2119.009427
## iter 140 value 2118.872553
## iter 150 value 2118.611392
## iter 160 value 2118.530573
## iter 170 value 2118.452080
## iter 180 value 2118.390248
## iter 190 value 2118.365148
## iter 200 value 2118.320484
## iter 210 value 2118.255717
## iter 220 value 2118.245974
## iter 230 value 2118.188826
## iter 240 value 2117.944187
## iter 250 value 2117.598025
## iter 260 value 2117.429097
## iter 270 value 2117.320081
## iter 280 value 2117.243598
## iter 290 value 2117.194522
## iter 300 value 2117.135249
## iter 310 value 2117.100921
## iter 320 value 2117.099029
## final  value 2117.096887 
## converged
## # weights:  61
## initial  value 2452.733452 
## iter  10 value 2154.075552
## iter  20 value 2135.675068
## iter  30 value 2126.943851
## iter  40 value 2122.844561
## iter  50 value 2120.874371
## iter  60 value 2119.994285
## iter  70 value 2118.831166
## iter  80 value 2118.100192
## iter  90 value 2117.756300
## iter 100 value 2117.695130
## iter 110 value 2117.651802
## iter 120 value 2117.599987
## iter 130 value 2117.568713
## iter 140 value 2117.556480
## iter 150 value 2117.500615
## iter 160 value 2117.464254
## iter 170 value 2117.436274
## iter 180 value 2117.420660
## iter 190 value 2117.405229
## iter 200 value 2117.381155
## iter 210 value 2117.361427
## iter 220 value 2117.341725
## iter 230 value 2117.321282
## iter 240 value 2117.290127
## iter 250 value 2117.275296
## iter 260 value 2117.274168
## iter 270 value 2117.272822
## iter 280 value 2117.259414
## iter 290 value 2117.235568
## iter 300 value 2117.223396
## iter 310 value 2117.207088
## iter 320 value 2117.194617
## iter 330 value 2117.184544
## iter 340 value 2117.177349
## iter 350 value 2117.171579
## iter 360 value 2117.168480
## iter 370 value 2117.164053
## final  value 2117.163973 
## converged
## # weights:  71
## initial  value 2424.092856 
## iter  10 value 2162.027070
## iter  20 value 2134.872202
## iter  30 value 2126.955994
## iter  40 value 2122.452208
## iter  50 value 2121.444505
## iter  60 value 2120.265520
## iter  70 value 2119.177390
## iter  80 value 2118.248502
## iter  90 value 2117.801822
## iter 100 value 2117.542957
## iter 110 value 2117.450102
## iter 120 value 2117.425243
## iter 130 value 2117.400487
## iter 140 value 2117.353494
## iter 150 value 2117.336311
## iter 160 value 2117.333385
## iter 170 value 2117.319570
## iter 180 value 2117.271134
## iter 190 value 2117.245464
## iter 200 value 2117.220674
## iter 210 value 2117.155449
## iter 220 value 2117.091636
## iter 230 value 2117.034889
## iter 240 value 2116.973199
## iter 250 value 2116.956453
## iter 260 value 2116.946427
## iter 270 value 2116.932269
## iter 280 value 2116.925696
## final  value 2116.919616 
## converged
## # weights:  81
## initial  value 2335.190304 
## iter  10 value 2160.203244
## iter  20 value 2137.806194
## iter  30 value 2129.298956
## iter  40 value 2125.377618
## iter  50 value 2121.390061
## iter  60 value 2119.612121
## iter  70 value 2118.718265
## iter  80 value 2117.917851
## iter  90 value 2117.369870
## iter 100 value 2117.225514
## iter 110 value 2117.156147
## iter 120 value 2117.132961
## iter 130 value 2117.096880
## iter 140 value 2117.061826
## iter 150 value 2117.033318
## iter 160 value 2117.019225
## iter 170 value 2117.017510
## iter 180 value 2117.015584
## iter 190 value 2116.996003
## iter 200 value 2116.969930
## iter 210 value 2116.957418
## iter 220 value 2116.948573
## iter 230 value 2116.942849
## iter 240 value 2116.934296
## iter 250 value 2116.921907
## iter 260 value 2116.906656
## iter 270 value 2116.892485
## iter 280 value 2116.884316
## final  value 2116.884079 
## converged
## # weights:  21
## initial  value 2638.512547 
## iter  10 value 2170.492592
## iter  20 value 2140.761919
## iter  30 value 2135.577991
## iter  40 value 2133.680933
## iter  50 value 2133.157883
## iter  60 value 2132.871206
## iter  70 value 2132.599716
## iter  80 value 2132.056185
## iter  90 value 2131.100812
## iter 100 value 2130.970968
## iter 110 value 2130.708180
## iter 120 value 2130.382924
## iter 130 value 2130.239614
## iter 140 value 2130.198000
## iter 150 value 2130.193698
## iter 160 value 2130.156687
## iter 170 value 2130.139177
## final  value 2130.138544 
## converged
## # weights:  31
## initial  value 2835.731348 
## iter  10 value 2164.657002
## iter  20 value 2142.509413
## iter  30 value 2131.702729
## iter  40 value 2124.568506
## iter  50 value 2122.560910
## iter  60 value 2122.019664
## iter  70 value 2121.952029
## iter  80 value 2121.650692
## iter  90 value 2121.333723
## iter 100 value 2121.169821
## iter 110 value 2120.977760
## iter 120 value 2120.931751
## iter 130 value 2120.922787
## iter 140 value 2120.918879
## iter 150 value 2120.888031
## iter 160 value 2120.540653
## iter 170 value 2120.258013
## iter 180 value 2119.803717
## iter 190 value 2119.436932
## iter 200 value 2119.410304
## iter 210 value 2119.258039
## iter 220 value 2119.242661
## iter 230 value 2119.230927
## iter 240 value 2119.202181
## iter 250 value 2119.178249
## iter 260 value 2119.167721
## iter 270 value 2119.163547
## iter 280 value 2119.130290
## iter 290 value 2119.072344
## iter 300 value 2118.916875
## iter 310 value 2118.440474
## iter 320 value 2118.250282
## iter 330 value 2118.103129
## iter 340 value 2117.549300
## iter 350 value 2117.133771
## iter 360 value 2116.990310
## iter 370 value 2116.958777
## iter 380 value 2116.922949
## iter 390 value 2116.841748
## iter 400 value 2116.794805
## iter 410 value 2116.786829
## iter 420 value 2116.772677
## iter 430 value 2116.735820
## iter 440 value 2116.729603
## iter 450 value 2116.651699
## iter 460 value 2116.473245
## iter 470 value 2116.404841
## iter 480 value 2116.269473
## iter 490 value 2116.199578
## iter 500 value 2116.193467
## final  value 2116.193467 
## stopped after 500 iterations
## # weights:  41
## initial  value 2282.570084 
## iter  10 value 2155.529612
## iter  20 value 2131.979498
## iter  30 value 2123.496313
## iter  40 value 2120.878260
## iter  50 value 2118.923992
## iter  60 value 2117.501885
## iter  70 value 2116.547148
## iter  80 value 2115.363290
## iter  90 value 2115.209907
## iter 100 value 2115.040179
## iter 110 value 2114.820610
## iter 120 value 2114.575848
## iter 130 value 2113.993801
## iter 140 value 2113.763258
## iter 150 value 2113.677473
## iter 160 value 2113.575135
## iter 170 value 2113.529306
## iter 180 value 2113.527199
## iter 190 value 2113.517195
## iter 200 value 2113.498973
## iter 210 value 2113.458431
## iter 220 value 2113.407984
## iter 230 value 2113.284975
## iter 240 value 2113.225174
## iter 250 value 2113.204615
## final  value 2113.199558 
## converged
## # weights:  51
## initial  value 2327.292046 
## iter  10 value 2169.873329
## iter  20 value 2132.479124
## iter  30 value 2120.387348
## iter  40 value 2118.338038
## iter  50 value 2116.381377
## iter  60 value 2115.326290
## iter  70 value 2114.667167
## iter  80 value 2114.260868
## iter  90 value 2113.940863
## iter 100 value 2113.826711
## iter 110 value 2113.773235
## iter 120 value 2113.719490
## iter 130 value 2113.569990
## iter 140 value 2113.486627
## iter 150 value 2113.403045
## iter 160 value 2113.360443
## iter 170 value 2113.342178
## iter 180 value 2113.279444
## iter 190 value 2113.118727
## iter 200 value 2113.025919
## iter 210 value 2112.893608
## iter 220 value 2112.885661
## iter 230 value 2112.856456
## iter 240 value 2112.792704
## iter 250 value 2112.699487
## iter 260 value 2112.649651
## iter 270 value 2112.619535
## iter 280 value 2112.597953
## iter 290 value 2112.588362
## iter 300 value 2112.573323
## iter 310 value 2112.564951
## final  value 2112.564667 
## converged
## # weights:  61
## initial  value 2673.013511 
## iter  10 value 2148.905277
## iter  20 value 2134.575669
## iter  30 value 2124.238421
## iter  40 value 2121.157469
## iter  50 value 2118.334102
## iter  60 value 2117.127095
## iter  70 value 2116.634530
## iter  80 value 2115.716685
## iter  90 value 2114.662474
## iter 100 value 2114.172274
## iter 110 value 2114.061292
## iter 120 value 2113.935080
## iter 130 value 2113.906702
## iter 140 value 2113.842105
## iter 150 value 2113.673117
## iter 160 value 2113.393802
## iter 170 value 2113.237215
## iter 180 value 2113.192991
## iter 190 value 2113.146243
## iter 200 value 2113.106011
## iter 210 value 2113.060115
## iter 220 value 2113.020050
## iter 230 value 2112.988725
## iter 240 value 2112.956035
## iter 250 value 2112.945073
## iter 250 value 2112.945056
## final  value 2112.944987 
## converged
## # weights:  71
## initial  value 2482.746997 
## iter  10 value 2151.992344
## iter  20 value 2128.583912
## iter  30 value 2120.482375
## iter  40 value 2117.793732
## iter  50 value 2115.851550
## iter  60 value 2114.585995
## iter  70 value 2113.863034
## iter  80 value 2113.467980
## iter  90 value 2113.061106
## iter 100 value 2112.859549
## iter 110 value 2112.790641
## iter 120 value 2112.742681
## iter 130 value 2112.718105
## iter 140 value 2112.689636
## iter 150 value 2112.680641
## iter 160 value 2112.675919
## iter 170 value 2112.665193
## iter 180 value 2112.627282
## iter 190 value 2112.607405
## iter 200 value 2112.600710
## iter 210 value 2112.590120
## iter 220 value 2112.576987
## iter 230 value 2112.561491
## iter 240 value 2112.546332
## iter 250 value 2112.528574
## iter 260 value 2112.514090
## iter 270 value 2112.504283
## iter 280 value 2112.491346
## final  value 2112.487235 
## converged
## # weights:  81
## initial  value 2279.603764 
## iter  10 value 2152.475063
## iter  20 value 2131.243528
## iter  30 value 2125.081771
## iter  40 value 2121.632999
## iter  50 value 2115.492722
## iter  60 value 2113.818522
## iter  70 value 2113.453396
## iter  80 value 2113.210992
## iter  90 value 2113.101348
## iter 100 value 2113.028275
## iter 110 value 2112.983569
## iter 120 value 2112.955410
## iter 130 value 2112.923682
## iter 140 value 2112.901184
## iter 150 value 2112.830886
## iter 160 value 2112.772768
## iter 170 value 2112.743875
## iter 180 value 2112.733233
## iter 190 value 2112.691555
## iter 200 value 2112.635999
## iter 210 value 2112.622323
## iter 220 value 2112.603661
## iter 230 value 2112.581874
## iter 240 value 2112.573198
## iter 250 value 2112.565223
## iter 260 value 2112.550807
## iter 270 value 2112.541092
## iter 280 value 2112.534105
## iter 290 value 2112.525725
## iter 300 value 2112.512742
## iter 310 value 2112.503666
## iter 320 value 2112.494937
## iter 330 value 2112.489427
## final  value 2112.489129 
## converged
## # weights:  21
## initial  value 2323.284712 
## iter  10 value 2258.637501
## iter  20 value 2194.915555
## iter  30 value 2186.443804
## iter  40 value 2178.661544
## iter  50 value 2166.103504
## iter  60 value 2161.334218
## iter  70 value 2160.528092
## iter  80 value 2156.940886
## iter  90 value 2154.303363
## iter 100 value 2153.422177
## iter 110 value 2153.294912
## iter 120 value 2152.342056
## iter 130 value 2151.927228
## iter 140 value 2151.839048
## iter 150 value 2151.822533
## iter 160 value 2151.807210
## iter 170 value 2149.775617
## iter 180 value 2147.799182
## iter 190 value 2146.598632
## iter 200 value 2146.188611
## iter 210 value 2145.996320
## iter 220 value 2145.787439
## iter 230 value 2145.782122
## iter 230 value 2145.782101
## iter 230 value 2145.782101
## final  value 2145.782101 
## converged
## # weights:  31
## initial  value 2313.361273 
## iter  10 value 2187.935220
## iter  20 value 2163.330422
## iter  30 value 2148.555920
## iter  40 value 2143.148253
## iter  50 value 2141.440324
## iter  60 value 2139.705218
## iter  70 value 2139.353118
## iter  80 value 2139.046295
## iter  90 value 2138.872610
## iter 100 value 2138.740379
## iter 110 value 2138.539436
## iter 120 value 2137.899938
## iter 130 value 2137.549988
## iter 140 value 2137.488358
## iter 150 value 2137.361271
## iter 160 value 2137.308722
## iter 170 value 2137.259136
## iter 180 value 2137.206040
## iter 190 value 2137.160534
## final  value 2137.160073 
## converged
## # weights:  41
## initial  value 2567.375751 
## iter  10 value 2166.654803
## iter  20 value 2151.463407
## iter  30 value 2142.809417
## iter  40 value 2138.752258
## iter  50 value 2137.770700
## iter  60 value 2136.154688
## iter  70 value 2135.280885
## iter  80 value 2134.682462
## iter  90 value 2134.436712
## iter 100 value 2134.356641
## iter 110 value 2134.173375
## iter 120 value 2133.872212
## iter 130 value 2133.223780
## iter 140 value 2133.047728
## iter 150 value 2132.948345
## iter 160 value 2132.649215
## iter 170 value 2132.156415
## iter 180 value 2131.953265
## iter 190 value 2131.453940
## iter 200 value 2131.087576
## iter 210 value 2130.957951
## iter 220 value 2130.897123
## iter 230 value 2130.859485
## iter 240 value 2130.829434
## iter 250 value 2130.584345
## iter 260 value 2130.489107
## iter 270 value 2130.287516
## iter 280 value 2129.830059
## iter 290 value 2129.561459
## iter 300 value 2129.424653
## iter 310 value 2129.389151
## iter 320 value 2129.351931
## iter 330 value 2129.327169
## iter 340 value 2129.314043
## iter 350 value 2129.304664
## iter 360 value 2129.220642
## iter 370 value 2129.116911
## iter 380 value 2129.006936
## iter 390 value 2128.972080
## iter 400 value 2128.954019
## iter 410 value 2128.939712
## iter 420 value 2128.927540
## final  value 2128.927410 
## converged
## # weights:  51
## initial  value 2537.045370 
## iter  10 value 2169.552800
## iter  20 value 2153.065200
## iter  30 value 2145.302211
## iter  40 value 2141.922238
## iter  50 value 2139.750312
## iter  60 value 2138.916497
## iter  70 value 2137.944285
## iter  80 value 2137.016252
## iter  90 value 2136.814138
## iter 100 value 2136.759445
## iter 110 value 2136.735006
## iter 120 value 2136.691030
## iter 130 value 2136.380877
## iter 140 value 2135.500161
## iter 150 value 2133.597236
## iter 160 value 2132.739075
## iter 170 value 2131.866911
## iter 180 value 2131.557311
## iter 190 value 2131.282693
## iter 200 value 2131.089676
## iter 210 value 2130.936551
## iter 220 value 2130.891358
## iter 230 value 