Regression Table 01 - Simple Clean-Cutness Regression

In this regression we include the new clean-cutness feature from the last MTurk survey.

Table No.1 - Baseline Regression for new one-sided MTurk labels
Dependent variable:
Arrest-Final-Outcome
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Well-groomed 0.0121*** 0.0092*** 0.0158*** 0.0095*
(0.0069, 0.0173) (0.0038, 0.0145) (0.0074, 0.0242) (0.0012, 0.0178)
Happy 0.0186*** 0.0160*** 0.0116*** 0.0066
(0.0120, 0.0252) (0.0092, 0.0228) (0.0045, 0.0188) (-0.0005, 0.0137)
Threatening -0.0218*** -0.0208*** -0.0176*** -0.0061
(-0.0289, -0.0147) (-0.0280, -0.0137) (-0.0250, -0.0101) (-0.0135, 0.0014)
Messy -0.0065** -0.0048* 0.0078* 0.0069
(-0.0112, -0.0019) (-0.0094, -0.0001) (0.0004, 0.0153) (-0.0005, 0.0142)
ML-Face 0.6937*** 0.6657***
(0.6260, 0.7613) (0.5959, 0.7354)
full_model_pred 1.1289***
(0.8499, 1.4078)
Constant 0.6994*** 0.6942*** 0.6562*** 0.8298*** 0.7888*** 0.8464*** 0.6605*** 0.2448*** 0.1829*** -0.0797
(0.6712, 0.7275) (0.6690, 0.7195) (0.6227, 0.6898) (0.8065, 0.8531) (0.7684, 0.8091) (0.8181, 0.8747) (0.5813, 0.7397) (0.1938, 0.2958) (0.0902, 0.2757) (-0.2879, 0.1284)
Observations 8,336 8,336 8,336 8,336 8,336 8,336 8,336 8,336 8,336 8,336
Adjusted R2 0.0016 0.0024 0.0033 0.0030 0.0005 0.0032 0.0051 0.0329 0.0336 0.0052
F Statistic 14.5025*** (df = 1; 8334) 21.4600*** (df = 1; 8334) 14.7345*** (df = 2; 8333) 25.6885*** (df = 1; 8334) 5.4676** (df = 1; 8334) 14.2806*** (df = 2; 8333) 11.6643*** (df = 4; 8331) 284.6992*** (df = 1; 8334) 58.9077*** (df = 5; 8330) 44.2966*** (df = 1; 8334)
Note: p<0.1; p<0.05; p<0.01

Regression Table 02 - Full Feature Set

In this regression we include all the RHS variables used in our main model. The main ones are explained below:

