In this regression we include the new clean-cutness feature from the last MTurk survey.
ML Face includes the p_hat_cnn values for release outcomesWell-groomed, Happy, Threatening and Messy come from the latest one-sided MTurk surveyWell-groomed + Happy as well as Threatening + Messy (the thought was that these groups capture generally positive/negative perception)| Dependent variable: | ||||||||||
| Arrest-Final-Outcome | ||||||||||
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | |
| Well-groomed | 0.0121*** | 0.0092*** | 0.0158*** | 0.0095* | ||||||
| (0.0069, 0.0173) | (0.0038, 0.0145) | (0.0074, 0.0242) | (0.0012, 0.0178) | |||||||
| Happy | 0.0186*** | 0.0160*** | 0.0116*** | 0.0066 | ||||||
| (0.0120, 0.0252) | (0.0092, 0.0228) | (0.0045, 0.0188) | (-0.0005, 0.0137) | |||||||
| Threatening | -0.0218*** | -0.0208*** | -0.0176*** | -0.0061 | ||||||
| (-0.0289, -0.0147) | (-0.0280, -0.0137) | (-0.0250, -0.0101) | (-0.0135, 0.0014) | |||||||
| Messy | -0.0065** | -0.0048* | 0.0078* | 0.0069 | ||||||
| (-0.0112, -0.0019) | (-0.0094, -0.0001) | (0.0004, 0.0153) | (-0.0005, 0.0142) | |||||||
| ML-Face | 0.6937*** | 0.6657*** | ||||||||
| (0.6260, 0.7613) | (0.5959, 0.7354) | |||||||||
| full_model_pred | 1.1289*** | |||||||||
| (0.8499, 1.4078) | ||||||||||
| Constant | 0.6994*** | 0.6942*** | 0.6562*** | 0.8298*** | 0.7888*** | 0.8464*** | 0.6605*** | 0.2448*** | 0.1829*** | -0.0797 |
| (0.6712, 0.7275) | (0.6690, 0.7195) | (0.6227, 0.6898) | (0.8065, 0.8531) | (0.7684, 0.8091) | (0.8181, 0.8747) | (0.5813, 0.7397) | (0.1938, 0.2958) | (0.0902, 0.2757) | (-0.2879, 0.1284) | |
| Observations | 8,336 | 8,336 | 8,336 | 8,336 | 8,336 | 8,336 | 8,336 | 8,336 | 8,336 | 8,336 |
| Adjusted R2 | 0.0016 | 0.0024 | 0.0033 | 0.0030 | 0.0005 | 0.0032 | 0.0051 | 0.0329 | 0.0336 | 0.0052 |
| F Statistic | 14.5025*** (df = 1; 8334) | 21.4600*** (df = 1; 8334) | 14.7345*** (df = 2; 8333) | 25.6885*** (df = 1; 8334) | 5.4676** (df = 1; 8334) | 14.2806*** (df = 2; 8333) | 11.6643*** (df = 4; 8331) | 284.6992*** (df = 1; 8334) | 58.9077*** (df = 5; 8330) | 44.2966*** (df = 1; 8334) |
| Note: | p<0.1; p<0.05; p<0.01 | |||||||||
In this regression we include all the RHS variables used in our main model. The main ones are explained below:
| Dependent variable: | ||||||
| Arrest-Final-Outcome | ||||||
| (1) | (2) | (3) | (4) | (5) | (6) | |
| SexM | -0.0549*** | -0.0032 | -0.0054 | -0.0030 | -0.0018 | -0.0046 |
| (-0.0732, -0.0366) | (-0.0230, 0.0166) | (-0.0253, 0.0145) | (-0.0228, 0.0168) | (-0.0218, 0.0182) | (-0.0248, 0.0155) | |
