set.seed(2021)
absorbancia=rnorm(n=120, mean = 0.8 , sd =0.08)
absorbancia =round(absorbancia, 3)
concentracion=runif(n=120, min=1, max=2)
concentracion= round(concentracion, 2)
absorbancia2=exp(concentracion)/5
absorbancia2
## [1] 1.1741707 0.9329181 0.7949803 0.5889359 0.5658434 1.0413960 0.5546390
## [8] 1.0207749 1.4631068 0.8698470 1.0838961 0.5602132 1.2847474 0.5602132
## [15] 1.0106181 0.8274241 1.2719639 0.9906065 1.4631068 0.8357398 0.8110400
## [22] 0.6443985 1.1057923 1.0838961 0.9709912 0.7121705 0.5546390 0.8191911
## [29] 1.0947895 0.7562087 0.7638087 0.6129708 1.0310339 1.2099295 0.7870701
## [36] 1.2847474 0.9236354 0.5546390 0.8110400 0.9053462 0.6574162 1.1624875
## [43] 1.1741707 0.7338593 0.5436564 1.0518622 0.6443985 0.7870701 1.0624336
## [50] 0.8029700 0.6008332 0.9329181 0.8441392 0.6574162 1.0310339 0.7638087
## [57] 0.8785891 1.2593077 1.3779020 1.0838961 0.7050843 0.6443985 0.8110400
## [64] 0.6129708 0.6008332 0.7870701 1.1859713 0.9807498 0.6508748 1.0106181
## [71] 0.6911227 1.4778112 0.7121705 0.7486843 1.1859713 0.9236354 0.6253537
## [78] 0.6706969 0.7638087 0.8611919 1.2099295 1.0310339 1.0310339 0.7265573
## [85] 0.9517642 0.6508748 1.2467773 1.0106181 0.7870701 1.2847474 0.6842459
## [92] 0.5715302 0.5658434 1.2593077 1.4341353 0.5715302 1.4778112 1.4198654
## [99] 1.4485486 0.6706969 1.1978905 1.3779020 0.8698470 0.5715302 0.7412347
## [106] 1.0731112 1.2099295 0.7562087 0.6443985 0.7638087 1.2343717 1.3107010
## [113] 1.0413960 0.8110400 1.3779020 1.0413960 0.7486843 0.8785891 0.9906065
## [120] 1.4341353
absorbancia3=exp(concentracion+rnorm(120,0.4,0.1))/5
absorbacia2escalda= scale(absorbancia2)
absorbacia2escalda
## [,1]
## [1,] 0.929045830
## [2,] 0.025251555
## [3,] -0.491498608
## [4,] -1.263393912
## [5,] -1.349904376
## [6,] 0.431637674
## [7,] -1.391879124
## [8,] 0.354386030
## [9,] 2.011474603
## [10,] -0.211028709
## [11,] 0.590854248
## [12,] -1.370996686
## [13,] 1.343294484
## [14,] -1.370996686
## [15,] 0.316335747
## [16,] -0.369955940
## [17,] 1.295404397
## [18,] 0.241367234
## [19,] 2.011474603
## [20,] -0.338803003
## [21,] -0.431334967
## [22,] -1.055616701
## [23,] 0.672882867
## [24,] 0.590854248
## [25,] 0.167883197
## [26,] -0.801725438
## [27,] -1.391879124
## [28,] -0.400798900
## [29,] 0.631663488
## [30,] -0.636747160
## [31,] -0.608275520
## [32,] -1.173352889
## [33,] 0.392818724
## [34,] 1.063007557
## [35,] -0.521132198
## [36,] 1.343294484
## [37,] -0.009523786
## [38,] -1.391879124
## [39,] -0.431334967
## [40,] -0.078039848
## [41,] -1.006849001
## [42,] 0.885277587
## [43,] 0.929045830
## [44,] -0.720473543
## [45,] -1.433022717
## [46,] 0.470846760
## [47,] -1.055616701
## [48,] -0.521132198
## [49,] 0.510449905
## [50,] -0.461567195
## [51,] -1.218823591
## [52,] 0.025251555
## [53,] -0.307336974