Table No.2 - Full Feature Set - Including new one-sided MTurk labels
Dependent variable:
Arrest-Final-Outcome
(1) (2) (3) (4) (5) (6)
SexM -0.0549*** -0.0032 -0.0054 -0.0030 -0.0018 -0.0046
(-0.0732, -0.0366) (-0.0230, 0.0166) (-0.0253, 0.0145) (-0.0228, 0.0168) (-0.0218, 0.0182) (-0.0248, 0.0155)
RaceB 0.0414 0.0436 0.0448 0.0436 0.0439 0.0439
(-0.0410, 0.1238) (-0.0383, 0.1254) (-0.0371, 0.1266) (-0.0382, 0.1255) (-0.0380, 0.1257) (-0.0380, 0.1257)
Age -0.0012** -0.0005 -0.0004 -0.0005 -0.0005 -0.0005
(-0.0021, -0.0002) (-0.0015, 0.0004) (-0.0013, 0.0006) (-0.0015, 0.0005) (-0.0015, 0.0004) (-0.0014, 0.0005)
skin-tone 0.0556*** 0.0425** 0.0432** 0.0424** 0.0420** 0.0429**
(0.0237, 0.0875) (0.0108, 0.0742) (0.0115, 0.0749) (0.0107, 0.0741) (0.0103, 0.0737) (0.0112, 0.0746)
Current Charge
(p-hat)
1.1136*** 1.0729*** 1.0739*** 1.0717*** 1.0725*** 1.0736***
(1.0455, 1.1817) (1.0050, 1.1408) (1.0060, 1.1419) (1.0037, 1.1397) (1.0046, 1.1405) (1.0056, 1.1415)
Recidivism
(p-hat)
-0.8199*** -0.7664*** -0.7598*** -0.7654*** -0.7652*** -0.7640***
(-0.9263, -0.7136) (-0.8724, -0.6604) (-0.8660, -0.6536) (-0.8714, -0.6594) (-0.8712, -0.6592) (-0.8701, -0.6578)
Attractiveness -0.0151 -0.0166 -0.0176 -0.0168 -0.0167 -0.0168
(-0.0481, 0.0179) (-0.0493, 0.0162) (-0.0503, 0.0152) (-0.0495, 0.0160) (-0.0494, 0.0161) (-0.0496, 0.0159)
Competence 0.0080 0.0034 0.0027 0.0029 0.0033 0.0030
(-0.0249, 0.0409) (-0.0293, 0.0361) (-0.0300, 0.0354) (-0.0298, 0.0356) (-0.0294, 0.0360) (-0.0297, 0.0357)
Dominance -0.0042 -0.0003 0.0001 0.0005 0.0009 -0.0001
(-0.0305, 0.0220) (-0.0263, 0.0258) (-0.0260, 0.0262) (-0.0257, 0.0266) (-0.0253, 0.0271) (-0.0262, 0.0260)
Trustworthiness 0.0279 0.0244 0.0241 0.0241 0.0238 0.0243
(-0.0055, 0.0613) (-0.0088, 0.0576) (-0.0091, 0.0573) (-0.0091, 0.0573) (-0.0094, 0.0570) (-0.0089, 0.0575)
Likely-release 0.0132 0.0134 0.0132 0.0133 0.0129 0.0132
(-0.0198, 0.0462) (-0.0193, 0.0462) (-0.0196, 0.0459) (-0.0195, 0.0460) (-0.0198, 0.0457) (-0.0195, 0.0460)
ML Face 0.4779*** 0.4677*** 0.4745*** 0.4748*** 0.4731***
(0.4052, 0.5505) (0.3943, 0.5412) (0.4015, 0.5475) (0.4018, 0.5477) (0.3994, 0.5467)
Well-groomed 0.0047
(-0.0004, 0.0097)
Happy 0.0028
(-0.0035, 0.0091)
Threatening -0.0032
(-0.0101, 0.0038)
Messy -0.0018
(-0.0063, 0.0028)
Constant 0.1654** -0.2335*** -0.2573*** -0.2416*** -0.2226*** -0.2252***
(0.0524, 0.2783) (-0.3610, -0.1060) (-0.3874, -0.1272) (-0.3704, -0.1128) (-0.3523, -0.0929) (-0.3544, -0.0959)
Observations 8,336 8,336 8,336 8,336 8,336 8,336
Adjusted R2 0.1176 0.1298 0.1299 0.1297 0.1297 0.1297
F Statistic 80.3590*** (df = 14; 8321) 83.8572*** (df = 15; 8320) 78.7712*** (df = 16; 8319) 78.6452*** (df = 16; 8319) 78.6474*** (df = 16; 8319) 78.6365*** (df = 16; 8319)
Note: p<0.1; p<0.05; p<0.01
We encode skin-tone as a continuous variable increasing in brightness

Additional Regressions:

Excluding ML-Face from final column
  • In this table I exclude ML-Face (i.e. the CNN signal) from the regression. We can see that the label for Well-Groomed then appear significant, even with the inclusion of all other covariates and features (i.e. recidivism and current-charge)
Table No.3 - Full Feature Set excluding ML Face
Dependent variable:
Arrest-Final-Outcome
(1) (2) (3) (4) (5) (6)
SexM -0.0032 -0.0571*** -0.0535*** -0.0509*** -0.0583*** -0.0499***
(-0.0230, 0.0166) (-0.0755, -0.0388) (-0.0719, -0.0352) (-0.0696, -0.0322) (-0.0768, -0.0399) (-0.0684, -0.0314)
RaceB 0.0436 0.0439 0.0416 0.0421 0.0426 0.0436
(-0.0383, 0.1254) (-0.0384, 0.1263) (-0.0408, 0.1240) (-0.0403, 0.1245) (-0.0398, 0.1250) (-0.0388, 0.1259)
Age -0.0005 -0.0008 -0.0011* -0.0011* -0.0009 -0.0009
(-0.0015, 0.0004) (-0.0018, 0.0002) (-0.0020, -0.0001) (-0.0021, -0.0002) (-0.0019, 0.0001) (-0.0019, 0.00004)
skin-tone 0.0425** 0.0565*** 0.0551*** 0.0541*** 0.0565*** 0.0538***
(0.0108, 0.0742) (0.0246, 0.0883) (0.0232, 0.0869) (0.0222, 0.0860) (0.0247, 0.0884) (0.0220, 0.0857)
Current Charge
(p-hat)
1.0729*** 1.1140*** 1.1098*** 1.1121*** 1.1146*** 1.1097***
(1.0050, 1.1408) (1.0459, 1.1820) (1.0417, 1.1780) (1.0440, 1.1802) (1.0465, 1.1827) (1.0416, 1.1778)
Recidivism Risk
(p-hat)
-0.7664*** -0.8042*** -0.8165*** -0.8164*** -0.8089*** -0.8067***
(-0.8724, -0.6604) (-0.9108, -0.6975) (-0.9229, -0.7101) (-0.9228, -0.7100) (-0.9155, -0.7023) (-0.9133, -0.7002)
Attractiveness -0.0166 -0.0172 -0.0157 -0.0154 -0.0161 -0.0168
(-0.0493, 0.0162) (-0.0502, 0.0158) (-0.0487, 0.0173) (-0.0483, 0.0176) (-0.0491, 0.0169) (-0.0497, 0.0162)
Competence 0.0034 0.0063 0.0066 0.0077 0.0062 0.0062
(-0.0293, 0.0361) (-0.0266, 0.0392) (-0.0264, 0.0395) (-0.0252, 0.0406) (-0.0267, 0.0391) (-0.0267, 0.0390)
Dominance -0.0003 -0.0033 -0.0023 -0.0015 -0.0035 0.0006
(-0.0263, 0.0258) (-0.0296, 0.0229) (-0.0286, 0.0240) (-0.0279, 0.0249) (-0.0297, 0.0228) (-0.0258, 0.0269)
Trustworthiness 0.0244 0.0271 0.0270 0.0264 0.0274 0.0252
(-0.0088, 0.0576) (-0.0063, 0.0605) (-0.0064, 0.0604) (-0.0070, 0.0599) (-0.0059, 0.0608) (-0.0082, 0.0586)
Likely-release 0.0134 0.0127 0.0128 0.0120 0.0124 0.0114
(-0.0193, 0.0462) (-0.0203, 0.0456) (-0.0202, 0.0457) (-0.0210, 0.0450) (-0.0205, 0.0454) (-0.0216, 0.0443)
ML-Face 0.4779***
(0.4052, 0.5505)
Well-groomed 0.0095***
(0.0045, 0.0146)
Happy 0.0071*
(0.0007, 0.0134)
Threatening -0.0074*
(-0.0143, -0.0004)
Messy -0.0066**
(-0.0111, -0.0021)
full_model_pred 0.5269***
(0.2525, 0.8013)
Constant -0.2335*** 0.0997 0.1380** 0.1846*** 0.1815*** -0.2403*
(-0.3610, -0.1060) (-0.0185, 0.2178) (0.0224, 0.2535) (0.0702, 0.2990) (0.0680, 0.2949) (-0.4798, -0.0007)
Observations 8,336 8,336 8,336 8,336 8,336 8,336
Adjusted R2 0.1298 0.1185 0.1179 0.1178 0.1181 0.1186
F Statistic (df = 15; 8320) 83.8572*** 75.7192*** 75.2487*** 75.2234*** 75.4330*** 75.7476***
Note: p<0.1; p<0.05; p<0.01
We encode skin-tone as a continuous variable increasing in brightness
Regressing ML-Face on Well-Groomed, Happy, Threatening, Messy
  • Here I’m checking how much of the CNN signal we can capture with the labels
  • The combinations of positive and negative labels get above 0.40 on adjusted R-sqrt which is very promising
Table No.4 - P-hat-release vs. Groomed Labeles
Dependent variable:
P-hat-cnn
(1) (2) (3) (4) (5) (6) (7)
Well-Groomed 0.0106*** 0.0083*** 0.0094***
(0.0092, 0.0119) (0.0069, 0.0097) (0.0072, 0.0115)
Happy 0.0148*** 0.0124*** 0.0076***
(0.0131, 0.0166) (0.0107, 0.0142) (0.0057, 0.0094)
Threatening -0.0207*** -0.0194*** -0.0173***
(-0.0225, -0.0189) (-0.0213, -0.0176) (-0.0192, -0.0154)
Messy -0.0078*** -0.0061*** 0.0015
(-0.0090, -0.0066) (-0.0073, -0.0049) (-0.0004, 0.0034)
Constant 0.6909*** 0.6917*** 0.6573*** 0.8100*** 0.7774*** 0.8311*** 0.7174***
(0.6836, 0.6982) (0.6851, 0.6982) (0.6486, 0.6659) (0.8040, 0.8159) (0.7721, 0.7827) (0.8239, 0.8384) (0.6972, 0.7376)
Observations 8,336 8,336 8,336 8,336 8,336 8,336 8,336
Adjusted R2 0.0192 0.0236 0.0349 0.0401 0.0133 0.0482 0.0600
F Statistic 164.4825*** (df = 1; 8334) 202.5415*** (df = 1; 8334) 151.6477*** (df = 2; 8333) 349.5588*** (df = 1; 8334) 113.5397*** (df = 1; 8334) 212.1070*** (df = 2; 8333) 133.9688*** (df = 4; 8331)
Note: p<0.1; p<0.05; p<0.01
We encode skin-tone as a continuous variable increasing in brightness
Summary Regression