| RaceB | 0.0414 | 0.0436 | 0.0448 | 0.0436 | 0.0439 | 0.0439 |
| (-0.0410, 0.1238) | (-0.0383, 0.1254) | (-0.0371, 0.1266) | (-0.0382, 0.1255) | (-0.0380, 0.1257) | (-0.0380, 0.1257) | |
| Age | -0.0012** | -0.0005 | -0.0004 | -0.0005 | -0.0005 | -0.0005 |
| (-0.0021, -0.0002) | (-0.0015, 0.0004) | (-0.0013, 0.0006) | (-0.0015, 0.0005) | (-0.0015, 0.0004) | (-0.0014, 0.0005) | |
| † skin-tone | 0.0556*** | 0.0425** | 0.0432** | 0.0424** | 0.0420** | 0.0429** |
| (0.0237, 0.0875) | (0.0108, 0.0742) | (0.0115, 0.0749) | (0.0107, 0.0741) | (0.0103, 0.0737) | (0.0112, 0.0746) | |
|
Current Charge (p-hat) |
1.1136*** | 1.0729*** | 1.0739*** | 1.0717*** | 1.0725*** | 1.0736*** |
| (1.0455, 1.1817) | (1.0050, 1.1408) | (1.0060, 1.1419) | (1.0037, 1.1397) | (1.0046, 1.1405) | (1.0056, 1.1415) | |
|
Recidivism (p-hat) |
-0.8199*** | -0.7664*** | -0.7598*** | -0.7654*** | -0.7652*** | -0.7640*** |
| (-0.9263, -0.7136) | (-0.8724, -0.6604) | (-0.8660, -0.6536) | (-0.8714, -0.6594) | (-0.8712, -0.6592) | (-0.8701, -0.6578) | |
| Attractiveness | -0.0151 | -0.0166 | -0.0176 | -0.0168 | -0.0167 | -0.0168 |
| (-0.0481, 0.0179) | (-0.0493, 0.0162) | (-0.0503, 0.0152) | (-0.0495, 0.0160) | (-0.0494, 0.0161) | (-0.0496, 0.0159) | |
| Competence | 0.0080 | 0.0034 | 0.0027 | 0.0029 | 0.0033 | 0.0030 |
| (-0.0249, 0.0409) | (-0.0293, 0.0361) | (-0.0300, 0.0354) | (-0.0298, 0.0356) | (-0.0294, 0.0360) | (-0.0297, 0.0357) | |
| Dominance | -0.0042 | -0.0003 | 0.0001 | 0.0005 | 0.0009 | -0.0001 |
| (-0.0305, 0.0220) | (-0.0263, 0.0258) | (-0.0260, 0.0262) | (-0.0257, 0.0266) | (-0.0253, 0.0271) | (-0.0262, 0.0260) | |
| Trustworthiness | 0.0279 | 0.0244 | 0.0241 | 0.0241 | 0.0238 | 0.0243 |
| (-0.0055, 0.0613) | (-0.0088, 0.0576) | (-0.0091, 0.0573) | (-0.0091, 0.0573) | (-0.0094, 0.0570) | (-0.0089, 0.0575) | |
| Likely-release | 0.0132 | 0.0134 | 0.0132 | 0.0133 | 0.0129 | 0.0132 |
| (-0.0198, 0.0462) | (-0.0193, 0.0462) | (-0.0196, 0.0459) | (-0.0195, 0.0460) | (-0.0198, 0.0457) | (-0.0195, 0.0460) | |
| ML Face | 0.4779*** | 0.4677*** | 0.4745*** | 0.4748*** | 0.4731*** | |
| (0.4052, 0.5505) | (0.3943, 0.5412) | (0.4015, 0.5475) | (0.4018, 0.5477) | (0.3994, 0.5467) | ||
| Well-groomed | 0.0047 | |||||
| (-0.0004, 0.0097) | ||||||
| Happy | 0.0028 | |||||
| (-0.0035, 0.0091) | ||||||
| Threatening | -0.0032 | |||||
| (-0.0101, 0.0038) | ||||||
| Messy | -0.0018 | |||||
| (-0.0063, 0.0028) | ||||||