2130.777775
## iter 240 value 2130.592103
## iter 250 value 2130.502804
## iter 260 value 2130.457152
## iter 270 value 2130.395262
## iter 280 value 2130.335081
## iter 290 value 2130.272967
## iter 300 value 2130.225998
## iter 310 value 2130.105200
## iter 320 value 2130.081584
## iter 330 value 2129.961642
## iter 340 value 2129.573648
## iter 350 value 2129.491118
## iter 360 value 2129.393792
## iter 370 value 2129.145631
## iter 380 value 2128.985530
## iter 390 value 2128.905319
## iter 400 value 2128.860262
## iter 410 value 2128.801536
## iter 420 value 2128.775233
## iter 430 value 2128.757719
## iter 440 value 2128.705747
## iter 450 value 2128.584495
## iter 460 value 2128.514262
## iter 470 value 2128.496034
## iter 480 value 2128.466920
## iter 490 value 2128.435240
## iter 500 value 2128.384296
## final  value 2128.384296 
## stopped after 500 iterations
## # weights:  61
## initial  value 2331.630141 
## iter  10 value 2166.890283
## iter  20 value 2147.794341
## iter  30 value 2139.548991
## iter  40 value 2134.985833
## iter  50 value 2131.949928
## iter  60 value 2130.818555
## iter  70 value 2129.750096
## iter  80 value 2129.057351
## iter  90 value 2128.800781
## iter 100 value 2128.604917
## iter 110 value 2128.537215
## iter 120 value 2128.472537
## iter 130 value 2128.462947
## iter 140 value 2128.459660
## iter 150 value 2128.437012
## iter 160 value 2128.391842
## iter 170 value 2128.351709
## iter 180 value 2128.296928
## iter 190 value 2128.259140
## iter 200 value 2128.249254
## iter 210 value 2128.243082
## iter 220 value 2128.225419
## iter 230 value 2128.218257
## iter 240 value 2128.209197
## iter 250 value 2128.202693
## iter 250 value 2128.202676
## iter 250 value 2128.202676
## final  value 2128.202676 
## converged
## # weights:  71
## initial  value 2331.145573 
## iter  10 value 2175.067213
## iter  20 value 2151.115490
## iter  30 value 2143.061759
## iter  40 value 2138.760821
## iter  50 value 2135.627496
## iter  60 value 2133.917334
## iter  70 value 2132.494739
## iter  80 value 2130.290195
## iter  90 value 2129.434857
## iter 100 value 2129.039007
## iter 110 value 2128.928895
## iter 120 value 2128.859379
## iter 130 value 2128.771580
## iter 140 value 2128.718946
## iter 150 value 2128.702439
## iter 160 value 2128.693540
## iter 170 value 2128.644725
## iter 180 value 2128.572661
## iter 190 value 2128.526305
## iter 200 value 2128.501812
## iter 210 value 2128.486953
## final  value 2128.477869 
## converged
## # weights:  81
## initial  value 2342.495625 
## iter  10 value 2175.940329
## iter  20 value 2151.035595
## iter  30 value 2136.892956
## iter  40 value 2133.542691
## iter  50 value 2132.236399
## iter  60 value 2131.284057
## iter  70 value 2130.969259
## iter  80 value 2130.840889
## iter  90 value 2130.737788
## iter 100 value 2130.659634
## iter 110 value 2130.586242
## iter 120 value 2130.493516
## iter 130 value 2130.347120
## iter 140 value 2130.081209
## iter 150 value 2129.998107
## iter 160 value 2129.956380
## iter 170 value 2129.922403
## iter 180 value 2129.914303
## iter 190 value 2129.881838
## iter 200 value 2129.822519
## iter 210 value 2129.719617
## iter 220 value 2129.515371
## iter 230 value 2128.691362
## iter 240 value 2128.530213
## iter 250 value 2128.357687
## iter 260 value 2128.319191
## iter 270 value 2128.298174
## iter 280 value 2128.286037
## iter 290 value 2128.273070
## iter 300 value 2128.264057
## iter 310 value 2128.252529
## iter 320 value 2128.214403
## iter 320 value 2128.214398
## iter 320 value 2128.214398
## final  value 2128.214398 
## converged
## # weights:  21
## initial  value 2314.814128 
## iter  10 value 2162.168118
## iter  20 value 2150.382881
## iter  30 value 2148.121445
## iter  40 value 2144.494527
## iter  50 value 2143.677581
## iter  60 value 2143.044672
## iter  70 value 2142.850646
## iter  80 value 2142.814625
## iter  90 value 2142.775552
## iter 100 value 2142.769212
## iter 110 value 2142.749213
## iter 120 value 2142.727807
## iter 130 value 2142.717050
## final  value 2142.716822 
## converged
## # weights:  31
## initial  value 2290.463325 
## iter  10 value 2207.020796
## iter  20 value 2159.681582
## iter  30 value 2151.104087
## iter  40 value 2147.898238
## iter  50 value 2145.118841
## iter  60 value 2144.445843
## iter  70 value 2144.364335
## iter  80 value 2144.244409
## iter  90 value 2143.734598
## iter 100 value 2143.652599
## iter 110 value 2143.625087
## iter 120 value 2143.517680
## iter 130 value 2143.363182
## iter 140 value 2143.317266
## iter 150 value 2143.112144
## iter 160 value 2143.048927
## iter 170 value 2143.007570
## iter 180 value 2142.940533
## iter 190 value 2142.935216
## iter 190 value 2142.935207
## final  value 2142.935207 
## converged
## # weights:  41
## initial  value 2570.818343 
## iter  10 value 2178.780371
## iter  20 value 2148.251217
## iter  30 value 2144.210012
## iter  40 value 2143.008711
## iter  50 value 2142.859726
## iter  60 value 2142.501233
## iter  70 value 2140.596198
## iter  80 value 2138.572324
## iter  90 value 2133.530406
## iter 100 value 2132.081722
## iter 110 value 2131.577091
## iter 120 value 2131.456982
## iter 130 value 2131.389697
## iter 140 value 2131.357865
## iter 150 value 2131.318257
## iter 160 value 2131.226570
## iter 170 value 2131.211037
## iter 180 value 2131.162761
## iter 190 value 2131.083016
## iter 200 value 2130.991120
## iter 210 value 2130.905147
## iter 220 value 2130.866659
## iter 230 value 2130.829161
## iter 240 value 2130.811122
## iter 250 value 2130.788147
## iter 260 value 2130.780828
## iter 270 value 2130.746955
## iter 280 value 2130.732709
## iter 290 value 2130.726383
## iter 300 value 2130.714654
## iter 310 value 2130.709828
## iter 320 value 2130.707769
## final  value 2130.705346 
## converged
## # weights:  51
## initial  value 2699.183533 
## iter  10 value 2169.089824
## iter  20 value 2146.050386
## iter  30 value 2139.984185
## iter  40 value 2137.771916
## iter  50 value 2133.514521
## iter  60 value 2132.275183
## iter  70 value 2131.713839
## iter  80 value 2130.850083
## iter  90 value 2130.638737
## iter 100 value 2130.500685
## iter 110 value 2129.625860
## iter 120 value 2129.238761
## iter 130 value 2128.533615
## iter 140 value 2128.006724
## iter 150 value 2127.558990
## iter 160 value 2126.447593
## iter 170 value 2125.665878
## iter 180 value 2125.237974
## iter 190 value 2124.954704
## iter 200 value 2124.844181
## iter 210 value 2124.821478
## iter 220 value 2124.739736
## iter 230 value 2124.624828
## iter 240 value 2124.577748
## iter 250 value 2124.538063
## iter 260 value 2124.487398
## iter 270 value 2124.431782
## iter 280 value 2124.348187
## iter 290 value 2124.124192
## iter 300 value 2124.083797
## final  value 2124.083750 
## converged
## # weights:  61
## initial  value 2682.675744 
## iter  10 value 2158.767558
## iter  20 value 2139.251185
## iter  30 value 2133.862236
## iter  40 value 2131.546181
## iter  50 value 2129.917949
## iter  60 value 2127.844484
## iter  70 value 2126.202703
## iter  80 value 2125.837231
## iter  90 value 2125.610168
## iter 100 value 2125.480189
## iter 110 value 2125.423441
## iter 120 value 2125.371038
## iter 130 value 2125.357224
## iter 140 value 2125.353138
## iter 150 value 2125.352374
## iter 160 value 2125.334202
## iter 170 value 2125.299841
## iter 180 value 2125.276885
## iter 190 value 2125.255218
## iter 200 value 2125.240566
## iter 210 value 2125.222190
## iter 220 value 2125.209544
## iter 230 value 2125.202611
## iter 240 value 2125.184108
## iter 250 value 2125.168697
## iter 260 value 2125.164089
## final  value 2125.162391 
## converged
## # weights:  71
## initial  value 2635.329839 
## iter  10 value 2161.242350
## iter  20 value 2143.340484
## iter  30 value 2134.303223
## iter  40 value 2130.536933
## iter  50 value 2128.165773
## iter  60 value 2127.269717
## iter  70 value 2126.215752
## iter  80 value 2125.411641
## iter  90 value 2124.907478
## iter 100 value 2124.663408
## iter 110 value 2124.520668
## iter 120 value 2124.418403
## iter 130 value 2124.366422
## iter 140 value 2124.316901
## final  value 2124.306355 
## converged
## # weights:  81
## initial  value 2313.791597 
## iter  10 value 2176.719637
## iter  20 value 2149.486381
## iter  30 value 2135.274985
## iter  40 value 2130.991628
## iter  50 value 2129.568946
## iter  60 value 2127.711326
## iter  70 value 2126.787692
## iter  80 value 2125.949441
## iter  90 value 2125.453164
## iter 100 value 2125.320096
## iter 110 value 2125.265835
## iter 120 value 2125.207929
## iter 130 value 2125.158332
## iter 140 value 2125.130846
## iter 150 value 2125.112829
## iter 160 value 2124.959062
## iter 170 value 2124.895160
## iter 180 value 2124.880437
## iter 190 value 2124.773732
## iter 200 value 2123.970280
## iter 210 value 2123.551927
## iter 220 value 2123.468074
## iter 230 value 2123.443821
## iter 240 value 2123.427753
## final  value 2123.417327 
## converged
## # weights:  21
## initial  value 2555.334871 
## iter  10 value 2175.195444
## iter  20 value 2153.166733
## iter  30 value 2140.453908
## iter  40 value 2134.021140
## iter  50 value 2132.722512
## iter  60 value 2130.371231
## iter  70 value 2129.104903
## iter  80 value 2127.903305
## iter  90 value 2124.370356
## iter 100 value 2123.155504
## iter 110 value 2122.778272
## iter 120 value 2122.342550
## iter 130 value 2122.264747
## iter 140 value 2122.258928
## iter 150 value 2122.219463
## iter 160 value 2122.160137
## iter 170 value 2122.150684
## iter 180 value 2122.139494
## iter 190 value 2122.138460
## iter 200 value 2122.131763
## final  value 2122.129068 
## converged
## # weights:  31
## initial  value 2300.358857 
## iter  10 value 2147.981441
## iter  20 value 2133.861609
## iter  30 value 2129.877417
## iter  40 value 2125.789535
## iter  50 value 2121.671784
## iter  60 value 2119.796918
## iter  70 value 2118.705420
## iter  80 value 2117.179030
## iter  90 value 2116.433217
## iter 100 value 2116.037919
## iter 110 value 2115.518625
## iter 120 value 2115.036769
## iter 130 value 2114.897760
## iter 140 value 2114.857270
## iter 150 value 2114.775154
## iter 160 value 2114.720356
## iter 170 value 2114.679526
## iter 180 value 2114.638407
## iter 190 value 2114.596718
## iter 200 value 2114.592781
## iter 210 value 2114.567560
## iter 220 value 2114.556348
## iter 230 value 2114.540978
## iter 240 value 2114.533395
## iter 250 value 2114.502117
## iter 260 value 2114.479850
## final  value 2114.475255 
## converged
## # weights:  41
## initial  value 2427.214978 
## iter  10 value 2140.510732
## iter  20 value 2125.270471
## iter  30 value 2120.631429
## iter  40 value 2117.741642
## iter  50 value 2115.673358
## iter  60 value 2114.829743
## iter  70 value 2114.112893
## iter  80 value 2113.581266
## iter  90 value 2113.463938
## iter 100 value 2113.298211
## iter 110 value 2112.704866
## iter 120 value 2112.090482
## iter 130 value 2111.696168
## iter 140 value 2111.216812
## iter 150 value 2111.041052
## iter 160 value 2110.939250
## iter 170 value 2110.913751
## iter 180 value 2110.908380
## iter 190 value 2110.874833
## iter 200 value 2110.801147
## iter 210 value 2110.695566
## iter 220 value 2110.586503
## iter 230 value 2110.509476
## iter 240 value 2110.424626
## iter 250 value 2110.223340
## iter 260 value 2110.193234
## iter 270 value 2110.111202
## iter 280 value 2109.973228
## iter 290 value 2109.811699
## iter 300 value 2109.640675
## iter 310 value 2109.556791
## iter 320 value 2109.508715
## iter 330 value 2109.474616
## iter 340 value 2109.465994
## iter 350 value 2109.464512
## iter 360 value 2109.455260
## iter 370 value 2109.434831
## iter 380 value 2109.419295
## iter 390 value 2109.412104
## iter 400 value 2109.407326
## iter 410 value 2109.402639
## final  value 2109.401001 
## converged
## # weights:  51
## initial  value 2635.090254 
## iter  10 value 2143.175774
## iter  20 value 2130.005149
## iter  30 value 2121.939890
## iter  40 value 2120.137935
## iter  50 value 2118.876601
## iter  60 value 2117.878070
## iter  70 value 2116.022145
## iter  80 value 2115.158231
## iter  90 value 2114.217974
## iter 100 value 2113.410635
## iter 110 value 2112.181151
## iter 120 value 2111.564742
## iter 130 value 2111.016166
## iter 140 value 2110.538309
## iter 150 value 2110.386900
## iter 160 value 2110.207519
## iter 170 value 2110.194714
## iter 180 value 2110.125891
## iter 190 value 2110.014557
## iter 200 value 2109.948009
## iter 210 value 2109.917054
## iter 220 value 2109.869953
## iter 230 value 2109.840907
## iter 240 value 2109.798627
## iter 250 value 2109.730409
## iter 260 value 2109.702377
## iter 270 value 2109.693754
## iter 280 value 2109.690910
## iter 290 value 2109.676952
## iter 300 value 2109.664682
## iter 310 value 2109.643660
## iter 320 value 2109.627212
## iter 330 value 2109.608657
## iter 340 value 2109.597277
## iter 350 value 2109.591436
## iter 360 value 2109.580468
## final  value 2109.573528 
## converged
## # weights:  61
## initial  value 2449.417729 
## iter  10 value 2148.597911
## iter  20 value 2126.487337
## iter  30 value 2118.265679
## iter  40 value 2113.150788
## iter  50 value 2111.573374
## iter  60 value 2110.394226
## iter  70 value 2109.576729
## iter  80 value 2109.288669
## iter  90 value 2109.174817
## iter 100 value 2109.081574
## iter 110 value 2109.040266
## iter 120 value 2109.026860
## final  value 2109.015173 
## converged
## # weights:  71
## initial  value 2285.136353 
## iter  10 value 2159.159909
## iter  20 value 2125.068860
## iter  30 value 2119.629694
## iter  40 value 2115.556180
## iter  50 value 2113.598580
## iter  60 value 2112.399675
## iter  70 value 2111.688081
## iter  80 value 2111.091481
## iter  90 value 2110.440178
## iter 100 value 2110.215013
## iter 110 value 2110.084319
## iter 120 value 2109.934041
## iter 130 value 2109.650635
## iter 140 value 2109.465686
## iter 150 value 2109.415290
## iter 160 value 2109.397791
## iter 170 value 2109.308664
## iter 180 value 2109.208200
## iter 190 value 2109.157566
## iter 200 value 2109.103249
## iter 210 value 2109.070893
## iter 220 value 