Primeiramente, os arquivos zip baixados devem ser salvos em uma pasta. Os códigos abaixo extraem os arquivos dos zips e salvam em outra pasta.

pasta_zip='/home/mauricio/Dropbox/Projetos/Programacao em Python e R - 2021/Analise Dados/IBGE2/zips/'
arquivos=list.files(pasta_zip)
pasta_unzip='/home/mauricio/Dropbox/Projetos/Programacao em Python e R - 2021/Analise Dados/IBGE2/unzip/'
for (i in arquivos) 
   unzip(paste0(pasta_zip,i),exdir=pasta_unzip)

Aqui os arquivos são separados e juntados novamente. É feito um looping em cada estação, que são armazenadas em na variável estacoes, e todos os arquivos de cada uma são juntados.

estacoes = c('IMB','ARC','SAL','FOR','SAN') #1..5
DTS=list()
j=0
for (i in estacoes) {
   files = list.files(pasta_unzip,pattern=i,full.names = TRUE)
   dt = lapply(files, function(x) {read.csv2(file=x, header=F,          sep="")})
   j=j+1
   DTS[[j]] = do.call("rbind", lapply(dt, as.data.frame)) 
   tempo=paste0(DTS[[j]]$V1,DTS[[j]]$V2) #concatena as duas colunas de Data e Hora
   DTS[[j]]$tempo=as.POSIXct(tempo,format = "%d/%m/%Y %H:%M:%S")
}

Plots únicos de cada estação.

dt=DTS[[1]]     #Plot de IMB
dt=DTS[[3]]     #Plot de SAL
plot(dt$tempo, dt$V3,ty='l',
     xlab='', ylab='', main='SAL', xaxt='n')
axis(1, dt$tempo, format(dt$tempo,"%d"), tick=F)

E aqui o plot múltiplo, com as variáveis padronizadas.

dt=DTS[[3]]
plot(dt$tempo, dt$V3-mean(dt$V3),
     ty='l', xlab='', ylim=c(-2,2),
     ylab='', col='blue', xaxt='n')
lines(dt$tempo, dt$V3-mean(dt$V3), col='red')
dt=DTS[[1]]
lines(dt$tempo, dt$V3-mean(dt$V3), col='black')
dt=DTS[[4]]
lines(dt$tempo,dt$V3-mean(dt$V3),col='gray')
dt=DTS[[5]]
lines(dt$tempo, dt$V3-mean(dt$V3), col='blue')
axis(1, dt$tempo, tick=F, format(dt$tempo,"%d"))
legend('topright', 
       legend=c('IMB','ARC','SAL','FOR','SAN'),
       lty=c(1,1,1,1,1),
       col=c('blue','red','black','gray','coral'),
       cex=0.5, ncol = 5)