| Constant | 0.1654** | -0.2335*** | -0.2573*** | -0.2416*** | -0.2226*** | -0.2252*** |
| (0.0524, 0.2783) | (-0.3610, -0.1060) | (-0.3874, -0.1272) | (-0.3704, -0.1128) | (-0.3523, -0.0929) | (-0.3544, -0.0959) | |
| Observations | 8,336 | 8,336 | 8,336 | 8,336 | 8,336 | 8,336 |
| Adjusted R2 | 0.1176 | 0.1298 | 0.1299 | 0.1297 | 0.1297 | 0.1297 |
| F Statistic | 80.3590*** (df = 14; 8321) | 83.8572*** (df = 15; 8320) | 78.7712*** (df = 16; 8319) | 78.6452*** (df = 16; 8319) | 78.6474*** (df = 16; 8319) | 78.6365*** (df = 16; 8319) |
| Note: | p<0.1; p<0.05; p<0.01 | |||||
| † We encode skin-tone as a continuous variable increasing in brightness | ||||||
ML-Face from final columnML-Face (i.e. the CNN signal) from the regression. We can see that the label for Well-Groomed then appear significant, even with the inclusion of all other covariates and features (i.e. recidivism and current-charge)| Dependent variable: | ||||||
| Arrest-Final-Outcome | ||||||
| (1) | (2) | (3) | (4) | (5) | (6) | |
| SexM | -0.0032 | -0.0571*** | -0.0535*** | -0.0509*** | -0.0583*** | -0.0499*** |
| (-0.0230, 0.0166) | (-0.0755, -0.0388) | (-0.0719, -0.0352) | (-0.0696, -0.0322) | (-0.0768, -0.0399) | (-0.0684, -0.0314) | |
| RaceB | 0.0436 | 0.0439 | 0.0416 | 0.0421 | 0.0426 | 0.0436 |
| (-0.0383, 0.1254) | (-0.0384, 0.1263) | (-0.0408, 0.1240) | (-0.0403, 0.1245) | (-0.0398, 0.1250) | (-0.0388, 0.1259) | |
| Age | -0.0005 | -0.0008 | -0.0011* | -0.0011* | -0.0009 | -0.0009 |
| (-0.0015, 0.0004) | (-0.0018, 0.0002) | (-0.0020, -0.0001) | (-0.0021, -0.0002) | (-0.0019, 0.0001) | (-0.0019, 0.00004) | |
| † skin-tone | 0.0425** | 0.0565*** | 0.0551*** | 0.0541*** | 0.0565*** | 0.0538*** |
| (0.0108, 0.0742) | (0.0246, 0.0883) | (0.0232, 0.0869) | (0.0222, 0.0860) | (0.0247, 0.0884) | (0.0220, 0.0857) | |
|
Current Charge (p-hat) |
1.0729*** | 1.1140*** | 1.1098*** | 1.1121*** | 1.1146*** | 1.1097*** |
| (1.0050, 1.1408) | (1.0459, 1.1820) | (1.0417, 1.1780) | (1.0440, 1.1802) | (1.0465, 1.1827) | (1.0416, 1.1778) | |
|
Recidivism Risk (p-hat) |
-0.7664*** | -0.8042*** | -0.8165*** | -0.8164*** | -0.8089*** | -0.8067*** |
| (-0.8724, -0.6604) | (-0.9108, -0.6975) | (-0.9229, -0.7101) | (-0.9228, -0.7100) | (-0.9155, -0.7023) | (-0.9133, -0.7002) | |
| Attractiveness | -0.0166 | -0.0172 | -0.0157 | -0.0154 | -0.0161 | -0.0168 |
| (-0.0493, 0.0162) | (-0.0502, 0.0158) | (-0.0487, 0.0173) | (-0.0483, 0.0176) | (-0.0491, 0.0169) | (-0.0497, 0.0162) | |
| Competence | 0.0034 | 0.0063 | 0.0066 | 0.0077 | 0.0062 | 0.0062 |