2109.055563
## iter 230 value 2109.023069
## iter 240 value 2108.992379
## iter 250 value 2108.920292
## iter 260 value 2108.873393
## iter 270 value 2108.809446
## iter 280 value 2108.780420
## iter 290 value 2108.759221
## iter 300 value 2108.755628
## iter 310 value 2108.751285
## iter 320 value 2108.732532
## iter 330 value 2108.711570
## iter 340 value 2108.700442
## iter 350 value 2108.691271
## iter 360 value 2108.675444
## iter 370 value 2108.659186
## iter 380 value 2108.640248
## iter 390 value 2108.612823
## iter 400 value 2108.606301
## iter 410 value 2108.595422
## iter 420 value 2108.589778
## iter 430 value 2108.584674
## final  value 2108.583750 
## converged
## # weights:  81
## initial  value 2375.056202 
## iter  10 value 2146.061377
## iter  20 value 2125.726041
## iter  30 value 2117.939684
## iter  40 value 2113.051700
## iter  50 value 2111.997041
## iter  60 value 2111.019839
## iter  70 value 2110.181125
## iter  80 value 2109.741811
## iter  90 value 2109.537285
## iter 100 value 2109.317705
## iter 110 value 2109.181881
## iter 120 value 2109.110033
## iter 130 value 2109.081990
## iter 140 value 2109.029215
## iter 150 value 2108.965678
## iter 160 value 2108.935424
## iter 170 value 2108.922839
## iter 180 value 2108.908179
## iter 190 value 2108.832602
## iter 200 value 2108.771993
## iter 210 value 2108.732235
## iter 220 value 2108.712626
## iter 230 value 2108.704092
## iter 240 value 2108.691283
## iter 250 value 2108.674840
## iter 260 value 2108.656823
## iter 270 value 2108.634414
## iter 280 value 2108.607734
## iter 290 value 2108.593011
## iter 300 value 2108.585788
## iter 310 value 2108.577333
## iter 320 value 2108.569648
## iter 330 value 2108.565239
## iter 340 value 2108.564492
## iter 340 value 2108.564486
## iter 340 value 2108.564471
## final  value 2108.564471 
## converged
## # weights:  21
## initial  value 2319.561709 
## iter  10 value 2253.111295
## iter  20 value 2156.942147
## iter  30 value 2145.123013
## iter  40 value 2143.450228
## iter  50 value 2142.576550
## iter  60 value 2141.786788
## iter  70 value 2141.283094
## iter  80 value 2141.021198
## iter  90 value 2140.829257
## iter 100 value 2140.712090
## iter 110 value 2140.610493
## iter 120 value 2140.480106
## iter 130 value 2140.352350
## iter 140 value 2140.348787
## final  value 2140.345949 
## converged
## # weights:  31
## initial  value 2682.097390 
## iter  10 value 2202.863203
## iter  20 value 2151.290337
## iter  30 value 2142.518926
## iter  40 value 2138.755225
## iter  50 value 2137.844843
## iter  60 value 2137.378579
## iter  70 value 2137.091786
## iter  80 value 2137.038718
## iter  90 value 2136.894964
## iter 100 value 2136.708120
## iter 110 value 2136.686933
## iter 120 value 2136.674573
## iter 130 value 2136.670543
## final  value 2136.670491 
## converged
## # weights:  41
## initial  value 2648.905200 
## iter  10 value 2164.643151
## iter  20 value 2146.518080
## iter  30 value 2136.001037
## iter  40 value 2131.840999
## iter  50 value 2130.618022
## iter  60 value 2130.150730
## iter  70 value 2129.982414
## iter  80 value 2129.823117
## iter  90 value 2129.808613
## iter 100 value 2129.807340
## iter 110 value 2129.783391
## iter 120 value 2129.720607
## iter 130 value 2129.685447
## iter 140 value 2129.666687
## iter 150 value 2129.428542
## iter 160 value 2128.952880
## iter 170 value 2128.242232
## iter 180 value 2127.953259
## iter 190 value 2127.895886
## iter 200 value 2127.751882
## iter 210 value 2127.614984
## iter 220 value 2127.553324
## iter 230 value 2127.395007
## iter 240 value 2126.999029
## iter 250 value 2126.839242
## iter 260 value 2126.553251
## iter 270 value 2126.526741
## iter 280 value 2126.352003
## iter 290 value 2125.148817
## iter 300 value 2124.759708
## iter 310 value 2124.387982
## iter 320 value 2124.216773
## iter 330 value 2124.069896
## iter 340 value 2124.014684
## iter 350 value 2124.007464
## iter 360 value 2124.000436
## iter 370 value 2123.985308
## iter 380 value 2123.960759
## iter 390 value 2123.925563
## iter 400 value 2123.865029
## iter 410 value 2123.819196
## iter 420 value 2123.789424
## iter 430 value 2123.777488
## final  value 2123.777375 
## converged
## # weights:  51
## initial  value 2309.596931 
## iter  10 value 2170.720658
## iter  20 value 2150.004718
## iter  30 value 2142.580662
## iter  40 value 2136.063657
## iter  50 value 2134.059026
## iter  60 value 2133.212304
## iter  70 value 2132.806356
## iter  80 value 2131.740563
## iter  90 value 2131.171434
## iter 100 value 2130.535817
## iter 110 value 2130.375362
## iter 120 value 2130.258812
## iter 130 value 2129.541728
## iter 140 value 2127.952080
## iter 150 value 2127.384327
## iter 160 value 2127.089676
## iter 170 value 2126.855205
## iter 180 value 2126.639539
## iter 190 value 2126.048884
## iter 200 value 2125.895380
## iter 210 value 2125.832055
## iter 220 value 2125.829109
## iter 230 value 2125.815851
## iter 240 value 2125.755452
## iter 250 value 2125.709376
## iter 260 value 2125.601090
## iter 270 value 2125.519218
## iter 280 value 2125.470851
## iter 290 value 2125.430271
## iter 300 value 2125.378745
## iter 310 value 2125.204763
## iter 320 value 2125.191505
## iter 330 value 2125.100789
## iter 340 value 2124.829814
## iter 350 value 2124.215571
## iter 360 value 2124.032393
## iter 370 value 2123.946018
## iter 380 value 2123.919153
## iter 390 value 2123.885275
## iter 400 value 2123.856212
## iter 410 value 2123.831982
## final  value 2123.828566 
## converged
## # weights:  61
## initial  value 2348.614998 
## iter  10 value 2189.584498
## iter  20 value 2150.433689
## iter  30 value 2137.083220
## iter  40 value 2131.593189
## iter  50 value 2128.075093
## iter  60 value 2125.230909
## iter  70 value 2124.398921
## iter  80 value 2124.043440
## iter  90 value 2123.989317
## iter 100 value 2123.918803
## iter 110 value 2123.865873
## iter 120 value 2123.853623
## final  value 2123.844823 
## converged
## # weights:  71
## initial  value 2277.226733 
## iter  10 value 2172.581641
## iter  20 value 2147.559342
## iter  30 value 2138.619495
## iter  40 value 2131.437252
## iter  50 value 2127.815078
## iter  60 value 2126.277082
## iter  70 value 2125.293756
## iter  80 value 2124.718613
## iter  90 value 2124.600002
## iter 100 value 2124.501872
## iter 110 value 2124.378053
## iter 120 value 2124.309521
## iter 130 value 2124.227984
## iter 140 value 2124.149589
## iter 150 value 2124.140887
## iter 160 value 2124.128556
## iter 170 value 2124.050753
## iter 180 value 2123.977528
## iter 190 value 2123.925307
## iter 200 value 2123.902250
## iter 210 value 2123.886941
## iter 220 value 2123.859952
## iter 230 value 2123.819705
## iter 240 value 2123.790357
## iter 250 value 2123.760813
## iter 260 value 2123.740247
## iter 270 value 2123.728331
## iter 280 value 2123.718701
## iter 290 value 2123.712912
## iter 290 value 2123.712906
## final  value 2123.712836 
## converged
## # weights:  81
## initial  value 2711.068273 
## iter  10 value 2164.552474
## iter  20 value 2144.816407
## iter  30 value 2135.670955
## iter  40 value 2129.305114
## iter  50 value 2126.653042
## iter  60 value 2125.080552
## iter  70 value 2124.590902
## iter  80 value 2124.304798
## iter  90 value 2124.210508
## iter 100 value 2124.107605
## iter 110 value 2124.030110
## iter 120 value 2123.969253
## iter 130 value 2123.914659
## iter 140 value 2123.879098
## iter 150 value 2123.840377
## iter 160 value 2123.822818
## iter 170 value 2123.805031
## iter 180 value 2123.803673
## iter 190 value 2123.792150
## iter 200 value 2123.770055
## iter 210 value 2123.754825
## iter 220 value 2123.737576
## iter 230 value 2123.725072
## iter 240 value 2123.705222
## iter 250 value 2123.681728
## iter 260 value 2123.658087
## iter 270 value 2123.643353
## iter 280 value 2123.638617
## iter 290 value 2123.631325
## iter 300 value 2123.625250
## iter 310 value 2123.621895
## iter 320 value 2123.620328
## iter 330 value 2123.618312
## final  value 2123.618100 
## converged
## # weights:  21
## initial  value 2292.717544 
## iter  10 value 2189.204636
## iter  20 value 2172.681456
## iter  30 value 2170.839919
## iter  40 value 2158.207805
## iter  50 value 2152.191719
## iter  60 value 2150.991140
## iter  70 value 2150.853412
## iter  80 value 2150.843770
## iter  90 value 2150.744797
## iter 100 value 2150.458416
## iter 110 value 2150.321494
## iter 120 value 2150.307479
## iter 130 value 2150.300627
## iter 140 value 2150.287837
## iter 150 value 2150.282929
## final  value 2150.281401 
## converged
## # weights:  31
## initial  value 2443.340936 
## iter  10 value 2255.264571
## iter  20 value 2211.706704
## iter  30 value 2175.191639
## iter  40 value 2167.912296
## iter  50 value 2159.734326
## iter  60 value 2151.739051
## iter  70 value 2150.685959
## iter  80 value 2150.511726
## iter  90 value 2150.110862
## iter 100 value 2149.587691
## iter 110 value 2149.443677
## iter 120 value 2149.379433
## iter 130 value 2149.315874
## iter 140 value 2148.619262
## iter 150 value 2145.346326
## iter 160 value 2144.830632
## iter 170 value 2144.660302
## iter 180 value 2144.496525
## iter 190 value 2143.987842
## iter 200 value 2142.839565
## iter 210 value 2142.716719
## iter 220 value 2142.304312
## iter 230 value 2142.153026
## iter 240 value 2142.119665
## iter 250 value 2142.004129
## iter 260 value 2141.817223
## iter 270 value 2141.778357
## iter 280 value 2141.715894
## iter 290 value 2141.655851
## iter 300 value 2141.643888
## iter 310 value 2141.632152
## iter 320 value 2141.618083
## iter 330 value 2141.567136
## iter 340 value 2140.904426
## iter 350 value 2137.379078
## iter 360 value 2136.054377
## iter 370 value 2135.619922
## iter 380 value 2135.294213
## iter 390 value 2135.237190
## iter 400 value 2135.224240
## final  value 2135.223301 
## converged
## # weights:  41
## initial  value 2488.215536 
## iter  10 value 2176.632119
## iter  20 value 2152.542560
## iter  30 value 2144.533393
## iter  40 value 2141.703328
## iter  50 value 2138.568558
## iter  60 value 2137.493443
## iter  70 value 2136.815650
## iter  80 value 2136.638395
## iter  90 value 2136.588859
## iter 100 value 2136.389317
## iter 110 value 2136.167229
## iter 120 value 2135.878516
## iter 130 value 2135.680436
## iter 140 value 2135.060595
## iter 150 value 2134.663310
## iter 160 value 2134.241770
## iter 170 value 2134.081295
## iter 180 value 2134.046890
## iter 190 value 2133.896777
## iter 200 value 2133.543291
## iter 210 value 2133.461845
## iter 220 value 2133.344453
## iter 230 value 2133.218396
## iter 240 value 2133.138630
## iter 250 value 2133.018871
## iter 260 value 2133.008954
## iter 270 value 2132.965786
## iter 280 value 2132.883394
## iter 290 value 2132.657185
## iter 300 value 2131.801289
## iter 310 value 2131.074293
## iter 320 value 2130.651429
## iter 330 value 2130.146815
## iter 340 value 2130.085894
## iter 350 value 2129.987800
## iter 360 value 2129.810885
## iter 370 value 2129.702576
## iter 380 value 2129.643023
## iter 390 value 2129.613489
## iter 400 value 2129.597620
## iter 410 value 2129.579920
## iter 420 value 2129.572212
## final  value 2129.571998 
## converged
## # weights:  51
## initial  value 3771.834632 
## iter  10 value 2167.991279
## iter  20 value 2144.586293
## iter  30 value 2137.288403
## iter  40 value 2131.553073
## iter  50 value 2127.821856
## iter  60 value 2127.031561
## iter  70 value 2125.865661
## iter  80 value 2125.476345
## iter  90 value 2125.267820
## iter 100 value 2125.097233
## iter 110 value 2125.045890
## iter 120 value 2125.019748
## iter 130 value 2124.921450
## iter 140 value 2124.871534
## iter 150 value 2124.803879
## iter 160 value 2124.710303
## iter 170 value 2124.672720
## iter 180 value 2124.614669
## iter 190 value 2124.559647
## iter 200 value 2124.508504
## iter 210 value 2124.484933
## iter 220 value 2124.480591
## iter 230 value 2124.466769
## iter 240 value 2124.425375
## final  value 2124.423434 
## converged
## # weights:  61
## initial  value 3027.748969 
## iter  10 value 2165.573612
## iter  20 value 2148.201059
## iter  30 value 2141.403015
## iter  40 value 2135.539135
## iter  50 value 2128.945716
## iter  60 value 2127.736221
## iter  70 value 2126.559664
## iter  80 value 2125.928405
## iter  90 value 2125.604334
## iter 100 value 2125.418182
## iter 110 value 2125.270255
## iter 120 value 2125.211458
## iter 130 value 2125.195085
## iter 140 value 2125.182647
## iter 150 value 2125.095963
## iter 160 value 2125.028142
## iter 170 value 2124.978404
## iter 180 value 2124.933671
## iter 190 value 2124.873985
## iter 200 value 2124.711494
## iter 210 value 2124.592829
## iter 220 value 2124.522808
## iter 230 value 2124.482810
## iter 240 value 2124.459532
## iter 250 value 2124.422643
## iter 260 value 2124.420302
## iter 270 value 2124.415314
## iter 280 value 2124.393978
## iter 290 value 2124.356337
## iter 300 value 2124.334827
## iter 310 value 2124.312414
## iter 320 value 2124.296753
## iter 330 value 2124.278683
## iter 340 value 2124.268547
## iter 350 value 2124.256804
## iter 360 value 2124.245029
## iter 370 value 2124.231897
## final  value 2124.225372 
## converged
## # weights:  71
## initial  value 2494.421444 
## iter  10 value 2175.478654
## iter  20 value 2140.382249
## iter  30 value 2130.830932
## iter  40 value 2127.642422
## iter  50 value 2126.134886
## iter  60 value 2125.326243
## iter  70 value 2124.823680
## iter  80 value 2124.595218
## iter  90 value 2124.531452
## iter 100 value 2124.493226
## iter 110 value 2124.434554
## iter 120 value 2124.381421
## iter 130 value 2124.303633
## iter 140 value 2124.276199
## iter 150 value 2124.273239
## iter 160 value 2124.272473
## iter 160 value 2124.272453
## iter 160 value 2124.272445
## final  value 2124.272445 
## converged
## # weights:  81
## initial  value 2314.636430 
## iter  10 value 2170.383035
## iter  20 value 2147.362632
## iter  30 value 2138.642892
## iter  40 value 2132.924531
## iter  50 value 2130.158552
## iter  60 value 2128.829581
## iter  70 value 2128.430359
## iter  80 value 2128.177952
## iter  90 value 2127.450904
## iter 