LS0tCnRpdGxlOiAiSUJHRSAyIgpvdXRwdXQ6CiAgaHRtbF9ub3RlYm9vazogZGVmYXVsdAotLS0KKioqCgpQcmltZWlyYW1lbnRlLCBvcyBhcnF1aXZvcyB6aXAgYmFpeGFkb3MgZGV2ZW0gc2VyIHNhbHZvcyBlbSB1bWEgcGFzdGEuIE9zIGPDs2RpZ29zIGFiYWl4byBleHRyYWVtIG9zIGFycXVpdm9zIGRvcyB6aXBzIGUgc2FsdmFtIGVtIG91dHJhIHBhc3RhLiAgClxuZXdsaW5lCmBgYHtyfQpwYXN0YV96aXA9Jy9ob21lL21hdXJpY2lvL0Ryb3Bib3gvUHJvamV0b3MvUHJvZ3JhbWFjYW8gZW0gUHl0aG9uIGUgUiAtIDIwMjEvQW5hbGlzZSBEYWRvcy9JQkdFMi96aXBzLycKYXJxdWl2b3M9bGlzdC5maWxlcyhwYXN0YV96aXApCnBhc3RhX3VuemlwPScvaG9tZS9tYXVyaWNpby9Ecm9wYm94L1Byb2pldG9zL1Byb2dyYW1hY2FvIGVtIFB5dGhvbiBlIFIgLSAyMDIxL0FuYWxpc2UgRGFkb3MvSUJHRTIvdW56aXAvJwpmb3IgKGkgaW4gYXJxdWl2b3MpIAogICB1bnppcChwYXN0ZTAocGFzdGFfemlwLGkpLGV4ZGlyPXBhc3RhX3VuemlwKQpgYGAKCkFxdWkgb3MgYXJxdWl2b3Mgc8OjbyBzZXBhcmFkb3MgZSBqdW50YWRvcyBub3ZhbWVudGUuIMOJIGZlaXRvIHVtIGxvb3BpbmcgZW0gY2FkYSBlc3Rhw6fDo28sIHF1ZSBzw6NvIGFybWF6ZW5hZGFzIGVtIG5hIHZhcmnDoXZlbCBgZXN0YWNvZXNgLCBlIHRvZG9zIG9zIGFycXVpdm9zIGRlIGNhZGEgdW1hIHPDo28ganVudGFkb3MuClxuZXdsaW5lCmBgYHtyfQplc3RhY29lcyA9IGMoJ0lNQicsJ0FSQycsJ1NBTCcsJ0ZPUicsJ1NBTicpICMxLi41CkRUUz1saXN0KCkKaj0wCmZvciAoaSBpbiBlc3RhY29lcykgewogICBmaWxlcyA9IGxpc3QuZmlsZXMocGFzdGFfdW56aXAscGF0dGVybj1pLGZ1bGwubmFtZXMgPSBUUlVFKQogICBkdCA9IGxhcHBseShmaWxlcywgZnVuY3Rpb24oeCkge3JlYWQuY3N2MihmaWxlPXgsIGhlYWRlcj1GLCAgICAgICAgICBzZXA9IiIpfSkKICAgaj1qKzEKICAgRFRTW1tqXV0gPSBkby5jYWxsKCJyYmluZCIsIGxhcHBseShkdCwgYXMuZGF0YS5mcmFtZSkpIAogICB0ZW1wbz1wYXN0ZTAoRFRTW1tqXV0kVjEsRFRTW1tqXV0kVjIpICNjb25jYXRlbmEgYXMgZHVhcyBjb2x1bmFzIGRlIERhdGEgZSBIb3JhCiAgIERUU1tbal1dJHRlbXBvPWFzLlBPU0lYY3QodGVtcG8sZm9ybWF0ID0gIiVkLyVtLyVZICVIOiVNOiVTIikKfQpgYGAKClBsb3RzIMO6bmljb3MgZGUgY2FkYSBlc3Rhw6fDo28uIApcbmV3bGluZQpgYGB7cn0KZHQ9RFRTW1sxXV0gICAgICNQbG90IGRlIElNQgpkdD1EVFNbWzNdXSAgICAgI1Bsb3QgZGUgU0FMCnBsb3QoZHQkdGVtcG8sIGR0JFYzLHR5PSdsJywKICAgICB4bGFiPScnLCB5bGFiPScnLCBtYWluPSdTQUwnLCB4YXh0PSduJykKYXhpcygxLCBkdCR0ZW1wbywgZm9ybWF0KGR0JHRlbXBvLCIlZCIpLCB0aWNrPUYpCmBgYAoKRSBhcXVpIG8gcGxvdCBtw7psdGlwbG8sIGNvbSBhcyB2YXJpw6F2ZWlzIHBhZHJvbml6YWRhcy4KXG5ld2xpbmUKYGBge3J9CmR0PURUU1tbM11dCnBsb3QoZHQkdGVtcG8sIGR0JFYzLW1lYW4oZHQkVjMpLAogICAgIHR5PSdsJywgeGxhYj0nJywgeWxpbT1jKC0yLDIpLAogICAgIHlsYWI9JycsIGNvbD0nYmx1ZScsIHhheHQ9J24nKQpsaW5lcyhkdCR0ZW1wbywgZHQkVjMtbWVhbihkdCRWMyksIGNvbD0ncmVkJykKZHQ9RFRTW1sxXV0KbGluZXMoZHQkdGVtcG8sIGR0JFYzLW1lYW4oZHQkVjMpLCBjb2w9J2JsYWNrJykKZHQ9RFRTW1s0XV0KbGluZXMoZHQkdGVtcG8sZHQkVjMtbWVhbihkdCRWMyksY29sPSdncmF5JykKZHQ9RFRTW1s1XV0KbGluZXMoZHQkdGVtcG8sIGR0JFYzLW1lYW4oZHQkVjMpLCBjb2w9J2JsdWUnKQpheGlzKDEsIGR0JHRlbXBvLCB0aWNrPUYsIGZvcm1hdChkdCR0ZW1wbywiJWQiKSkKbGVnZW5kKCd0b3ByaWdodCcsIAogICAgICAgbGVnZW5kPWMoJ0lNQicsJ0FSQycsJ1NBTCcsJ0ZPUicsJ1NBTicpLAogICAgICAgbHR5PWMoMSwxLDEsMSwxKSwKICAgICAgIGNvbD1jKCdibHVlJywncmVkJywnYmxhY2snLCdncmF5JywnY29yYWwnKSwKICAgICAgIGNleD0wLjUsIG5jb2wgPSA1KQpgYGAKCgoKCg==