| (-0.0293, 0.0361) | (-0.0266, 0.0392) | (-0.0264, 0.0395) | (-0.0252, 0.0406) | (-0.0267, 0.0391) | (-0.0267, 0.0390) | |
| Dominance | -0.0003 | -0.0033 | -0.0023 | -0.0015 | -0.0035 | 0.0006 |
| (-0.0263, 0.0258) | (-0.0296, 0.0229) | (-0.0286, 0.0240) | (-0.0279, 0.0249) | (-0.0297, 0.0228) | (-0.0258, 0.0269) | |
| Trustworthiness | 0.0244 | 0.0271 | 0.0270 | 0.0264 | 0.0274 | 0.0252 |
| (-0.0088, 0.0576) | (-0.0063, 0.0605) | (-0.0064, 0.0604) | (-0.0070, 0.0599) | (-0.0059, 0.0608) | (-0.0082, 0.0586) | |
| Likely-release | 0.0134 | 0.0127 | 0.0128 | 0.0120 | 0.0124 | 0.0114 |
| (-0.0193, 0.0462) | (-0.0203, 0.0456) | (-0.0202, 0.0457) | (-0.0210, 0.0450) | (-0.0205, 0.0454) | (-0.0216, 0.0443) | |
| ML-Face | 0.4779*** | |||||
| (0.4052, 0.5505) | ||||||
| Well-groomed | 0.0095*** | |||||
| (0.0045, 0.0146) | ||||||
| Happy | 0.0071* | |||||
| (0.0007, 0.0134) | ||||||
| Threatening | -0.0074* | |||||
| (-0.0143, -0.0004) | ||||||
| Messy | -0.0066** | |||||
| (-0.0111, -0.0021) | ||||||
| full_model_pred | 0.5269*** | |||||
| (0.2525, 0.8013) | ||||||
| Constant | -0.2335*** | 0.0997 | 0.1380** | 0.1846*** | 0.1815*** | -0.2403* |
| (-0.3610, -0.1060) | (-0.0185, 0.2178) | (0.0224, 0.2535) | (0.0702, 0.2990) | (0.0680, 0.2949) | (-0.4798, -0.0007) | |
| Observations | 8,336 | 8,336 | 8,336 | 8,336 | 8,336 | 8,336 |
| Adjusted R2 | 0.1298 | 0.1185 | 0.1179 | 0.1178 | 0.1181 | 0.1186 |
| F Statistic (df = 15; 8320) | 83.8572*** | 75.7192*** | 75.2487*** | 75.2234*** | 75.4330*** | 75.7476*** |
| Note: | p<0.1; p<0.05; p<0.01 | |||||
| † We encode skin-tone as a continuous variable increasing in brightness | ||||||
ML-Face on Well-Groomed, Happy, Threatening, Messy0.40 on adjusted R-sqrt which is very promising| Dependent variable: | |||||||
| P-hat-cnn | |||||||
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | |
| Well-Groomed | 0.0106*** | 0.0083*** | 0.0094*** | ||||
| (0.0092, 0.0119) | (0.0069, 0.0097) | (0.0072, 0.0115) | |||||
| Happy | 0.0148*** | 0.0124*** | 0.0076*** | ||||
| (0.0131, 0.0166) | (0.0107, 0.0142) | (0.0057, 0.0094) | |||||
| Threatening | -0.0207*** | -0.0194*** | -0.0173*** | ||||
| (-0.0225, -0.0189) | (-0.0213, -0.0176) | (-0.0192, -0.0154) | |||||
| Messy | -0.0078*** | -0.0061*** | 0.0015 | ||||
| (-0.0090, -0.0066) | (-0.0073, -0.0049) | (-0.0004, 0.0034) | |||||
| Constant | 0.6909*** | 0.6917*** | 0.6573*** | 0.8100*** | 0.7774*** | 0.8311*** | 0.7174*** |
| (0.6836, 0.6982) | (0.6851, 0.6982) | (0.6486, 0.6659) | (0.8040, 0.8159) | (0.7721, 0.7827) | (0.8239, 0.8384) | (0.6972, 0.7376) | |