100 value 2126.083383
## iter 110 value 2125.586626
## iter 120 value 2124.889023
## iter 130 value 2124.771989
## iter 140 value 2124.692297
## iter 150 value 2124.619682
## iter 160 value 2124.540179
## iter 170 value 2124.525316
## iter 180 value 2124.509860
## iter 190 value 2124.452267
## iter 200 value 2124.414036
## iter 210 value 2124.398593
## iter 220 value 2124.388580
## iter 230 value 2124.381426
## iter 240 value 2124.371070
## iter 250 value 2124.361481
## iter 260 value 2124.338900
## iter 270 value 2124.323258
## iter 280 value 2124.313682
## iter 290 value 2124.303464
## iter 300 value 2124.293730
## iter 310 value 2124.284310
## iter 320 value 2124.279900
## iter 330 value 2124.277983
## final  value 2124.277754 
## converged
## # weights:  21
## initial  value 2486.811108 
## iter  10 value 2194.681116
## iter  20 value 2174.018303
## iter  30 value 2169.961073
## iter  40 value 2157.740156
## iter  50 value 2156.450916
## iter  60 value 2156.024149
## iter  70 value 2156.003877
## iter  80 value 2155.912440
## iter  90 value 2155.772232
## iter 100 value 2155.706175
## iter 110 value 2155.560994
## iter 120 value 2155.385398
## iter 130 value 2155.249169
## iter 140 value 2155.221150
## iter 150 value 2155.183109
## iter 160 value 2155.076693
## iter 170 value 2155.012023
## iter 180 value 2154.997233
## iter 190 value 2154.995071
## iter 200 value 2154.989820
## iter 210 value 2154.967948
## iter 210 value 2154.967944
## iter 210 value 2154.967944
## final  value 2154.967944 
## converged
## # weights:  31
## initial  value 2331.730201 
## iter  10 value 2183.887261
## iter  20 value 2154.115222
## iter  30 value 2150.194774
## iter  40 value 2150.026187
## iter  50 value 2149.921304
## iter  60 value 2148.913006
## iter  70 value 2147.696630
## iter  80 value 2145.884269
## iter  90 value 2141.847311
## iter 100 value 2138.318574
## iter 110 value 2136.887611
## iter 120 value 2135.377395
## iter 130 value 2134.315649
## iter 140 value 2133.967130
## iter 150 value 2133.929383
## iter 160 value 2133.901907
## iter 170 value 2133.886459
## iter 180 value 2133.764667
## iter 190 value 2133.561263
## iter 200 value 2133.304556
## iter 210 value 2133.189469
## iter 220 value 2133.092054
## iter 230 value 2132.914774
## iter 240 value 2132.778251
## iter 250 value 2132.711920
## iter 260 value 2132.684676
## iter 270 value 2132.665777
## iter 280 value 2132.660645
## iter 290 value 2132.594422
## iter 300 value 2132.513536
## iter 310 value 2132.415844
## iter 320 value 2132.232976
## iter 330 value 2132.018859
## iter 340 value 2131.987559
## iter 350 value 2131.864104
## iter 360 value 2131.747278
## iter 370 value 2131.708440
## iter 380 value 2131.444255
## iter 390 value 2131.382857
## iter 400 value 2131.369307
## iter 410 value 2131.349762
## iter 420 value 2131.146495
## iter 430 value 2131.062124
## iter 440 value 2130.995653
## iter 450 value 2130.955421
## iter 460 value 2130.905651
## final  value 2130.897408 
## converged
## # weights:  41
## initial  value 2496.917858 
## iter  10 value 2172.265199
## iter  20 value 2150.093719
## iter  30 value 2140.621054
## iter  40 value 2138.120363
## iter  50 value 2136.088595
## iter  60 value 2134.706409
## iter  70 value 2133.725901
## iter  80 value 2133.099108
## iter  90 value 2132.901374
## iter 100 value 2132.790225
## iter 110 value 2132.534818
## iter 120 value 2132.337919
## iter 130 value 2131.754227
## iter 140 value 2131.467872
## iter 150 value 2131.256302
## iter 160 value 2131.086927
## iter 170 value 2130.990418
## iter 180 value 2130.981532
## iter 190 value 2130.914538
## iter 200 value 2130.810869
## iter 210 value 2130.695062
## iter 220 value 2130.557071
## iter 230 value 2130.369711
## iter 240 value 2130.269375
## iter 250 value 2130.008285
## iter 260 value 2129.966506
## iter 270 value 2129.874453
## iter 280 value 2129.624988
## iter 290 value 2129.452222
## iter 300 value 2129.310739
## iter 310 value 2128.928274
## iter 320 value 2128.764825
## iter 330 value 2128.726710
## iter 340 value 2128.713973
## iter 350 value 2128.703742
## iter 360 value 2128.637099
## iter 370 value 2128.572355
## iter 380 value 2128.548412
## iter 390 value 2128.524126
## iter 400 value 2128.512719
## iter 410 value 2128.497265
## final  value 2128.475849 
## converged
## # weights:  51
## initial  value 2520.729391 
## iter  10 value 2157.896617
## iter  20 value 2142.912021
## iter  30 value 2138.916772
## iter  40 value 2135.498535
## iter  50 value 2133.274759
## iter  60 value 2131.513625
## iter  70 value 2129.878826
## iter  80 value 2129.027455
## iter  90 value 2128.580928
## iter 100 value 2128.199055
## iter 110 value 2128.125828
## iter 120 value 2128.032919
## iter 130 value 2127.826156
## iter 140 value 2127.534638
## iter 150 value 2127.358723
## iter 160 value 2127.298449
## iter 170 value 2127.275443
## iter 180 value 2127.262506
## iter 190 value 2127.258029
## iter 200 value 2127.245716
## iter 210 value 2127.238319
## final  value 2127.238061 
## converged
## # weights:  61
## initial  value 2295.446330 
## iter  10 value 2165.955905
## iter  20 value 2144.003178
## iter  30 value 2138.300111
## iter  40 value 2134.381784
## iter  50 value 2132.524499
## iter  60 value 2131.715379
## iter  70 value 2131.044000
## iter  80 value 2130.442782
## iter  90 value 2130.026485
## iter 100 value 2129.559195
## iter 110 value 2129.119544
## iter 120 value 2128.562574
## iter 130 value 2128.404487
## iter 140 value 2128.289274
## iter 150 value 2128.101268
## iter 160 value 2127.838130
## iter 170 value 2127.695749
## iter 180 value 2127.542686
## iter 190 value 2127.441330
## iter 200 value 2127.390736
## iter 210 value 2127.348181
## iter 220 value 2127.323015
## iter 230 value 2127.301045
## iter 240 value 2127.293322
## iter 250 value 2127.276021
## iter 260 value 2127.273771
## iter 270 value 2127.271826
## final  value 2127.271302 
## converged
## # weights:  71
## initial  value 2796.547068 
## iter  10 value 2171.353723
## iter  20 value 2148.519342
## iter  30 value 2139.115713
## iter  40 value 2134.740986
## iter  50 value 2132.964757
## iter  60 value 2131.351521
## iter  70 value 2130.851170
## iter  80 value 2130.469298
## iter  90 value 2130.205150
## iter 100 value 2130.119788
## iter 110 value 2130.080501
## iter 120 value 2130.012601
## iter 130 value 2129.942126
## iter 140 value 2129.843309
## iter 150 value 2129.789129
## iter 160 value 2129.770566
## iter 170 value 2129.699924
## iter 180 value 2129.377489
## iter 190 value 2128.328182
## iter 200 value 2127.536109
## iter 210 value 2127.372635
## iter 220 value 2127.309692
## iter 230 value 2127.286494
## iter 240 value 2127.270792
## iter 250 value 2127.255182
## iter 260 value 2127.241709
## iter 270 value 2127.228950
## iter 280 value 2127.210831
## iter 290 value 2127.196611
## iter 300 value 2127.194340
## final  value 2127.194055 
## converged
## # weights:  81
## initial  value 2338.983598 
## iter  10 value 2171.381672
## iter  20 value 2145.193402
## iter  30 value 2140.214812
## iter  40 value 2135.974385
## iter  50 value 2133.053362
## iter  60 value 2130.679728
## iter  70 value 2129.574771
## iter  80 value 2128.977196
## iter  90 value 2128.715290
## iter 100 value 2128.531320
## iter 110 value 2128.406170
## iter 120 value 2128.305189
## iter 130 value 2128.203224
## iter 140 value 2128.125669
## iter 150 value 2128.054649
## iter 160 value 2128.005853
## iter 170 value 2127.986791
## iter 180 value 2127.979501
## iter 190 value 2127.938352
## iter 200 value 2127.892071
## iter 210 value 2127.857641
## iter 220 value 2127.828363
## iter 230 value 2127.799567
## iter 240 value 2127.770561
## iter 250 value 2127.651684
## iter 260 value 2127.496604
## iter 270 value 2127.485152
## iter 280 value 2127.465348
## iter 290 value 2127.433329
## iter 300 value 2127.422105
## iter 310 value 2127.387796
## iter 320 value 2127.361138
## iter 330 value 2127.337857
## iter 340 value 2127.336381
## iter 350 value 2127.333510
## iter 360 value 2127.306146
## iter 370 value 2127.267156
## iter 380 value 2127.247042
## iter 390 value 2127.232434
## iter 400 value 2127.217021
## iter 410 value 2127.204372
## iter 420 value 2127.188619
## iter 430 value 2127.172113
## iter 440 value 2127.153241
## iter 450 value 2127.137696
## iter 460 value 2127.127544
## iter 470 value 2127.103000
## iter 480 value 2127.092407
## iter 490 value 2127.087679
## final  value 2127.086944 
## converged
## # weights:  21
## initial  value 2293.548761 
## iter  10 value 2156.141156
## iter  20 value 2139.439794
## iter  30 value 2136.877119
## iter  40 value 2133.419781
## iter  50 value 2132.237847
## iter  60 value 2130.979808
## iter  70 value 2128.229367
## iter  80 value 2126.358150
## iter  90 value 2125.830342
## iter 100 value 2125.320344
## iter 110 value 2124.585151
## iter 120 value 2124.151282
## iter 130 value 2123.915545
## iter 140 value 2123.911911
## iter 150 value 2123.861709
## iter 160 value 2123.798938
## iter 170 value 2123.767987
## iter 180 value 2123.763330
## iter 180 value 2123.763319
## iter 180 value 2123.763299
## final  value 2123.763299 
## converged
## # weights:  31
## initial  value 2327.724475 
## iter  10 value 2165.345145
## iter  20 value 2138.282298
## iter  30 value 2128.847171
## iter  40 value 2125.221598
## iter  50 value 2123.518634
## iter  60 value 2123.037111
## iter  70 value 2122.783124
## iter  80 value 2122.710893
## iter  90 value 2122.457479
## iter 100 value 2122.400423
## iter 110 value 2122.320728
## iter 120 value 2122.186486
## iter 130 value 2122.053667
## iter 140 value 2122.032709
## iter 150 value 2121.963867
## iter 160 value 2121.900890
## iter 170 value 2121.875872
## iter 180 value 2121.871920
## iter 190 value 2121.870631
## final  value 2121.870104 
## converged
## # weights:  41
## initial  value 2278.293815 
## iter  10 value 2176.541268
## iter  20 value 2130.044534
## iter  30 value 2121.519091
## iter  40 value 2117.896551
## iter  50 value 2114.322802
## iter  60 value 2111.445268
## iter  70 value 2110.081174
## iter  80 value 2109.659315
## iter  90 value 2109.521769
## iter 100 value 2109.449721
## iter 110 value 2109.255004
## iter 120 value 2109.130070
## iter 130 value 2109.062036
## iter 140 value 2108.974540
## iter 150 value 2108.909658
## iter 160 value 2108.839766
## iter 170 value 2108.805646
## iter 180 value 2108.804086
## iter 190 value 2108.800704
## iter 200 value 2108.775668
## iter 210 value 2108.752669
## iter 220 value 2108.723306
## iter 230 value 2108.697753
## iter 240 value 2108.679869
## iter 250 value 2108.662736
## final  value 2108.662024 
## converged
## # weights:  51
## initial  value 2306.202021 
## iter  10 value 2151.208744
## iter  20 value 2127.751159
## iter  30 value 2120.161695
## iter  40 value 2114.820193
## iter  50 value 2112.983652
## iter  60 value 2111.864659
## iter  70 value 2111.098962
## iter  80 value 2110.381544
## iter  90 value 2109.979035
## iter 100 value 2109.903469
## iter 110 value 2109.891548
## iter 120 value 2109.878924
## iter 130 value 2109.849851
## iter 140 value 2109.811111
## iter 150 value 2109.783103
## iter 160 value 2109.773046
## iter 170 value 2109.763040
## iter 180 value 2109.757076
## iter 190 value 2109.747836
## iter 200 value 2109.737346
## iter 210 value 2109.716628
## final  value 2109.716056 
## converged
## # weights:  61
## initial  value 2385.588128 
## iter  10 value 2159.006531
## iter  20 value 2130.397961
## iter  30 value 2121.349998
## iter  40 value 2117.359374
## iter  50 value 2115.409564
## iter  60 value 2113.591546
## iter  70 value 2111.711615
## iter  80 value 2110.774608
## iter  90 value 2110.034270
## iter 100 value 2109.406527
## iter 110 value 2109.017526
## iter 120 value 2108.907126
## iter 130 value 2108.870179
## iter 140 value 2108.859679
## iter 150 value 2108.826531
## iter 160 value 2108.783333
## iter 170 value 2108.725821
## iter 180 value 2108.688659
## iter 190 value 2108.667235
## iter 200 value 2108.652414
## iter 210 value 2108.626282
## iter 220 value 2108.579664
## iter 230 value 2108.566221
## iter 240 value 2108.545110
## iter 250 value 2108.523627
## iter 260 value 2108.521563
## iter 260 value 2108.521555
## iter 270 value 2108.520888
## final  value 2108.520474 
## converged
## # weights:  71
## initial  value 3205.143697 
## iter  10 value 2146.909497
## iter  20 value 2126.051628
## iter  30 value 2117.587511
## iter  40 value 2113.455980
## iter  50 value 2112.138803
## iter  60 value 2111.668854
## iter  70 value 2111.080640
## iter  80 value 2110.764528
## iter  90 value 2110.550036
## iter 100 value 2110.195376
## iter 110 value 2109.803209
## iter 120 value 2109.388880
## iter 130 value 2109.189580
## iter 140 value 2109.060958
## iter 150 value 2109.025762
## iter 160 value 2109.018339
## iter 170 value 2108.950660
## iter 180 value 2108.871844
## iter 190 value 2108.825212
## iter 200 value 2108.800585
## iter 210 value 2108.776077
## iter 220 value 2108.751191
## iter 230 value 2108.724561
## iter 240 value 2108.677162
## iter 250 value 2108.642454
## iter 260 value 2108.601343
## iter 270 value 2108.571984
## iter 280 value 2108.556920
## iter 290 value 2108.542449
## final  value 2108.541705 
## converged
## # weights:  81
## initial  value 2763.341820 
## iter  10 value 2156.760339
## iter  20 value 2131.339112
## iter  30 value 2121.093980
## iter  40 value 2115.130413
## iter  50 value 2111.334694
## iter  60 value 2109.927681
## iter  70 value 2109.039434
## iter  80 value 2108.765905
## iter  90 value 2108.705012
## iter 100 value 2108.664448
## iter 110 value 2108.629109
## iter 120 value 2108.609410
## iter 130 value 2108.588307
## iter 140 value 2108.548752
## iter 150 value 2108.530232
## iter 160 value 2108.522896
## iter 170 value 2108.521465
## iter 180 value 2108.513167
## iter 190 value 2108.494869
## iter 200 value 2108.483992
## iter 210 value 2108.475987
## iter 220 value 2108.468168
## iter 230 value 2108.463407
## iter 240 value 2108.457804
## iter 250 value 2108.438021
## iter 260 value 2108.418144
## iter 270 value 2108.406753
## iter 280 value 2108.401924
## iter 290 value 2108.391215