## [54,] -1.006849001
## [55,] 0.392818724
## [56,] -0.608275520
## [57,] -0.178278527
## [58,] 1.247990825
## [59,] 1.692275895
## [60,] 0.590854248
## [61,] -0.828272220
## [62,] -1.055616701
## [63,] -0.431334967
## [64,] -1.173352889
## [65,] -1.218823591
## [66,] -0.521132198
## [67,] 0.973253952
## [68,] 0.204441507
## [69,] -1.031354769
## [70,] 0.316335747
## [71,] -0.880575976
## [72,] 2.066561314
## [73,] -0.801725438
## [74,] -0.664935503
## [75,] 0.973253952
## [76,] -0.009523786
## [77,] -1.126963618
## [78,] -0.957096129
## [79,] -0.608275520
## [80,] -0.243453021
## [81,] 1.063007557
## [82,] 0.392818724
## [83,] 0.392818724
## [84,] -0.747828795
## [85,] 0.095854241
## [86,] -1.031354769
## [87,] 1.201049026
## [88,] 0.316335747
## [89,] -0.521132198
## [90,] 1.343294484
## [91,] -0.906338182
## [92,] -1.328600085
## [93,] -1.349904376
## [94,] 1.247990825
## [95,] 1.902940091
## [96,] -1.328600085
## [97,] 2.066561314
## [98,] 1.849481438
## [99,] 1.956936013
## [100,] -0.957096129
## [101,] 1.017906372
## [102,] 1.692275895
## [103,] -0.211028709
## [104,] -1.328600085
## [105,] -0.692843367
## [106,] 0.550451067
## [107,] 1.063007557
## [108,] -0.636747160
## [109,] -1.055616701
## [110,] -0.608275520
## [111,] 1.154574306
## [112,] 1.440523404
## [113,] 0.431637674
## [114,] -0.431334967
## [115,] 1.692275895
## [116,] 0.431637674
## [117,] -0.664935503
## [118,] -0.178278527
## [119,] 0.241367234
## [120,] 1.902940091
## attr(,"scaled:center")
## [1] 0.9261776
## attr(,"scaled:scale")
## [1] 0.2669331
#datos adimencionales
par(mfrow=c(1,2))
hist(absorbancia2,nclass=8)
hist(absorbacia2escalda, nclass=8)
cor(absorbancia2,concentracion)
## [1] 0.9908622
cor(absorbacia2escalda,concentracion)
## [,1]
## [1,] 0.9908622
#la distribución delos datos es similar con la misma correlación
#, pero no los normaliza
#estarizar la variable no afecta la correlación
#a media de variables estandirazdas es cero
#las varianzas de
#la estandarizacion
conescalda=scale(concentracion)
cor(absorbacia2escalda,conescalda)
## [,1]
## [1,] 0.9908622
dfe=data.frame(absorbacia2escalda,conescalda)
cov(dfe)
## absorbacia2escalda conescalda
## absorbacia2escalda 1.0000000 0.9908622
## conescalda 0.9908622 1.0000000
#con las variables estandarizadas al solicitar la matriz de covarianzas se obtiene
#la matriz de correlación
absorbacia3escalda= scale(absorbancia3)
absorbacia3escalda
## [,1]
## [1,] 0.48081207
## [2,] -0.32937064
## [3,] -0.40777983
## [4,] -1.02065246
## [5,] -1.16096003
## [6,] 0.30754445
## [7,] -1.03467019
## [8,] 0.41342938
## [9,] 2.07340209
## [10,] -0.17078793
## [11,] 0.11425602
## [12,] -1.31684077
## [13,] 1.88202559
## [14,] -1.44558551
## [15,] 0.41591745
## [16,] -0.79599711
## [17,] 1.12547190
## [18,] 0.40761860
## [19,] 1.79982484
## [20,] -0.15968543
## [21,] -0.34941894