| Observations | 8,336 | 8,336 | 8,336 | 8,336 | 8,336 | 8,336 | 8,336 |
| Adjusted R2 | 0.0192 | 0.0236 | 0.0349 | 0.0401 | 0.0133 | 0.0482 | 0.0600 |
| F Statistic | 164.4825*** (df = 1; 8334) | 202.5415*** (df = 1; 8334) | 151.6477*** (df = 2; 8333) | 349.5588*** (df = 1; 8334) | 113.5397*** (df = 1; 8334) | 212.1070*** (df = 2; 8333) | 133.9688*** (df = 4; 8331) |
| Note: | p<0.1; p<0.05; p<0.01 | ||||||
| † We encode skin-tone as a continuous variable increasing in brightness | |||||||
This is the table we discussed in our Monday meeting. It has three base regressions (column 1 - 3) and then a variation of these with our known MTurk features (attractiveness, dominance, trustworthiness, competence) and ML-Face, and both sets of controlls together (see the last three columns for this)
| Dependent variable: | |||||||||
| Arrest final-outcome | |||||||||
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
| well_groomed | 0.0121*** | 0.0048 | 0.0115*** | 0.0047 | 0.0077** | 0.0022 | |||
| (0.0069, 0.0173) | (-0.0003, 0.0100) | (0.0063, 0.0168) | (-0.0005, 0.0099) | (0.0025, 0.0129) | (-0.0030, 0.0073) | ||||
| p_hat_cnn | 0.6937*** | 0.6848*** | 0.6905*** | 0.6823*** | 0.5978*** | 0.5942*** | |||
| (0.6260, 0.7613) | (0.6165, 0.7531) | (0.6225, 0.7585) | (0.6137, 0.7509) | (0.5298, 0.6657) | (0.5257, 0.6626) | ||||
| attractiveness | -0.0150 | -0.0257 | -0.0271 | -0.0222 | -0.0312 | -0.0318 | |||
| (-0.0489, 0.0188) | (-0.0590, 0.0076) | (-0.0604, 0.0062) | (-0.0555, 0.0111) | (-0.0641, 0.0017) | (-0.0647, 0.0011) | ||||
| competence | 0.0105 | 0.0093 | 0.0083 | 0.0105 | 0.0091 | 0.0086 | |||
| (-0.0236, 0.0446) | (-0.0243, 0.0428) | (-0.0252, 0.0419) | (-0.0230, 0.0440) | (-0.0240, 0.0422) | (-0.0245, 0.0418) | ||||
| dominance | -0.0212 | -0.0007 | -0.0004 | -0.0053 | 0.0108 | 0.0109 | |||
| (-0.0487, 0.0063) | (-0.0278, 0.0265) | (-0.0275, 0.0267) | (-0.0324, 0.0218) | (-0.0160, 0.0376) | (-0.0159, 0.0377) | ||||
| trustworthiness | 0.0481** | 0.0386* | 0.0383* | 0.0408** | 0.0333* | 0.0332* | |||
| (0.0144, 0.0817) | (0.0055, 0.0717) | (0.0052, 0.0714) | (0.0077, 0.0739) | (0.0006, 0.0660) | (0.0005, 0.0659) | ||||
| risk_pred_prob | -1.0928*** | -0.9598*** | -0.9573*** | ||||||
| (-1.2007, -0.9849) | (-1.0673, -0.8522) | (-1.0650, -0.8496) | |||||||
| Constant | 0.6994*** | 0.2448*** | 0.2263*** | 0.6909*** | 0.2364*** | 0.2194*** | 1.0471*** | 0.6012*** | 0.5923*** |