## iter 300 value 2108.386121
## iter 310 value 2108.384507
## iter 320 value 2108.380595
## iter 330 value 2108.378791
## iter 330 value 2108.378775
## iter 330 value 2108.378759
## final  value 2108.378759 
## converged
## # weights:  21
## initial  value 2294.232422 
## iter  10 value 2199.988275
## iter  20 value 2157.833916
## iter  30 value 2136.391868
## iter  40 value 2134.451271
## iter  50 value 2133.527731
## iter  60 value 2133.309074
## iter  70 value 2133.232164
## iter  80 value 2133.067066
## iter  90 value 2132.850575
## iter 100 value 2132.795163
## iter 110 value 2132.732596
## iter 120 value 2132.697150
## iter 130 value 2132.664265
## iter 140 value 2132.136210
## iter 150 value 2129.551051
## iter 160 value 2128.128167
## iter 170 value 2127.130744
## iter 180 value 2126.331251
## iter 190 value 2126.275016
## iter 200 value 2126.264343
## iter 210 value 2126.243512
## iter 220 value 2126.184077
## final  value 2126.182172 
## converged
## # weights:  31
## initial  value 2307.595892 
## iter  10 value 2164.190015
## iter  20 value 2139.556554
## iter  30 value 2129.772063
## iter  40 value 2126.690750
## iter  50 value 2123.504537
## iter  60 value 2121.110858
## iter  70 value 2120.075738
## iter  80 value 2119.864783
## iter  90 value 2119.848275
## iter 100 value 2119.835000
## final  value 2119.828036 
## converged
## # weights:  41
## initial  value 2281.325511 
## iter  10 value 2153.682311
## iter  20 value 2133.137613
## iter  30 value 2121.592882
## iter  40 value 2118.854116
## iter  50 value 2116.302321
## iter  60 value 2115.827756
## iter  70 value 2115.576253
## iter  80 value 2115.382664
## iter  90 value 2115.335962
## iter 100 value 2115.244909
## iter 110 value 2114.967020
## iter 120 value 2114.436746
## iter 130 value 2114.033838
## iter 140 value 2113.538998
## iter 150 value 2113.257301
## iter 160 value 2112.930036
## iter 170 value 2112.860205
## iter 180 value 2112.849859
## iter 190 value 2112.794930
## iter 200 value 2112.640778
## iter 210 value 2112.588215
## iter 220 value 2112.454479
## iter 230 value 2112.393286
## iter 240 value 2112.341349
## iter 250 value 2112.262501
## iter 260 value 2112.248552
## iter 270 value 2112.231416
## iter 280 value 2112.175217
## iter 290 value 2112.095485
## iter 300 value 2112.001981
## iter 310 value 2111.970515
## iter 320 value 2111.941943
## iter 330 value 2111.914183
## iter 340 value 2111.886953
## iter 350 value 2111.882602
## iter 360 value 2111.855364
## iter 370 value 2111.785467
## iter 380 value 2111.692787
## iter 390 value 2111.581250
## iter 400 value 2111.506135
## iter 410 value 2111.438790
## iter 420 value 2111.401238
## iter 430 value 2111.399500
## iter 440 value 2111.393243
## iter 450 value 2111.357194
## iter 460 value 2111.331585
## iter 470 value 2111.312395
## iter 480 value 2111.289920
## iter 490 value 2111.270738
## iter 500 value 2111.258387
## final  value 2111.258387 
## stopped after 500 iterations
## # weights:  51
## initial  value 2428.831025 
## iter  10 value 2148.129378
## iter  20 value 2132.141332
## iter  30 value 2125.076065
## iter  40 value 2123.036333
## iter  50 value 2121.579777
## iter  60 value 2120.961626
## iter  70 value 2120.766678
## iter  80 value 2120.599697
## iter  90 value 2120.063884
## iter 100 value 2116.827648
## iter 110 value 2116.286619
## iter 120 value 2115.811121
## iter 130 value 2115.285865
## iter 140 value 2115.034590
## iter 150 value 2113.417158
## iter 160 value 2113.185563
## iter 170 value 2113.062447
## iter 180 value 2112.971845
## iter 190 value 2112.932861
## iter 200 value 2112.915151
## iter 210 value 2112.855234
## iter 220 value 2112.815321
## iter 230 value 2112.650284
## iter 240 value 2112.392261
## iter 250 value 2112.304619
## iter 260 value 2111.897838
## iter 270 value 2111.531340
## iter 280 value 2111.357713
## iter 290 value 2111.243591
## iter 300 value 2111.091295
## iter 310 value 2110.998799
## iter 320 value 2110.978193
## iter 330 value 2110.910995
## iter 340 value 2110.802510
## iter 350 value 2110.731000
## iter 360 value 2110.680577
## iter 370 value 2110.667971
## iter 380 value 2110.652380
## final  value 2110.650650 
## converged
## # weights:  61
## initial  value 2451.026111 
## iter  10 value 2154.791185
## iter  20 value 2135.429337
## iter  30 value 2125.723283
## iter  40 value 2119.739415
## iter  50 value 2117.938919
## iter  60 value 2115.791267
## iter  70 value 2113.658892
## iter  80 value 2113.095692
## iter  90 value 2112.712418
## iter 100 value 2112.531244
## iter 110 value 2112.358947
## iter 120 value 2112.273691
## iter 130 value 2112.222102
## iter 140 value 2112.168153
## iter 150 value 2111.968668
## iter 160 value 2111.671812
## iter 170 value 2111.293540
## iter 180 value 2111.036645
## iter 190 value 2110.945223
## iter 200 value 2110.846852
## iter 210 value 2110.768376
## iter 220 value 2110.725718
## iter 230 value 2110.689715
## iter 240 value 2110.656204
## iter 250 value 2110.627178
## iter 260 value 2110.623678
## iter 270 value 2110.618903
## iter 280 value 2110.582053
## iter 290 value 2110.550514
## iter 300 value 2110.523688
## iter 310 value 2110.501557
## iter 320 value 2110.475151
## iter 330 value 2110.447125
## iter 340 value 2110.410465
## iter 350 value 2110.392401
## iter 360 value 2110.381832
## iter 370 value 2110.372702
## final  value 2110.371911 
## converged
## # weights:  71
## initial  value 2304.490310 
## iter  10 value 2151.017440
## iter  20 value 2130.995175
## iter  30 value 2119.711835
## iter  40 value 2116.141194
## iter  50 value 2113.313993
## iter  60 value 2112.631830
## iter  70 value 2112.183892
## iter  80 value 2111.735081
## iter  90 value 2111.467194
## iter 100 value 2110.995032
## iter 110 value 2110.850830
## iter 120 value 2110.767249
## iter 130 value 2110.716387
## iter 140 value 2110.670400
## iter 150 value 2110.652812
## iter 160 value 2110.645333
## iter 170 value 2110.589496
## iter 180 value 2110.551783
## iter 190 value 2110.529337
## iter 200 value 2110.516928
## iter 210 value 2110.503742
## iter 220 value 2110.492605
## iter 230 value 2110.456491
## iter 240 value 2110.422494
## iter 250 value 2110.388655
## iter 260 value 2110.349404
## iter 270 value 2110.324524
## iter 280 value 2110.304234
## final  value 2110.299942 
## converged
## # weights:  81
## initial  value 2320.249171 
## iter  10 value 2149.312591
## iter  20 value 2127.732893
## iter  30 value 2121.367297
## iter  40 value 2116.909906
## iter  50 value 2114.524531
## iter  60 value 2112.728896
## iter  70 value 2111.958386
## iter  80 value 2111.147250
## iter  90 value 2110.774953
## iter 100 value 2110.591367
## iter 110 value 2110.446365
## iter 120 value 2110.378177
## iter 130 value 2110.349233
## iter 140 value 2110.336252
## iter 150 value 2110.315666
## iter 160 value 2110.302211
## iter 170 value 2110.295909
## final  value 2110.295555 
## converged
## # weights:  21
## initial  value 2278.516414 
## iter  10 value 2182.307559
## iter  20 value 2164.833599
## iter  30 value 2160.639084
## iter  40 value 2157.947450
## iter  50 value 2155.941008
## iter  60 value 2154.793120
## iter  70 value 2154.646471
## iter  80 value 2154.588597
## iter  90 value 2154.577813
## iter 100 value 2153.641170
## iter 110 value 2153.332381
## iter 120 value 2152.647207
## iter 130 value 2150.751472
## iter 140 value 2150.453706
## iter 150 value 2150.394850
## iter 160 value 2150.376973
## iter 170 value 2150.337478
## iter 180 value 2149.962236
## iter 190 value 2149.861110
## iter 200 value 2149.840429
## iter 210 value 2149.810594
## iter 220 value 2149.764971
## iter 230 value 2149.722649
## final  value 2149.704237 
## converged
## # weights:  31
## initial  value 2635.604492 
## iter  10 value 2157.804201
## iter  20 value 2138.942383
## iter  30 value 2130.393124
## iter  40 value 2128.973005
## iter  50 value 2127.497631
## iter  60 value 2125.646894
## iter  70 value 2124.763696
## iter  80 value 2124.106445
## iter  90 value 2123.706322
## iter 100 value 2123.298959
## iter 110 value 2123.202632
## iter 120 value 2122.800468
## iter 130 value 2122.614771
## iter 140 value 2122.583552
## iter 150 value 2122.530180
## iter 160 value 2122.487710
## iter 170 value 2122.479169
## iter 180 value 2122.472701
## iter 190 value 2122.449624
## iter 200 value 2122.436953
## iter 210 value 2122.434591
## iter 220 value 2122.415685
## iter 230 value 2122.377523
## iter 240 value 2122.367458
## iter 250 value 2122.364384
## iter 260 value 2122.357801
## iter 270 value 2122.354405
## iter 280 value 2122.352042
## iter 290 value 2122.347157
## iter 300 value 2122.339071
## iter 310 value 2122.303672
## iter 320 value 2122.253020
## iter 330 value 2122.234327
## iter 340 value 2122.232157
## iter 350 value 2122.230820
## iter 360 value 2122.215957
## iter 370 value 2122.119965
## iter 380 value 2121.863868
## iter 390 value 2121.333965
## iter 400 value 2121.113822
## iter 410 value 2121.063047
## iter 420 value 2120.755341
## iter 430 value 2120.508541
## iter 440 value 2120.399408
## iter 450 value 2120.298104
## iter 460 value 2120.251588
## iter 470 value 2120.242086
## iter 480 value 2120.237082
## iter 490 value 2120.212289
## iter 500 value 2120.154344
## final  value 2120.154344 
## stopped after 500 iterations
## # weights:  41
## initial  value 2499.686628 
## iter  10 value 2165.483044
## iter  20 value 2148.765346
## iter  30 value 2138.090805
## iter  40 value 2130.627577
## iter  50 value 2126.718492
## iter  60 value 2124.375446
## iter  70 value 2124.014545
## iter  80 value 2123.195449
## iter  90 value 2122.981240
## iter 100 value 2122.651999
## iter 110 value 2122.360352
## iter 120 value 2122.246018
## iter 130 value 2122.136331
## iter 140 value 2121.996099
## iter 150 value 2121.886869
## iter 160 value 2121.846501
## iter 170 value 2121.808333
## iter 180 value 2121.807307
## iter 180 value 2121.807290
## iter 180 value 2121.807288
## final  value 2121.807288 
## converged
## # weights:  51
## initial  value 2512.468298 
## iter  10 value 2160.220497
## iter  20 value 2134.967881
## iter  30 value 2130.361304
## iter  40 value 2124.968198
## iter  50 value 2123.037433
## iter  60 value 2122.137626
## iter  70 value 2120.983740
## iter  80 value 2120.310291
## iter  90 value 2119.953384
## iter 100 value 2119.745758
## iter 110 value 2119.678358
## iter 120 value 2119.645320
## iter 130 value 2119.560989
## iter 140 value 2119.484358
## iter 150 value 2119.460059
## iter 160 value 2119.422643
## iter 170 value 2119.387358
## iter 180 value 2119.374736
## iter 190 value 2119.356239
## iter 200 value 2119.338618
## final  value 2119.332103 
## converged
## # weights:  61
## initial  value 2266.176352 
## iter  10 value 2162.380059
## iter  20 value 2137.341218
## iter  30 value 2131.436967
## iter  40 value 2127.749333
## iter  50 value 2125.097734
## iter  60 value 2123.325711
## iter  70 value 2122.474395
## iter  80 value 2121.881182
## iter  90 value 2121.660340
## iter 100 value 2121.559838
## iter 110 value 2121.527370
## iter 120 value 2121.496712
## iter 130 value 2121.488477
## iter 140 value 2121.485696
## iter 150 value 2121.467368
## iter 160 value 2121.447573
## iter 170 value 2121.437041
## iter 180 value 2121.419792
## iter 190 value 2121.409110
## iter 200 value 2121.402857
## iter 210 value 2121.397176
## iter 220 value 2121.386566
## iter 230 value 2121.376412
## iter 240 value 2121.372738
## final  value 2121.368098 
## converged
## # weights:  71
## initial  value 2591.806052 
## iter  10 value 2154.860163
## iter  20 value 2135.589563
## iter  30 value 2129.075053
## iter  40 value 2125.344752
## iter  50 value 2123.942024
## iter  60 value 2122.904313
## iter  70 value 2122.318780
## iter  80 value 2121.460014
## iter  90 value 2121.144079
## iter 100 value 2120.798620
## iter 110 value 2120.325109
## iter 120 value 2120.110482
## iter 130 value 2120.029050
## iter 140 value 2119.968030
## iter 150 value 2119.938343
## iter 160 value 2119.918067
## iter 170 value 2119.861434
## iter 180 value 2119.773989
## iter 190 value 2119.720248
## iter 200 value 2119.689650
## iter 210 value 2119.666302
## iter 220 value 2119.648983
## iter 230 value 2119.625777
## iter 240 value 2119.580707
## iter 250 value 2119.536227
## iter 260 value 2119.502012
## iter 270 value 2119.457056
## iter 280 value 2119.424124
## iter 290 value 2119.409096
## iter 300 value 2119.407275
## iter 310 value 2119.402992
## iter 320 value 2119.393413
## iter 330 value 2119.382811
## iter 340 value 2119.372023
## iter 350 value 2119.359912
## iter 360 value 2119.354769
## iter 370 value 2119.338519
## iter 380 value 2119.327747
## iter 390 value 2119.324097
## iter 400 value 2119.320926
## iter 410 value 2119.311443
## iter 420 value 2119.309600
## iter 430 value 2119.306006
## final  value 2119.305827 
## converged
## # weights:  81
## initial  value 2336.722744 
## iter  10 value 2159.420348
## iter  20 value 2138.151485
## iter  30 value 2129.364734
## iter  40 value 2124.440122
## iter  50 value 2122.477771
## iter  60 value 2121.680686
## iter  70 value 2121.366692
## iter  80 value 2121.065915
## iter  90 value 2120.875559
## iter 100 value 2120.473640
## iter 110 value 2120.098700
## iter 120 value 2119.862166
## iter 130 value 2119.716898
## iter 140 value 2119.655494
## iter 150 value 2119.602773
## iter 160 value 2119.567141
## iter 170 value 2119.557830
## iter 180 value 2119.548629
## iter 190 value 2119.496029
## iter 200 value 2119.460735
## iter 210 value 2119.447753
## iter 220 value 2119.439941
## iter 230 value 2119.429413
## iter 240 value 2119.415985
## iter 250 value 2119.393868
## iter 260 value 2119.366821
## iter 270 value 2119.352782
## iter 280 value 2119.343745
## iter 290 value 2119.324274
## iter 300 value 2119.315031
## iter 310 value 2119.311991
## iter 320 value 2119.309491
## iter 330 value 2119.304760
## final  value 2119.304678 
## converged
head(accuracyANN10,100)
#Function accuracy values per different samples
accuracyANN<-function(trials){
acc <- data.frame(i = integer(),Accuracy= integer())
for(i in 450:trials) {
# random sample
smp_size <- floor(0.80 * nrow(mydata3))