## [22,] -1.32364296
## [23,] 0.30960624
## [24,] 0.39916626
## [25,] -0.07806258
## [26,] -0.81295961
## [27,] -1.53201531
## [28,] -0.26758344
## [29,] 0.59000860
## [30,] -0.79832987
## [31,] -0.20341069
## [32,] -1.06938726
## [33,] 0.36569338
## [34,] 1.51690067
## [35,] -0.16561149
## [36,] 1.32756243
## [37,] -0.15122237
## [38,] -1.43591992
## [39,] -0.68525630
## [40,] -0.26108517
## [41,] -0.95524824
## [42,] 1.63070594
## [43,] 0.86268066
## [44,] -0.55989602
## [45,] -0.98010625
## [46,] 0.35102861
## [47,] -0.63530118
## [48,] -0.37617633
## [49,] 0.49434950
## [50,] -0.32840004
## [51,] -1.56036654
## [52,] -0.52297949
## [53,] 0.32138131
## [54,] -0.99164233
## [55,] 0.75569693
## [56,] -0.51605751
## [57,] -0.18739090
## [58,] 1.08078661
## [59,] 0.80950817
## [60,] 0.49481315
## [61,] -0.27475423
## [62,] -0.75808355
## [63,] -0.95694641
## [64,] -0.95692848
## [65,] -0.93670520
## [66,] -0.89739912
## [67,] 1.47723036
## [68,] -0.08354623
## [69,] -1.44665472
## [70,] 0.41496386
## [71,] -0.79657638
## [72,] 1.75081209
## [73,] -1.22571074
## [74,] -0.86329974
## [75,] 1.06865362
## [76,] -0.01907545
## [77,] -0.89966141
## [78,] -1.27998224
## [79,] -0.60881583
## [80,] 0.22856257
## [81,] 0.62373443
## [82,] 0.75839812
## [83,] 0.33275759
## [84,] -0.47665654
## [85,] -0.09511956
## [86,] -1.21748886
## [87,] 1.73343595
## [88,] 0.20453269
## [89,] -0.43745142
## [90,] 1.99405455
## [91,] -1.15374450
## [92,] -1.10088263
## [93,] -1.29783418
## [94,] 1.35071121
## [95,] 1.20773809
## [96,] -1.11355713
## [97,] 1.34671392
## [98,] 1.84747637
## [99,] 1.62500316
## [100,] -0.33716291
## [101,] 1.00210157
## [102,] 1.98618336
## [103,] 0.13191902
## [104,] -1.23651836
## [105,] -0.79175741
## [106,] 1.62809505
## [107,] 1.01135058
## [108,] -1.02242449
## [109,] -1.45060599
## [110,] -0.98234142
## [111,] 1.21392035
## [112,] 1.00414171
## [113,] 0.72897576
## [114,] -0.74834767
## [115,] 1.54750968
## [116,] 0.87124362
## [117,] -0.60372481
## [118,] -0.39863846
## [119,] 0.05807021
## [120,] 1.57971637
## attr(,"scaled:center")
## [1] 1.387454
## attr(,"scaled:scale")
## [1] 0.413222
mean(absorbancia3)
## [1] 1.387454
var(absorbancia3)
## [1] 0.1707524
mean(absorbacia3escalda)
## [1] 1.695313e-16
var(absorbacia3escalda)
## [,1]
## [1,] 1
#la media de varianzas estandarizadas es cero y la varianza 1 y no se afecta la covariación
#prueba de normalidad
shapiro.test(absorbancia3)
##
## Shapiro-Wilk normality test
##
## data: absorbancia3
## W = 0.94926, p-value = 0.0001907
#la variables estandarizas no son normales
shapiro.test(absorbacia3escalda)
##
## Shapiro-Wilk normality test
##
## data: absorbacia3escalda
## W = 0.94926, p-value = 0.0001907
#Normalizaion N
absorbancia3N= (absorbancia3-min(absorbancia3))/sd(absorbancia3)
mean(absorbancia3N)
## [1] 1.560367
var(absorbancia3N)