| (0.6712, 0.7275) | (0.1938, 0.2958) | (0.1716, 0.2810) | (0.6590, 0.7229) | (0.1827, 0.2900) | (0.1625, 0.2763) | (0.9999, 1.0942) | (0.5343, 0.6681) | (0.5222, 0.6624) | |
| Observations | 8,336 | 8,336 | 8,336 | 8,336 | 8,336 | 8,336 | 8,336 | 8,336 | 8,336 |
| Adjusted R2 | 0.0016 | 0.0329 | 0.0331 | 0.0022 | 0.0331 | 0.0332 | 0.0343 | 0.0573 | 0.0573 |
| F Statistic | 14.5025*** (df = 1; 8334) | 284.6992*** (df = 1; 8334) | 143.5541*** (df = 2; 8333) | 4.7311*** (df = 5; 8330) | 57.9927*** (df = 5; 8330) | 48.6959*** (df = 6; 8329) | 50.3509*** (df = 6; 8329) | 85.4760*** (df = 6; 8329) | 73.3309*** (df = 7; 8328) |
| Note: | p<0.1; p<0.05; p<0.01 | ||||||||
| † We encode skin-tone as a continuous variable increasing in brightness | |||||||||
Well-groomed + MessyThis just repeats the regression in table 5 but with Messy + Well-Groomed
| Dependent variable: | |||||||||
| Arrest final-outcome | |||||||||
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
| well_groomed | 0.0162*** | 0.0097* | 0.0158*** | 0.0097* | 0.0103** | 0.0057 | |||
| (0.0078, 0.0246) | (0.0014, 0.0180) | (0.0074, 0.0242) | (0.0014, 0.0180) | (0.0021, 0.0186) | (-0.0025, 0.0139) | ||||
| messy | 0.0047 | 0.0055 | 0.0048 | 0.0057 | 0.0030 | 0.0040 | |||
| (-0.0027, 0.0121) | (-0.0018, 0.0128) | (-0.0026, 0.0122) | (-0.0016, 0.0130) | (-0.0043, 0.0103) | (-0.0032, 0.0112) | ||||
| p_hat_cnn | 0.6937*** | 0.6854*** | 0.6905*** | 0.6830*** | 0.5978*** | 0.5948*** | |||
| (0.6260, 0.7613) | (0.6171, 0.7536) | (0.6225, 0.7585) | (0.6144, 0.7516) | (0.5298, 0.6657) | (0.5263, 0.6632) | ||||
| attractiveness | -0.0154 | -0.0257 | -0.0275 | -0.0224 | -0.0312 | -0.0321 | |||
| (-0.0493, 0.0184) | (-0.0590, 0.0076) | (-0.0609, 0.0058) | (-0.0557, 0.0109) | (-0.0641, 0.0017) | (-0.0650, 0.0008) | ||||
| competence | 0.0112 | 0.0093 | 0.0092 | 0.0110 | 0.0091 | 0.0092 | |||
| (-0.0229, 0.0453) | (-0.0243, 0.0428) | (-0.0244, 0.0428) | (-0.0226, 0.0445) | (-0.0240, 0.0422) | (-0.0239, 0.0424) | ||||
| dominance | -0.0210 | -0.0007 | -0.0001 | -0.0051 | 0.0108 | 0.0111 | |||
| (-0.0485, 0.0065) | (-0.0278, 0.0265) | (-0.0272, 0.0271) | (-0.0322, 0.0220) | (-0.0160, 0.0376) | (-0.0157, 0.0379) | ||||
| trustworthiness | 0.0481** | 0.0386* | 0.0383* | 0.0408** | 0.0333* | 0.0332* | |||
| (0.0144, 0.0817) | (0.0055, 0.0717) | (0.0052, 0.0714) | (0.0077, 0.0739) | (0.0006, 0.0660) | (0.0005, 0.0659) | ||||
| risk_pred_prob | -1.0917*** | -0.9598*** | -0.9557*** | ||||||
| (-1.1996, -0.9838) | (-1.0673, -0.8522) | (-1.0635, -0.8479) | |||||||