## set the seed to make the partition reproducible
set.seed(i)
train_ind <- sample(seq_len(nrow(mydata3)), size = smp_size)



trainC <- mydata3[train_ind, ]
testC <- mydata3[-train_ind, ]
modelANNC<-nnet(popularity~.,data=trainC,size = 3,decay = 0.0001,maxit = 500)
testC$pred_nnet<-predict(modelANNC,testC,type="class")
confmatC<-data.frame(Prediction=testC$pred_nnet,Actual=testC$popularity)
accuracy<-nrow(subset(confmatC,Actual==Prediction))/nrow(confmatC)
trial=i
attempt <- data.frame(Trial = trial, Accuracy = accuracy)
acc <- rbind(acc,attempt)
}



return(acc)
}
accuracyANN30<-accuracyANN(480)
## # weights:  31
## initial  value 2466.521200 
## iter  10 value 2163.519303
## iter  20 value 2138.900613
## iter  30 value 2131.513872
## iter  40 value 2129.845608
## iter  50 value 2127.905836
## iter  60 value 2126.746207
## iter  70 value 2125.675868
## iter  80 value 2124.810553
## iter  90 value 2124.205001
## iter 100 value 2123.892638
## iter 110 value 2123.809981
## iter 120 value 2123.726981
## iter 130 value 2123.663099
## iter 140 value 2123.645158
## iter 150 value 2123.604307
## iter 160 value 2123.561668
## iter 170 value 2123.538786
## iter 180 value 2123.513711
## iter 190 value 2123.491509
## final  value 2123.491370 
## converged
## # weights:  31
## initial  value 2289.556681 
## iter  10 value 2161.670219
## iter  20 value 2137.294564
## iter  30 value 2127.993554
## iter  40 value 2124.379450
## iter  50 value 2123.592819
## iter  60 value 2123.303486
## iter  70 value 2122.671090
## iter  80 value 2122.210138
## iter  90 value 2121.158559
## iter 100 value 2120.499047
## iter 110 value 2120.219834
## iter 120 value 2120.149625
## iter 130 value 2120.125138
## iter 140 value 2120.120756
## iter 150 value 2120.107623
## iter 160 value 2120.058165
## iter 170 value 2120.000715
## iter 180 value 2119.923115
## iter 190 value 2119.884964
## iter 200 value 2119.858740
## iter 210 value 2119.824798
## iter 220 value 2119.763257
## iter 230 value 2119.710259
## iter 240 value 2119.658340
## iter 250 value 2119.216810
## iter 260 value 2118.747871
## iter 270 value 2118.575555
## iter 280 value 2118.157310
## iter 290 value 2117.860586
## iter 300 value 2117.613783
## iter 310 value 2117.459577
## iter 320 value 2117.415065
## iter 330 value 2117.409557
## iter 340 value 2117.289768
## iter 350 value 2117.094464
## iter 360 value 2116.911379
## iter 370 value 2116.817487
## iter 380 value 2116.764647
## iter 390 value 2116.724865
## iter 400 value 2116.700319
## iter 410 value 2116.629170
## iter 420 value 2116.603864
## iter 430 value 2116.589320
## iter 440 value 2116.585197
## final  value 2116.583594 
## converged
## # weights:  31
## initial  value 2406.323391 
## iter  10 value 2179.243903
## iter  20 value 2150.272417
## iter  30 value 2139.710153
## iter  40 value 2136.358233
## iter  50 value 2134.645675
## iter  60 value 2133.844895
## iter  70 value 2133.577012
## iter  80 value 2133.465965
## iter  90 value 2133.205311
## iter 100 value 2132.992556
## iter 110 value 2132.937690
## iter 120 value 2132.928039
## iter 130 value 2132.905212
## final  value 2132.905091 
## converged
## # weights:  31
## initial  value 2266.482682 
## iter  10 value 2180.577172
## iter  20 value 2159.779328
## iter  30 value 2142.480533
## iter  40 value 2138.555189
## iter  50 value 2136.864997
## iter  60 value 2135.729982
## iter  70 value 2134.971805
## iter  80 value 2133.976322
## iter  90 value 2132.695328
## iter 100 value 2131.813366
## iter 110 value 2131.182724
## iter 120 value 2130.975561
## iter 130 value 2130.878662
## iter 140 value 2130.823194
## iter 150 value 2130.595098
## iter 160 value 2130.263311
## iter 170 value 2130.182832
## iter 180 value 2130.135534
## iter 190 value 2130.101547
## final  value 2130.101052 
## converged
## # weights:  31
## initial  value 2416.636583 
## iter  10 value 2162.891121
## iter  20 value 2142.595734
## iter  30 value 2134.742024
## iter  40 value 2126.158402
## iter  50 value 2122.352385
## iter  60 value 2121.672317
## iter  70 value 2121.109632
## iter  80 value 2120.335567
## iter  90 value 2119.840757
## iter 100 value 2119.661568
## iter 110 value 2119.565796
## iter 120 value 2119.503487
## iter 130 value 2119.124667
## iter 140 value 2118.502333
## iter 150 value 2117.819518
## iter 160 value 2117.564959
## iter 170 value 2117.452849
## iter 180 value 2117.230964
## iter 190 value 2117.120462
## iter 200 value 2117.103291
## iter 210 value 2117.014151
## iter 220 value 2116.821609
## iter 230 value 2116.664235
## iter 240 value 2116.332328
## iter 250 value 2116.071962
## iter 260 value 2116.029171
## iter 270 value 2115.989812
## iter 280 value 2115.475965
## iter 290 value 2114.693284
## iter 300 value 2114.061032
## iter 310 value 2113.732052
## iter 320 value 2113.603488
## iter 330 value 2113.545898
## iter 340 value 2113.283026
## iter 350 value 2113.058274
## iter 360 value 2112.901467
## iter 370 value 2112.766317
## iter 380 value 2112.684645
## iter 390 value 2112.674919
## iter 400 value 2112.595803
## iter 410 value 2112.454167
## iter 420 value 2112.422168
## iter 430 value 2112.375637
## iter 440 value 2112.331750
## iter 450 value 2112.325124
## iter 460 value 2112.324071
## final  value 2112.323812 
## converged
## # weights:  31
## initial  value 2317.406959 
## iter  10 value 2166.650021
## iter  20 value 2148.037114
## iter  30 value 2145.467741
## iter  40 value 2144.300698
## iter  50 value 2143.768041
## iter  60 value 2143.466634
## iter  70 value 2142.832109
## iter  80 value 2142.667261
## iter  90 value 2142.551098
## iter 100 value 2142.514782
## iter 110 value 2142.460239
## iter 120 value 2142.401898
## iter 130 value 2141.687273
## iter 140 value 2140.449042
## iter 150 value 2139.036531
## iter 160 value 2137.713034
## iter 170 value 2137.422712
## iter 180 value 2137.083739
## iter 190 value 2136.516546
## iter 200 value 2136.449458
## iter 210 value 2136.412354
## iter 220 value 2136.308407
## iter 230 value 2136.214531
## iter 240 value 2136.150501
## iter 250 value 2136.068173
## iter 260 value 2136.009039
## iter 270 value 2136.000036
## iter 280 value 2135.991810
## iter 290 value 2135.985341
## iter 300 value 2135.973720
## iter 310 value 2135.969851
## iter 320 value 2135.940279
## iter 330 value 2135.918390
## iter 340 value 2135.907050
## iter 350 value 2135.898314
## final  value 2135.893180 
## converged
## # weights:  31
## initial  value 2281.734981 
## iter  10 value 2180.750524
## iter  20 value 2160.006932
## iter  30 value 2151.392423
## iter  40 value 2147.267518
## iter  50 value 2145.867535
## iter  60 value 2145.215317
## iter  70 value 2145.067814
## iter  80 value 2144.932361
## iter  90 value 2144.764608
## iter 100 value 2144.350027
## iter 110 value 2143.574014
## iter 120 value 2143.548780
## iter 130 value 2143.339127
## iter 140 value 2138.633924
## iter 150 value 2136.413898
## iter 160 value 2134.951535
## iter 170 value 2134.772207
## iter 180 value 2134.465205
## iter 190 value 2134.327608
## iter 200 value 2134.315959
## iter 210 value 2134.296641
## iter 220 value 2134.283882
## iter 230 value 2134.261302
## iter 240 value 2134.257208
## final  value 2134.250240 
## converged
## # weights:  31
## initial  value 2280.244088 
## iter  10 value 2165.166991
## iter  20 value 2149.621679
## iter  30 value 2145.336521
## iter  40 value 2143.916991
## iter  50 value 2143.078800
## iter  60 value 2141.794903
## iter  70 value 2141.715725
## iter  80 value 2141.583818
## iter  90 value 2141.529279
## iter 100 value 2141.519576
## iter 110 value 2141.500210
## iter 120 value 2141.487099
## final  value 2141.480875 
## converged
## # weights:  31
## initial  value 2257.354519 
## iter  10 value 2149.876454
## iter  20 value 2131.322345
## iter  30 value 2124.467122
## iter  40 value 2119.072533
## iter  50 value 2116.459419
## iter  60 value 2115.771989
## iter  70 value 2115.423731
## iter  80 value 2115.199658
## iter  90 value 2114.870401
## iter 100 value 2114.494821
## iter 110 value 2114.274300
## iter 120 value 2114.132268
## iter 130 value 2114.097836
## iter 140 value 2114.095590
## iter 150 value 2114.060601
## iter 160 value 2114.021052
## iter 170 value 2114.002194
## iter 180 value 2113.985262
## iter 190 value 2113.967010
## iter 200 value 2113.964569
## iter 200 value 2113.964555
## iter 200 value 2113.964549
## final  value 2113.964549 
## converged
## # weights:  31
## initial  value 2456.699258 
## iter  10 value 2184.031864
## iter  20 value 2139.881824
## iter  30 value 2133.917027
## iter  40 value 2131.399312
## iter  50 value 2130.742536
## iter  60 value 2129.823139
## iter  70 value 2129.463118
## iter  80 value 2129.245310
## iter  90 value 2128.340434
## iter 100 value 2127.595854
## iter 110 value 2127.439624
## iter 120 value 2127.372596
## iter 130 value 2127.193426
## iter 140 value 2127.111813
## iter 150 value 2126.520110
## iter 160 value 2125.927631
## iter 170 value 2125.674121
## iter 180 value 2125.463379
## iter 190 value 2125.370951
## iter 200 value 2125.359389
## iter 210 value 2125.338201
## iter 220 value 2125.243243
## iter 230 value 2125.178137
## iter 240 value 2125.167020
## iter 250 value 2125.090107
## iter 260 value 2124.010377
## iter 270 value 2122.219755
## iter 280 value 2117.874675
## iter 290 value 2116.089199
## iter 300 value 2115.787366
## iter 310 value 2115.668812
## iter 320 value 2115.646744
## final  value 2115.646526 
## converged
## # weights:  31
## initial  value 2363.903356 
## iter  10 value 2168.301157
## iter  20 value 2144.114487
## iter  30 value 2140.349198
## iter  40 value 2138.747061
## iter  50 value 2137.741220
## iter  60 value 2137.420556
## iter  70 value 2137.360717
## iter  80 value 2137.320505
## iter  90 value 2137.192651
## iter 100 value 2137.099441
## iter 110 value 2137.048302
## iter 120 value 2137.040546
## iter 130 value 2136.779294
## iter 140 value 2136.442337
## iter 150 value 2136.109250
## iter 160 value 2136.063878
## iter 170 value 2135.851682
## iter 180 value 2134.943255
## iter 190 value 2134.835553
## iter 200 value 2134.810292
## iter 210 value 2134.622482
## iter 220 value 2133.888503
## iter 230 value 2133.577702
## iter 240 value 2133.158045
## iter 250 value 2133.073768
## iter 260 value 2132.992510
## iter 270 value 2132.785483
## iter 280 value 2131.702972
## iter 290 value 2131.466759
## iter 300 value 2131.290285
## iter 310 value 2130.715218
## iter 320 value 2128.324997
## iter 330 value 2127.520096
## iter 340 value 2126.153057
## iter 350 value 2125.713398
## iter 360 value 2125.643549
## iter 370 value 2125.612636
## iter 380 value 2125.405197
## final  value 2125.405040 
## converged
## # weights:  31
## initial  value 2372.472532 
## iter  10 value 2153.220474
## iter  20 value 2131.452757
## iter  30 value 2124.473698
## iter  40 value 2122.196763
## iter  50 value 2119.721040
## iter  60 value 2118.376363
## iter  70 value 2116.818100
## iter  80 value 2115.376462
## iter  90 value 2113.822065
## iter 100 value 2113.058028
## iter 110 value 2112.097094
## iter 120 value 2111.834251
## iter 130 value 2111.753660
## iter 140 value 2111.745107
## iter 150 value 2111.734852
## iter 160 value 2111.695480
## iter 170 value 2111.677619
## iter 180 value 2111.605433
## iter 190 value 2111.421712
## iter 200 value 2111.373087
## iter 210 value 2111.343822
## iter 220 value 2111.334193
## iter 230 value 2111.331254
## iter 240 value 2111.325823
## iter 250 value 2111.324337
## final  value 2111.322919 
## converged
## # weights:  31
## initial  value 2289.293022 
## iter  10 value 2174.644527
## iter  20 value 2158.342483
## iter  30 value 2146.187762
## iter  40 value 2142.513538
## iter  50 value 2140.498543
## iter  60 value 2139.358905
## iter  70 value 2138.350367
## iter  80 value 2138.197232
## iter  90 value 2137.689080
## iter 100 value 2137.047834
## iter 110 value 2136.460263
## iter 120 value 2136.236968
## iter 130 value 2136.172065
## iter 140 value 2136.168837
## iter 140 value 2136.168816
## iter 150 value 2136.168175
## iter 150 value 2136.168171
## iter 150 value 2136.168154
## final  value 2136.168154 
## converged
## # weights:  31
## initial  value 2412.626189 
## iter  10 value 2161.667736
## iter  20 value 2142.266104
## iter  30 value 2136.558566
## iter  40 value 2134.664741
## iter  50 value 2134.064402
## iter  60 value 2133.932988
## iter  70 value 2133.856932
## iter  80 value 2133.835220
## iter  90 value 2133.811888
## iter 100 value 2133.773266
## iter 110 value 2133.748770
## iter 120 value 2133.728639
## iter 130 value 2133.679628
## iter 140 value 2133.677200
## iter 150 value 2133.658059
## iter 160 value 