## [1] 1
# la varianza es acotada y sin datos negativos
cor(absorbacia3escalda,concentracion)
## [,1]
## [1,] 0.9396571
cor(absorbancia3N,concentracion)
## [1] 0.9396571
cor(absorbancia3,concentracion)
## [1] 0.9396571
# la correlacion con la variable escalda es la misma de los datos originales que con los datos escalados
# se utiliza otra estandarizacion en la suoerficie de respuesta clase 20-21
Error estandar
hist(concentracion, ylim=c(0,20))
abline(v=mean(concentracion), col="red", lwd=2)
par(mfrow=c(1,2))
hist(absorbancia,ylim = c(0,35))
abline(v=mean(absorbancia), col="red", lwd=2)
text(mean(absorbancia),33,"media", col= "red")
abline(v=median(absorbancia), col="blue", lwd=2)
text(median(absorbancia),36,"mediana", col= "blue")
#media median y moda no son utiles en distribuciones uniformes pero si en la normal y otras como la Beta
#abline lineas Verticales o Horizontales
hist(concentracion, ylim=c(0,20))
abline(v=mean(concentracion), col="red", lwd=2)
text(mean(concentracion),16,"media", col= "red")
abline(v=median(concentracion), col="blue", lwd=2)
text(median(concentracion),15,"mediana", col= "blue")
Ejercicio llenado de botellas de 1 litro
par(mfrow=c(1,1))
Volumen=rbeta(120,12,0.9)
hist(Volumen, nclass=20)
abline(v=mean(Volumen),col="red", lwd=2, lty=2)
text(0.92,34, "Media", col= "red")
abline(v=median(Volumen),col="blue", lwd=2, lty=2)
abline(v=quantile(Volumen, 0.25),col="green", lwd=2, lty=2)
abline(v=quantile(Volumen, 0.75),col="darkgreen", lwd=2, lty=2)# la frecuencia de más botellas
sdv=sd(Volumen)
limites= list(li=mean(Volumen)-sdv, ls=mean(Volumen)+sdv)# aprecen con lso nombres de lso limites ls y Li
limites
## $li
## [1] 0.8630437
##
## $ls
## [1] 1.009272
abline(v=c(limites$li,limites$ls),col="darkred")
El limite superior esta muy desviado porcentaje de datos entre los limites
100*sum(Volumen<limites$ls & Volumen>limites$li)/120
## [1] 87.5
#al ser un a distribución asimetrica por o que el 86, 6 de los datos cae por encima de la media
set.seed(2021)
indice2= rbeta(120,0.5,0.5) # informativo en cero y uno
hist(indice2, nclass=20,probability=T, ylim=c(0,4))
lines(density(indice2))
#media
abline(v=mean(indice2),col="red", lwd=2, lty=2)
text(0.92,34, "Media", col= "red")
#Mediana
abline(v=median(indice2),col="blue", lwd=2, lty=2)
#cuartil inferior
abline(v=quantile(indice2, 0.25),col="green", lwd=2, lty=2)
sdv=sd(Volumen)
limites= list(li=mean(Volumen)-sdv, ls=mean(Volumen)+sdv)# aprecen con los nombres de los limites ls y Li
limites
## $li
## [1] 0.8630437
##
## $ls
## [1] 1.009272
abline(v=c(limites$li,limites$ls),col="darkred")
#El limite superior esta muy desviado
#porcentaje de datos entre los limites
100*sum(Volumen<limites$ls & Volumen>limites$li)/120
## [1] 87.5
#al ser un a distribución asimetrica por o que el 86, 6 de los datos cae por encima de la media