This is the table we discussed in our Monday meeting. It has three base regressions (column 1 - 3) and then a variation of these with our known MTurk features (attractiveness, dominance, trustworthiness, competence) and ML-Face, and both sets of controlls together (see the last three columns for this)

Table No.5 - Summary Table
Dependent variable:
Arrest final-outcome
(1) (2) (3) (4) (5) (6) (7) (8) (9)
well_groomed 0.0121*** 0.0048 0.0115*** 0.0047 0.0077** 0.0022
(0.0069, 0.0173) (-0.0003, 0.0100) (0.0063, 0.0168) (-0.0005, 0.0099) (0.0025, 0.0129) (-0.0030, 0.0073)
p_hat_cnn 0.6937*** 0.6848*** 0.6905*** 0.6823*** 0.5978*** 0.5942***
(0.6260, 0.7613) (0.6165, 0.7531) (0.6225, 0.7585) (0.6137, 0.7509) (0.5298, 0.6657) (0.5257, 0.6626)
attractiveness -0.0150 -0.0257 -0.0271 -0.0222 -0.0312 -0.0318
(-0.0489, 0.0188) (-0.0590, 0.0076) (-0.0604, 0.0062) (-0.0555, 0.0111) (-0.0641, 0.0017) (-0.0647, 0.0011)
competence 0.0105 0.0093 0.0083 0.0105 0.0091 0.0086
(-0.0236, 0.0446) (-0.0243, 0.0428) (-0.0252, 0.0419) (-0.0230, 0.0440) (-0.0240, 0.0422) (-0.0245, 0.0418)
dominance -0.0212 -0.0007 -0.0004 -0.0053 0.0108 0.0109
(-0.0487, 0.0063) (-0.0278, 0.0265) (-0.0275, 0.0267) (-0.0324, 0.0218) (-0.0160, 0.0376) (-0.0159, 0.0377)
trustworthiness 0.0481** 0.0386* 0.0383* 0.0408** 0.0333* 0.0332*
(0.0144, 0.0817) (0.0055, 0.0717) (0.0052, 0.0714) (0.0077, 0.0739) (0.0006, 0.0660) (0.0005, 0.0659)
risk_pred_prob -1.0928*** -0.9598*** -0.9573***
(-1.2007, -0.9849) (-1.0673, -0.8522) (-1.0650, -0.8496)
Constant 0.6994*** 0.2448*** 0.2263*** 0.6909*** 0.2364*** 0.2194*** 1.0471*** 0.6012*** 0.5923***
(0.6712, 0.7275) (0.1938, 0.2958) (0.1716, 0.2810) (0.6590, 0.7229) (0.1827, 0.2900) (0.1625, 0.2763) (0.9999, 1.0942) (0.5343, 0.6681) (0.5222, 0.6624)
Observations 8,336 8,336 8,336 8,336 8,336 8,336 8,336 8,336 8,336
Adjusted R2 0.0016 0.0329 0.0331 0.0022 0.0331 0.0332 0.0343 0.0573 0.0573
F Statistic 14.5025*** (df = 1; 8334) 284.6992*** (df = 1; 8334) 143.5541*** (df = 2; 8333) 4.7311*** (df = 5; 8330) 57.9927*** (df = 5; 8330) 48.6959*** (df = 6; 8329) 50.3509*** (df = 6; 8329) 85.4760*** (df = 6; 8329) 73.3309*** (df = 7; 8328)
Note: p<0.1; p<0.05; p<0.01
We encode skin-tone as a continuous variable increasing in brightness
Repeating table 5 with Well-groomed + Messy