2133.622813
## iter 170 value 2133.610491
## iter 180 value 2133.606341
## iter 190 value 2133.602041
## final  value 2133.601174 
## converged
## # weights:  31
## initial  value 2285.085495 
## iter  10 value 2192.542793
## iter  20 value 2147.029027
## iter  30 value 2135.847216
## iter  40 value 2132.416484
## iter  50 value 2129.609658
## iter  60 value 2126.315936
## iter  70 value 2125.856716
## iter  80 value 2125.177433
## iter  90 value 2124.727883
## iter 100 value 2124.529585
## iter 110 value 2124.384794
## iter 120 value 2124.337411
## iter 130 value 2124.316019
## iter 140 value 2124.313116
## iter 150 value 2124.312443
## final  value 2124.312378 
## converged
## # weights:  31
## initial  value 2334.594216 
## iter  10 value 2174.946580
## iter  20 value 2158.300198
## iter  30 value 2152.059051
## iter  40 value 2146.482220
## iter  50 value 2144.636290
## iter  60 value 2144.413706
## iter  70 value 2144.335228
## iter  80 value 2144.029958
## iter  90 value 2143.552629
## iter 100 value 2143.065042
## iter 110 value 2142.744746
## iter 120 value 2142.666743
## iter 130 value 2142.591108
## iter 140 value 2142.504219
## iter 150 value 2142.140092
## iter 160 value 2141.985981
## iter 170 value 2141.895933
## iter 180 value 2141.877710
## iter 190 value 2141.862491
## iter 190 value 2141.862482
## final  value 2141.862482 
## converged
## # weights:  31
## initial  value 2293.270068 
## iter  10 value 2131.015355
## iter  20 value 2116.933976
## iter  30 value 2112.621196
## iter  40 value 2111.874822
## iter  50 value 2111.010869
## iter  60 value 2109.118981
## iter  70 value 2108.428657
## iter  80 value 2107.792914
## iter  90 value 2107.347797
## iter 100 value 2107.041521
## iter 110 value 2106.939878
## iter 120 value 2106.894117
## iter 130 value 2106.865066
## iter 140 value 2106.841530
## iter 150 value 2106.785388
## iter 160 value 2106.736641
## iter 170 value 2106.670727
## iter 180 value 2106.620030
## iter 190 value 2106.590415
## final  value 2106.589855 
## converged
## # weights:  31
## initial  value 2303.303635 
## iter  10 value 2170.663237
## iter  20 value 2151.406783
## iter  30 value 2143.000728
## iter  40 value 2140.920183
## iter  50 value 2139.511431
## iter  60 value 2138.642321
## iter  70 value 2138.384775
## iter  80 value 2138.078901
## iter  90 value 2137.840886
## iter 100 value 2137.737055
## iter 110 value 2137.048980
## iter 120 value 2136.288952
## iter 130 value 2136.105207
## iter 140 value 2136.070879
## iter 150 value 2135.981054
## iter 160 value 2135.789248
## iter 170 value 2135.537034
## iter 180 value 2135.504514
## iter 190 value 2135.344245
## iter 200 value 2135.248200
## iter 210 value 2135.219889
## iter 220 value 2135.181665
## iter 230 value 2135.128220
## iter 240 value 2135.125680
## iter 250 value 2135.121964
## iter 260 value 2135.116291
## iter 270 value 2135.100007
## final  value 2135.094494 
## converged
## # weights:  31
## initial  value 2329.890216 
## iter  10 value 2172.194960
## iter  20 value 2148.931370
## iter  30 value 2141.066632
## iter  40 value 2132.539734
## iter  50 value 2131.739318
## iter  60 value 2131.400166
## iter  70 value 2131.232492
## iter  80 value 2131.129242
## iter  90 value 2130.948502
## iter 100 value 2130.742674
## iter 110 value 2130.400125
## iter 120 value 2130.043305
## iter 130 value 2129.885188
## iter 140 value 2129.842737
## iter 150 value 2129.754549
## iter 160 value 2129.712466
## iter 170 value 2129.694351
## iter 180 value 2129.661969
## iter 190 value 2129.616477
## iter 200 value 2129.611826
## iter 210 value 2129.575288
## iter 220 value 2129.485557
## iter 230 value 2129.390288
## iter 240 value 2129.325381
## iter 250 value 2129.185052
## iter 260 value 2129.167811
## iter 270 value 2129.157854
## iter 280 value 2129.115447
## iter 290 value 2129.077214
## iter 300 value 2129.003213
## iter 310 value 2128.976796
## final  value 2128.973766 
## converged
## # weights:  31
## initial  value 2796.469196 
## iter  10 value 2264.054662
## iter  20 value 2193.990753
## iter  30 value 2172.930729
## iter  40 value 2161.693992
## iter  50 value 2152.988760
## iter  60 value 2150.276136
## iter  70 value 2148.468123
## iter  80 value 2148.261071
## iter  90 value 2148.068854
## iter 100 value 2143.518331
## iter 110 value 2137.331956
## iter 120 value 2136.988124
## iter 130 value 2136.906832
## iter 140 value 2136.846685
## iter 150 value 2136.840224
## iter 160 value 2136.837240
## iter 170 value 2136.827668
## iter 180 value 2136.805081
## iter 190 value 2136.772661
## iter 200 value 2136.723182
## final  value 2136.712531 
## converged
## # weights:  31
## initial  value 2376.477677 
## iter  10 value 2169.465139
## iter  20 value 2153.524117
## iter  30 value 2139.947031
## iter  40 value 2137.983454
## iter  50 value 2136.192095
## iter  60 value 2135.182106
## iter  70 value 2134.960517
## iter  80 value 2134.497349
## iter  90 value 2134.029023
## iter 100 value 2133.981631
## iter 110 value 2133.970805
## iter 120 value 2133.963516
## final  value 2133.962515 
## converged
## # weights:  31
## initial  value 2313.025323 
## iter  10 value 2179.651027
## iter  20 value 2150.379058
## iter  30 value 2141.352849
## iter  40 value 2140.093698
## iter  50 value 2138.620853
## iter  60 value 2136.968030
## iter  70 value 2136.793767
## iter  80 value 2136.535933
## iter  90 value 2135.846453
## iter 100 value 2135.546305
## iter 110 value 2135.041184
## iter 120 value 2133.742066
## iter 130 value 2131.799972
## iter 140 value 2131.139623
## iter 150 value 2130.659569
## iter 160 value 2130.350067
## iter 170 value 2130.243576
## iter 180 value 2130.197992
## iter 190 value 2130.011364
## iter 200 value 2129.896038
## iter 210 value 2129.734929
## iter 220 value 2129.693203
## iter 230 value 2129.598593
## iter 240 value 2129.582165
## iter 250 value 2129.552358
## iter 260 value 2129.540452
## iter 270 value 2129.465163
## iter 280 value 2129.345878
## iter 290 value 2128.282136
## iter 300 value 2128.161854
## iter 310 value 2128.141271
## iter 320 value 2128.118485
## iter 330 value 2128.080577
## final  value 2128.076876 
## converged
## # weights:  31
## initial  value 2283.920504 
## iter  10 value 2173.536874
## iter  20 value 2149.500855
## iter  30 value 2144.952341
## iter  40 value 2139.011224
## iter  50 value 2136.986885
## iter  60 value 2136.621709
## iter  70 value 2136.458221
## iter  80 value 2136.352435
## iter  90 value 2136.263087
## iter 100 value 2136.211905
## iter 110 value 2136.099219
## iter 120 value 2136.045277
## iter 130 value 2135.996780
## iter 140 value 2135.978682
## iter 150 value 2135.962623
## iter 160 value 2135.923166
## iter 170 value 2135.885167
## iter 180 value 2135.860054
## iter 190 value 2135.848067
## final  value 2135.847742 
## converged
## # weights:  31
## initial  value 2530.848536 
## iter  10 value 2160.432169
## iter  20 value 2138.269060
## iter  30 value 2130.647048
## iter  40 value 2127.338220
## iter  50 value 2125.075375
## iter  60 value 2124.335519
## iter  70 value 2123.995835
## iter  80 value 2123.721057
## iter  90 value 2123.259046
## iter 100 value 2123.024810
## iter 110 value 2122.962515
## iter 120 value 2122.930221
## iter 130 value 2122.907623
## iter 140 value 2122.890522
## iter 150 value 2122.852517
## iter 160 value 2122.838946
## iter 170 value 2122.827491
## iter 180 value 2122.825552
## final  value 2122.825455 
## converged
## # weights:  31
## initial  value 2566.992688 
## iter  10 value 2172.162510
## iter  20 value 2152.903259
## iter  30 value 2140.332151
## iter  40 value 2131.919504
## iter  50 value 2128.561691
## iter  60 value 2125.181990
## iter  70 value 2124.833679
## iter  80 value 2124.722028
## iter  90 value 2123.978155
## iter 100 value 2121.816651
## iter 110 value 2121.034441
## iter 120 value 2120.718110
## iter 130 value 2120.513832
## iter 140 value 2120.476091
## iter 150 value 2120.382238
## iter 160 value 2120.249359
## iter 170 value 2120.114727
## iter 180 value 2119.975913
## iter 190 value 2119.729726
## iter 200 value 2119.725561
## iter 210 value 2119.695502
## iter 220 value 2119.663458
## iter 230 value 2119.656241
## iter 240 value 2119.643504
## iter 250 value 2119.631615
## iter 260 value 2119.626110
## final  value 2119.626058 
## converged
## # weights:  31
## initial  value 2458.837930 
## iter  10 value 2188.165494
## iter  20 value 2168.280818
## iter  30 value 2163.133162
## iter  40 value 2159.764112
## iter  50 value 2158.959911
## iter  60 value 2158.451080
## iter  70 value 2158.326236
## iter  80 value 2158.274649
## iter  90 value 2158.106171
## iter 100 value 2157.922749
## iter 110 value 2157.778631
## iter 120 value 2157.702557
## final  value 2157.685773 
## converged
## # weights:  31
## initial  value 2329.168146 
## iter  10 value 2170.906477
## iter  20 value 2151.573017
## iter  30 value 2136.562326
## iter  40 value 2131.795865
## iter  50 value 2129.217007
## iter  60 value 2128.521955
## iter  70 value 2128.306807
## iter  80 value 2128.031642
## iter  90 value 2127.631295
## iter 100 value 2126.836004
## iter 110 value 2126.719538
## iter 120 value 2126.566102
## iter 130 value 2126.551568
## iter 140 value 2126.548172
## iter 150 value 2126.524675
## iter 160 value 2126.495008
## iter 170 value 2126.483271
## iter 180 value 2126.480882
## iter 190 value 2126.474416
## final  value 2126.474220 
## converged
## # weights:  31
## initial  value 2458.523489 
## iter  10 value 2176.580544
## iter  20 value 2152.027698
## iter  30 value 2147.794434
## iter  40 value 2146.929966
## iter  50 value 2146.475393
## iter  60 value 2146.412594
## iter  70 value 2146.369814
## iter  80 value 2145.313083
## iter  90 value 2144.706308
## iter 100 value 2144.453731
## iter 110 value 2144.319416
## iter 120 value 2144.142381
## iter 130 value 2143.924055
## iter 140 value 2143.820267
## iter 150 value 2143.686752
## iter 160 value 2143.475925
## iter 170 value 2143.102793
## iter 180 value 2142.715495
## iter 190 value 2142.649538
## final  value 2142.649434 
## converged
## # weights:  31
## initial  value 2496.838433 
## iter  10 value 2173.526821
## iter  20 value 2149.843613
## iter  30 value 2142.715016
## iter  40 value 2138.470273
## iter  50 value 2137.803349
## iter  60 value 2137.656311
## iter  70 value 2137.627863
## iter  80 value 2137.571883
## iter  90 value 2137.382764
## iter 100 value 2137.302617
## iter 110 value 2137.253773
## iter 120 value 2137.189509
## iter 130 value 2137.135237
## iter 140 value 2137.119528
## iter 150 value 2137.082394
## iter 160 value 2137.052837
## final  value 2137.036040 
## converged
## # weights:  31
## initial  value 2599.195302 
## iter  10 value 2180.230664
## iter  20 value 2155.820297
## iter  30 value 2150.249958
## iter  40 value 2145.372001
## iter  50 value 2138.394501
## iter  60 value 2135.991179
## iter  70 value 2134.598916
## iter  80 value 2134.203009
## iter  90 value 2134.108501
## iter 100 value 2133.782004
## iter 110 value 2133.600594
## iter 120 value 2133.355087
## iter 130 value 2132.608975
## iter 140 value 2132.326875
## iter 150 value 2132.096245
## iter 160 value 2131.623250
## iter 170 value 2130.908118
## iter 180 value 2130.572282
## iter 190 value 2130.473728
## iter 200 value 2130.333851
## iter 210 value 2130.303426
## iter 220 value 2130.284134
## iter 230 value 2130.248747
## iter 240 value 2130.235388
## iter 250 value 2130.215491
## iter 260 value 2130.197970
## iter 270 value 2129.889241
## iter 280 value 2129.400937
## iter 290 value 2129.077753
## iter 300 value 2128.859204
## iter 310 value 2128.765115
## iter 320 value 2128.665458
## iter 330 value 2128.626813
## iter 340 value 2128.624651
## iter 350 value 2128.618846
## iter 360 value 2128.562943
## iter 370 value 2128.492029
## iter 380 value 2128.424397
## iter 390 value 2128.367679
## iter 400 value 2128.361398
## iter 400 value 2128.361384
## iter 400 value 2128.361368
## final  value 2128.361368 
## converged
## # weights:  31
## initial  value 2403.982107 
## iter  10 value 2164.938525
## iter  20 value 2145.218259
## iter  30 value 2138.984719
## iter  40 value 2135.441686
## iter  50 value 2133.923438
## iter  60 value 2133.583981
## iter  70 value 2133.549931
## iter  80 value 2133.451368
## iter  90 value 2133.323782
## iter 100 value 2133.228447
## iter 110 value 2133.175887
## iter 120 value 2133.105502
## final  value 2133.095593 
## converged
head(accuracyANN30,31)
#Function accuracy values per different samples
accuracyNB<-function(trials){
acc <- data.frame(i = integer(),Accuracy= integer())
for(i in 450:trials) {
# random sample
smp_size <- floor(0.80 * nrow(mydata3))