| Constant | 0.6589*** | 0.2448*** | 0.1782*** | 0.6488*** | 0.2364*** | 0.1691*** | 1.0205*** | 0.6012*** | 0.5565*** |
| (0.5886, 0.7291) | (0.1938, 0.2958) | (0.0941, 0.2623) | (0.5765, 0.7210) | (0.1827, 0.2900) | (0.0832, 0.2550) | (0.9405, 1.1006) | (0.5343, 0.6681) | (0.4611, 0.6519) | |
| F(Messy + Groomed) | 3.25 (0.039) | X | 0.9932 (0.3706) | 2.924 (0.05401) | X | 0.9322 (0.3939) | 2.1326 (0.1189) | X | 0.6793 (0.5071) |
| Observations | 8,336 | 8,336 | 8,336 | 8,336 | 8,336 | 8,336 | 8,336 | 8,336 | 8,336 |
| Adjusted R2 | 0.0016 | 0.0329 | 0.0331 | 0.0023 | 0.0331 | 0.0333 | 0.0342 | 0.0573 | 0.0572 |
| F Statistic | 7.7871*** (df = 2; 8333) | 284.6992*** (df = 1; 8334) | 96.2201*** (df = 3; 8332) | 4.1337*** (df = 6; 8329) | 57.9927*** (df = 5; 8330) | 41.9785*** (df = 7; 8328) | 43.2201*** (df = 7; 8328) | 85.4760*** (df = 6; 8329) | 64.2664*** (df = 8; 8327) |
| Note: | p<0.1; p<0.05; p<0.01 | ||||||||
| † We encode skin-tone as a continuous variable increasing in brightness | |||||||||
| Dependent variable: | |||
| Well-Groomed | |||
| (1) | (2) | (3) | |
| Sex | 0.1198*** | ||
| (0.0554, 0.1841) | |||
| raceB | -0.3003* | ||
| (-0.5965, -0.0041) | |||
| raceI | 0.6109 | ||
| (-0.0776, 1.2995) | |||
| raceU | 0.2793 | ||
| (-0.0673, 0.6259) | |||
| raceW | -0.4778*** | ||
| (-0.7766, -0.1789) | |||
| skin_tone_cat_light_skin | -0.1216*** | ||
| (-0.1806, -0.0625) | |||
| skin_tone_cat_medium_skin | 0.0032 | ||
| (-0.0696, 0.0759) | |||
| Constant | 5.0962*** | 5.5224*** | 5.2341*** |
| (5.0392, 5.1532) | (5.2279, 5.8169) | (5.1944, 5.2739) | |
| Observations | 8,336 | 8,336 | 8,336 |
| Adjusted R2 | 0.0010 | 0.0073 | 0.0014 |
| F Statistic | 9.3618*** (df = 1; 8334) | 16.2590*** (df = 4; 8331) | 6.7323*** (df = 2; 8333) |
| Note: | p<0.1; p<0.05; p<0.01 | ||
| Table 01 - Arrest Regressions | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Fit measured in adjusted R squared and AUC | ||||||||||
| Table 1 Column Labels: | Male-Female Combined | Male Subsample | Female Subsample | Felony Subsample | Non-Felony Subsample | |||||
| Adjusted R Squared | ROC AUC | Adjusted R Squared | ROC AUC | Adjusted R Squared | ROC AUC | Adjusted R Squared | ROC AUC | Adjusted R Squared | ROC AUC | |
| Well Groomed | 0.0016 | 0.5266 | 0.0006 | 0.5161 | 0.0138 | 0.5956 | 0.0014 | 0.5241 | 0.0022 | 0.5373 |
| Lower 95% C.I. | 0.0004 | 0.5122 | −0.0001 | 0.5001 | 0.0063 | 0.5604 | −0.0001 | 0.5047 | 0.0003 | 0.5135 |