This just repeats the regression in table 5 but with Messy + Well-Groomed

Table No.6 - Summary Table Repeated
Dependent variable:
Arrest final-outcome
(1) (2) (3) (4) (5) (6) (7) (8) (9)
well_groomed 0.0162*** 0.0097* 0.0158*** 0.0097* 0.0103** 0.0057
(0.0078, 0.0246) (0.0014, 0.0180) (0.0074, 0.0242) (0.0014, 0.0180) (0.0021, 0.0186) (-0.0025, 0.0139)
messy 0.0047 0.0055 0.0048 0.0057 0.0030 0.0040
(-0.0027, 0.0121) (-0.0018, 0.0128) (-0.0026, 0.0122) (-0.0016, 0.0130) (-0.0043, 0.0103) (-0.0032, 0.0112)
p_hat_cnn 0.6937*** 0.6854*** 0.6905*** 0.6830*** 0.5978*** 0.5948***
(0.6260, 0.7613) (0.6171, 0.7536) (0.6225, 0.7585) (0.6144, 0.7516) (0.5298, 0.6657) (0.5263, 0.6632)
attractiveness -0.0154 -0.0257 -0.0275 -0.0224 -0.0312 -0.0321
(-0.0493, 0.0184) (-0.0590, 0.0076) (-0.0609, 0.0058) (-0.0557, 0.0109) (-0.0641, 0.0017) (-0.0650, 0.0008)
competence 0.0112 0.0093 0.0092 0.0110 0.0091 0.0092
(-0.0229, 0.0453) (-0.0243, 0.0428) (-0.0244, 0.0428) (-0.0226, 0.0445) (-0.0240, 0.0422) (-0.0239, 0.0424)
dominance -0.0210 -0.0007 -0.0001 -0.0051 0.0108 0.0111
(-0.0485, 0.0065) (-0.0278, 0.0265) (-0.0272, 0.0271) (-0.0322, 0.0220) (-0.0160, 0.0376) (-0.0157, 0.0379)
trustworthiness 0.0481** 0.0386* 0.0383* 0.0408** 0.0333* 0.0332*
(0.0144, 0.0817) (0.0055, 0.0717) (0.0052, 0.0714) (0.0077, 0.0739) (0.0006, 0.0660) (0.0005, 0.0659)
risk_pred_prob -1.0917*** -0.9598*** -0.9557***
(-1.1996, -0.9838) (-1.0673, -0.8522) (-1.0635, -0.8479)
Constant 0.6589*** 0.2448*** 0.1782*** 0.6488*** 0.2364*** 0.1691*** 1.0205*** 0.6012*** 0.5565***
(0.5886, 0.7291) (0.1938, 0.2958) (0.0941, 0.2623) (0.5765, 0.7210) (0.1827, 0.2900) (0.0832, 0.2550) (0.9405, 1.1006) (0.5343, 0.6681) (0.4611, 0.6519)
F(Messy + Groomed) 3.25 (0.039) X 0.9932 (0.3706) 2.924 (0.05401) X 0.9322 (0.3939) 2.1326 (0.1189) X 0.6793 (0.5071)
Observations 8,336 8,336 8,336 8,336 8,336 8,336 8,336 8,336 8,336
Adjusted R2 0.0016 0.0329 0.0331 0.0023 0.0331 0.0333 0.0342 0.0573 0.0572
F Statistic 7.7871*** (df = 2; 8333) 284.6992*** (df = 1; 8334) 96.2201*** (df = 3; 8332) 4.1337*** (df = 6; 8329) 57.9927*** (df = 5; 8330) 41.9785*** (df = 7; 8328) 43.2201*** (df = 7; 8328) 85.4760*** (df = 6; 8329) 64.2664*** (df = 8; 8327)
Note: p<0.1; p<0.05; p<0.01
We encode skin-tone as a continuous variable increasing in brightness
Correlants to Well-Groomed
Checking correlation to Well-Groomed labels
Dependent variable:
Well-Groomed
(1) (2) (3)
Sex 0.1198***
(0.0554, 0.1841)
raceB -0.3003*
(-0.5965, -0.0041)
raceI 0.6109
(-0.0776, 1.2995)
raceU 0.2793
(-0.0673, 0.6259)
raceW -0.4778***
(-0.7766, -0.1789)
skin_tone_cat_light_skin -0.1216***
(-0.1806, -0.0625)
skin_tone_cat_medium_skin 0.0032
(-0.0696, 0.0759)
Constant 5.0962*** 5.5224*** 5.2341***