## set the seed to make the partition reproducible
set.seed(i)
train_ind <- sample(seq_len(nrow(mydata3)), size = smp_size)



trainC <- mydata3[train_ind, ]
testC <- mydata3[-train_ind, ]
NaivemodelC<-naiveBayes(popularity~.,data=trainC, laplace=1)
laplace_prediction1C<-predict(NaivemodelC,testC,type="class")
confumatNaiveC<-data.frame(Actual=testC$popularity,Prediction=laplace_prediction1C)
accuracy<-nrow(subset(confumatNaiveC,Actual==Prediction))/nrow(confumatNaiveC)
trial=i
attempt <- data.frame(Trial = trial, Accuracy = accuracy)
acc <- rbind(acc,attempt)
}



return(acc)
}
accuracyNB30<-accuracyNB(480)
head(accuracyNB30,31)
#Function accuracy values per different samples
accuracyRF<-function(trials){
acc <- data.frame(i = integer(),Accuracy= integer())
for(i in 450:trials) {
# random sample
smp_size <- floor(0.80 * nrow(mydata3))



## set the seed to make the partition reproducible
set.seed(i)
train_ind <- sample(seq_len(nrow(mydata3)), size = smp_size)



trainC <- mydata3[train_ind, ]
testC <- mydata3[-train_ind, ]
RFmodelC<-rpart(popularity~.,data=trainC, method="class")
RF_prediction1C<-predict(RFmodelC,testC,type="class")
confumatRF<-data.frame(Actual=testC$popularity,Prediction=RF_prediction1C)
accuracy<-nrow(subset(confumatRF,Actual==Prediction))/nrow(confumatRF)
trial=i
attempt <- data.frame(Trial = trial, Accuracy = accuracy)
acc <- rbind(acc,attempt)
}



return(acc)
}
accuracyRF30<-accuracyRF(480)
head(accuracyRF30,31)
#Function accuracy values per different samples
accuracyGLM<-function(trials){
acc <- data.frame(i = integer(),Accuracy= integer())
for(i in 450:trials) {
# random sample
smp_size <- floor(0.80 * nrow(mydata3))



## set the seed to make the partition reproducible
set.seed(i)
train_ind <- sample(seq_len(nrow(mydata3)), size = smp_size)



trainC <- mydata3[train_ind, ]
testC <- mydata3[-train_ind, ]
glmModel <- glm(data = trainC, popularity ~ ., family = "binomial")
predGLM <- predict(glmModel, newdata = testC, type = "response")
predGLMClass<-ifelse(predGLM>0.5,"very popular","popular")

confumatLG<-data.frame(Actual=testC$popularity,Prediction=predGLMClass)
accuracy<-nrow(subset(confumatLG,Actual==Prediction))/nrow(confumatLG)
trial=i
attempt <- data.frame(Trial = trial, Accuracy = accuracy)
acc <- rbind(acc,attempt)
}



return(acc)
}
accuracyGLM30<-accuracyGLM(480)
head(accuracyGLM30,31)
#Function accuracy values per different samples
accuracyRF1<-function(trials){
acc <- data.frame(i = integer(),Accuracy= integer())
for(i in 450:trials) {
# random sample
smp_size <- floor(0.80 * nrow(mydata3))



## set the seed to make the partition reproducible
set.seed(i)
train_ind <- sample(seq_len(nrow(mydata2)), size = smp_size)



trainC <- mydata3[train_ind, ]
testC <- mydata3[-train_ind, ]
RFmodelC<-randomForest(popularity~.,data=trainC, method="class")
RF_prediction1C2<-predict(RFmodelC,testC,type="class")
confumatRF<-data.frame(Actual=testC$popularity,Prediction=RF_prediction1C2)
accuracy<-nrow(subset(confumatRF,Actual==Prediction))/nrow(confumatRF)
trial=i
attempt <- data.frame(Trial = trial, Accuracy = accuracy)
acc <- rbind(acc,attempt)
}



return(acc)
}
accuracyRF130<-accuracyRF1(480)
head(accuracyRF130,31)
library("dplyr")
#Putting all the accuracy values together
accuracyANN30$model<-"ANN"
accuracyNB30$model<-"Naive Bayes"
accuracyRF30$model<-"Class. & Reg. Trees"
accuracyRF130$model<-"Random Forest"
accuracyGLM30$model<-"Logistic Reg."
bestAccuracy<-rbind(accuracyANN30,accuracyNB30,accuracyRF30,accuracyRF130,accuracyGLM30)
byModel<-group_by(bestAccuracy,model)
byModelAvg<-summarize(byModel,
Avg=mean(Accuracy))
byModelAvg
p<-ggplot(byModelAvg, aes(model,Avg,fill=model))+geom_bar(position="dodge",stat="identity") + geom_text(aes(label = round(Avg,digits=2)),size = 3, hjust = 0.5, vjust = 3, position = "stack")+labs(title = "Comparison Avg Accuracy per Model (31 Trials)",x="Model", y="Avg Accuracy")+theme(axis.text.x = element_text(angle = 45,size=8))
p

#Running Anova for the variables using previous match
AnovaModel<-aov(bestAccuracy$Accuracy~bestAccuracy$model)
summary(AnovaModel)
##                     Df  Sum Sq  Mean Sq F value   Pr(>F)    
## bestAccuracy$model   4 0.01549 0.003873   17.63 6.98e-12 ***
## Residuals          150 0.03294 0.000220                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TUKEY <- TukeyHSD(AnovaModel)
TUKEY
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = bestAccuracy$Accuracy ~ bestAccuracy$model)
## 
## $`bestAccuracy$model`
##                                            diff          lwr           upr
## Class. & Reg. Trees-ANN           -9.722641e-03 -0.020116487  0.0006712053
## Logistic Reg.-ANN                 -3.655412e-03 -0.014049258  0.0067384347
## Naive Bayes-ANN                   -2.897950e-02 -0.039373346 -0.0185856533
## Random Forest-ANN                 -9.760326e-03 -0.020154172  0.0006335207
## Logistic Reg.-Class. & Reg. Trees  6.067229e-03 -0.004326617  0.0164610757
## Naive Bayes-Class. & Reg. Trees   -1.925686e-02 -0.029650705 -0.0088630124
## Random Forest-Class. & Reg. Trees -3.768465e-05 -0.010431531  0.0103561616
## Naive Bayes-Logistic Reg.         -2.532409e-02 -0.035717934 -0.0149302418
## Random Forest-Logistic Reg.       -6.104914e-03 -0.016498760  0.0042889322
## Random Forest-Naive Bayes          1.921917e-02  0.008825328  0.0296130202
##                                       p adj
## Class. & Reg. Trees-ANN           0.0787050
## Logistic Reg.-ANN                 0.8677724
## Naive Bayes-ANN                   0.0000000
## Random Forest-ANN                 0.0767941
## Logistic Reg.-Class. & Reg. Trees 0.4922134
## Naive Bayes-Class. & Reg. Trees   0.0000093
## Random Forest-Class. & Reg. Trees 1.0000000
## Naive Bayes-Logistic Reg.         0.0000000
## Random Forest-Logistic Reg.       0.4858618
## Random Forest-Naive Bayes         0.0000097
RFmodelC<-randomForest(popularity~.,data=train1, method="class")
varImpPlot(RFmodelC)

This model indicates that rap and trap have more importance in the random forest classifier.