| Upper 95% C.I. | 0.0034 | 0.5411 | 0.0021 | 0.5320 | 0.0244 | 0.6308 | 0.0042 | 0.5436 | 0.0053 | 0.5611 |
| Happy | 0.0024 | 0.5298 | 0.0017 | 0.5251 | 0.0010 | 0.5331 | −0.0002 | 0.5031 | 0.0033 | 0.5477 |
| 0.0011 | 0.5158 | 0.0004 | 0.5099 | −0.0005 | 0.4961 | −0.0003 | 0.4841 | 0.0012 | 0.5251 | |
| 0.0045 | 0.5437 | 0.0037 | 0.5404 | 0.0055 | 0.5702 | 0.0009 | 0.5222 | 0.0065 | 0.5703 | |
| Well Groomed + Happy | 0.0033 | 0.5366 | 0.0019 | 0.5281 | 0.0133 | 0.5950 | 0.0011 | 0.5246 | 0.0044 | 0.5535 |
| 0.0016 | 0.5222 | 0.0005 | 0.5122 | 0.0053 | 0.5595 | −0.0003 | 0.5049 | 0.0020 | 0.5301 | |
| 0.0056 | 0.5511 | 0.0043 | 0.5440 | 0.0242 | 0.6304 | 0.0045 | 0.5442 | 0.0084 | 0.5768 | |
| Threatening | 0.0030 | 0.5378 | 0.0006 | 0.5175 | 0.0023 | 0.5442 | 0.0008 | 0.5216 | 0.0018 | 0.5316 |
| 0.0013 | 0.5239 | −0.0001 | 0.5020 | −0.0003 | 0.5108 | −0.0002 | 0.5026 | 0.0002 | 0.5090 | |
| 0.0052 | 0.5517 | 0.0022 | 0.5329 | 0.0084 | 0.5777 | 0.0033 | 0.5405 | 0.0045 | 0.5542 | |
| Messy | 0.0005 | 0.5141 | 0.0003 | 0.5092 | 0.0107 | 0.5826 | 0.0003 | 0.5120 | 0.0014 | 0.5277 |
| −0.0001 | 0.4995 | −0.0001 | 0.4932 | 0.0039 | 0.5468 | −0.0003 | 0.4924 | 0.0001 | 0.5039 | |
| 0.0018 | 0.5286 | 0.0017 | 0.5252 | 0.0206 | 0.6183 | 0.0025 | 0.5316 | 0.0042 | 0.5516 | |
| Threatening + Messy | 0.0032 | 0.5381 | 0.0007 | 0.5169 | 0.0111 | 0.5848 | 0.0009 | 0.5213 | 0.0028 | 0.5391 |
| 0.0014 | 0.5237 | −0.0001 | 0.5009 | 0.0041 | 0.5490 | −0.0003 | 0.5016 | 0.0008 | 0.5158 | |
| 0.0058 | 0.5525 | 0.0027 | 0.5330 | 0.0223 | 0.6206 | 0.0043 | 0.5410 | 0.0066 | 0.5625 | |
| Well Groomed + Happy + Threatening + Messy | 0.0051 | 0.5491 | 0.0019 | 0.5312 | 0.0135 | 0.5978 | 0.0019 | 0.5336 | 0.0047 | 0.5549 |
| 0.0032 | 0.5348 | 0.0007 | 0.5153 | 0.0065 | 0.5619 | 0.0002 | 0.5140 | 0.0021 | 0.5317 | |
| 0.0084 | 0.5634 | 0.0047 | 0.5470 | 0.0268 | 0.6337 | 0.0064 | 0.5532 | 0.0093 | 0.5782 | |
| ML Face | 0.0329 | 0.6233 | 0.0222 | 0.5982 | 0.0293 | 0.6568 | 0.0255 | 0.5930 | 0.0351 | 0.6552 |
| 0.0268 | 0.6097 | 0.0165 | 0.5827 | 0.0178 | 0.6246 | 0.0181 | 0.5739 | 0.0279 | 0.6340 | |
| 0.0396 | 0.6369 | 0.0283 | 0.6136 | 0.0440 | 0.6889 | 0.0342 | 0.6121 | 0.0439 | 0.6764 | |
| Well Groomed + Happy + Threatening + Messy + ML Face | 0.0336 | 0.6252 | 0.0226 | 0.6008 | 0.0341 | 0.6677 | 0.0256 | 0.5946 | 0.0354 | 0.6586 |
| 0.0279 | 0.6116 | 0.0171 | 0.5854 | 0.0233 | 0.6357 | 0.0184 | 0.5755 | 0.0280 | 0.6376 | |
| 0.0413 | 0.6388 | 0.0301 | 0.6162 | 0.0511 | 0.6996 | 0.0362 | 0.6136 | 0.0456 | 0.6796 | |