(5.0392, 5.1532) (5.2279, 5.8169) (5.1944, 5.2739)
Observations 8,336 8,336 8,336
Adjusted R2 0.0010 0.0073 0.0014
F Statistic 9.3618*** (df = 1; 8334) 16.2590*** (df = 4; 8331) 6.7323*** (df = 2; 8333)
Note: p<0.1; p<0.05; p<0.01
AUC and R-squared comparison
Table 01 - Arrest Regressions
Fit measured in adjusted R squared and AUC
Table 1 Column Labels: Male-Female Combined Male Subsample Female Subsample Felony Subsample Non-Felony Subsample
Adjusted R Squared ROC AUC Adjusted R Squared ROC AUC Adjusted R Squared ROC AUC Adjusted R Squared ROC AUC Adjusted R Squared ROC AUC
Well Groomed 0.0016 0.5266 0.0006 0.5161 0.0138 0.5956 0.0014 0.5241 0.0022 0.5373
Lower 95% C.I. 0.0004 0.5122 −0.0001 0.5001 0.0063 0.5604 −0.0001 0.5047 0.0003 0.5135
Upper 95% C.I. 0.0034 0.5411 0.0021 0.5320 0.0244 0.6308 0.0042 0.5436 0.0053 0.5611
Happy 0.0024 0.5298 0.0017 0.5251 0.0010 0.5331 −0.0002 0.5031 0.0033 0.5477
0.0011 0.5158 0.0004 0.5099 −0.0005 0.4961 −0.0003 0.4841 0.0012 0.5251
0.0045 0.5437 0.0037 0.5404 0.0055 0.5702 0.0009 0.5222 0.0065 0.5703
Well Groomed + Happy 0.0033 0.5366 0.0019 0.5281 0.0133 0.5950 0.0011 0.5246 0.0044 0.5535
0.0016 0.5222 0.0005 0.5122 0.0053 0.5595 −0.0003 0.5049 0.0020 0.5301
0.0056 0.5511 0.0043 0.5440 0.0242 0.6304 0.0045 0.5442 0.0084 0.5768
Threatening 0.0030 0.5378 0.0006 0.5175 0.0023 0.5442 0.0008 0.5216 0.0018 0.5316
0.0013 0.5239 −0.0001 0.5020 −0.0003 0.5108 −0.0002 0.5026 0.0002 0.5090
0.0052 0.5517 0.0022 0.5329 0.0084 0.5777 0.0033 0.5405 0.0045 0.5542
Messy 0.0005 0.5141 0.0003 0.5092 0.0107 0.5826 0.0003 0.5120 0.0014 0.5277
−0.0001 0.4995 −0.0001 0.4932 0.0039 0.5468 −0.0003 0.4924 0.0001 0.5039
0.0018 0.5286 0.0017 0.5252 0.0206 0.6183 0.0025 0.5316 0.0042 0.5516
Threatening + Messy 0.0032 0.5381 0.0007 0.5169 0.0111 0.5848 0.0009 0.5213 0.0028 0.5391
0.0014 0.5237 −0.0001 0.5009 0.0041 0.5490 −0.0003 0.5016 0.0008 0.5158
0.0058 0.5525 0.0027 0.5330 0.0223 0.6206 0.0043 0.5410 0.0066 0.5625
Well Groomed + Happy + Threatening + Messy 0.0051 0.5491 0.0019 0.5312 0.0135 0.5978 0.0019 0.5336 0.0047 0.5549
0.0032 0.5348 0.0007 0.5153 0.0065 0.5619 0.0002 0.5140 0.0021 0.5317
0.0084 0.5634 0.0047 0.5470 0.0268 0.6337 0.0064 0.5532 0.0093 0.5782
ML Face 0.0329 0.6233 0.0222 0.5982 0.0293 0.6568 0.0255 0.5930 0.0351 0.6552
0.0268 0.6097 0.0165 0.5827 0.0178 0.6246 0.0181 0.5739 0.0279 0.6340
0.0396 0.6369 0.0283 0.6136 0.0440 0.6889 0.0342 0.6121 0.0439 0.6764
Well Groomed + Happy + Threatening + Messy + ML Face 0.0336 0.6252 0.0226 0.6008 0.0341 0.6677 0.0256 0.5946 0.0354 0.6586
0.0279 0.6116 0.0171 0.5854 0.0233 0.6357 0.0184 0.5755 0.0280 0.6376
0.0413 0.6388 0.0301 0.6162 0.0511 0.6996 0.0362 0.6136 0.0456 0.6796