This project was a follow-up to a previous study in which we analyzed common unpopular norms among college undergraduates. Unpopular norms are rules about behavior that people widely follow in public yet disagree with privately. In a previous study, when college undergraduates were asked to describe a behavior that they perceived as being widely followed or endorsed but that they did not personally agree with, the following three common behaviors emerged: 1) Wearing fashionable/trendy clothing, 2) Constantly using technology/social media, and 3) Limiting the self-expression of one’s true ideas in conversations with others. The purpose of this follow-up study was to examine the relative importance of personal values versus normative constructs as predictors of conformity with or deviance from these unpopular norms.
data <- import("mlm_setup_follow_up_survey_values_norms_GS_Fall19.xlsx")
glimpse(data)## Rows: 960
## Columns: 79
## $ ID <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, ~
## $ Q1.1 <chr> "20", "21", "20", "18", "18", "19", "21", "21",~
## $ Q328 <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1,~
## $ Q328_4_TEXT <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,~
## $ Q1.3 <dbl> 16, 16, 16, 16, 8, 10, 16, 8, 17, 16, 16, 10, 1~
## $ Q1.3_17_TEXT <chr> NA, NA, NA, NA, NA, NA, NA, NA, "White", NA, NA~
## $ Behavior <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
## $ Values1 <dbl> 5, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 3, 5, 4, 4, 4,~
## $ Values2 <dbl> 5, 2, 3, 2, 4, 3, 4, 4, 5, 4, 3, 4, 5, 4, 4, 3,~
## $ Values3 <dbl> 4, 2, 2, 1, 2, 3, 4, 4, 5, 2, 1, 3, 5, 2, 4, 2,~
## $ Norm1 <dbl> 4, 3, 2, 3, 3, 3, 3, 4, 5, 2, 1, 2, 5, 2, 2, 1,~
## $ Norm2 <dbl> 4, 2, 2, 2, 2, 3, 2, 4, 2, 1, 1, 2, 5, 1, 4, 2,~
## $ Norm3 <dbl> 4, 4, 4, 5, 4, 4, 4, 4, 5, 4, 5, 4, 5, 4, 4, 4,~
## $ Norm4 <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 4, ~
## $ Conform <dbl> 4, 1, 4, 3, 3, 4, 4, 3, 5, 4, 4, 3, 5, 5, 4, 4,~
## $ Dont_Conform <dbl> 1, 5, 1, 2, 3, 3, 1, 3, 1, 2, 2, 2, 1, 1, 2, 2,~
## $ Deviate <dbl> 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 3, 3, 2, 1, 1, 2,~
## $ Stopping <dbl> 1, 1, 4, 2, 3, 3, 4, 2, 2, 4, 1, 2, 4, 4, 4, 3,~
## $ Is_Norm <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
## $ Self_College_Community <dbl> 5, 5, 4, 4, 4, 2, 5, 2, 3, 3, 2, 4, 4, 6, 4, 3,~
## $ IAF_1 <dbl> 5, 4, 3, 3, 4, 5, 4, 3, 4, 4, 5, 4, 5, 4, 4, 4,~
## $ IAF_2 <dbl> 4, 3, 2, 2, 3, 1, 4, 3, 3, 4, 3, 4, 5, 4, 4, 4,~
## $ IAF_3 <dbl> 4, 3, 2, 4, 3, 3, 5, 3, 4, 5, 5, 5, 5, 5, 5, 5,~
## $ IAF_4 <dbl> 4, 4, 4, 3, 4, 3, 4, 4, 3, 3, 5, 5, 5, 4, 4, 3,~
## $ IAF_5 <dbl> 4, 4, 3, 5, 3, 1, 4, 4, 5, 4, 5, 5, 5, 3, 4, 5,~
## $ IAF_6 <dbl> 2, 3, 3, 5, 4, 1, 4, 4, 4, 5, 1, 4, 5, 4, 3, 4,~
## $ IAF_7 <dbl> 2, 2, 2, 4, 3, 1, 2, 4, 4, 3, 1, 4, 5, 4, 4, 2,~
## $ IAF_8 <dbl> 4, 2, 4, 3, 3, 2, 4, 4, 3, 3, 5, 4, 5, 5, 4, 3,~
## $ IAF_9 <dbl> 4, 5, 2, 5, 4, 3, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5,~
## $ IAF_10 <dbl> 4, 4, 4, 4, 4, 4, 5, 4, 3, 2, 5, 4, 5, 4, 4, 2,~
## $ IAF_11 <dbl> 2, 2, 3, 2, 4, 3, 2, 3, 1, 1, 1, 2, 5, 2, 5, 2,~
## $ IAF_12 <dbl> 4, 4, 3, 4, 4, 5, 5, 4, 5, 4, 5, 4, 5, 5, 4, 5,~
## $ IAF_13 <dbl> 4, 5, 2, 5, 4, 4, 5, 5, 4, 5, 4, 4, 5, 5, 4, 5,~
## $ IAF_14 <dbl> 3, 3, 2, 4, 4, 3, 3, 5, 3, 2, 3, 5, 5, 4, 2, 4,~
## $ IAF_15 <dbl> 4, 3, 4, 5, 4, 5, 4, 4, 3, 4, 5, 4, 5, 5, 4, 3,~
## $ BFI_1 <dbl> 4, 4, 5, 4, 1, 5, 4, 4, 5, 4, 5, 4, 5, 5, 2, 5,~
## $ BFI_2 <dbl> 4, 2, 3, 2, 2, 1, 2, 4, 4, 4, 1, 4, 2, 1, 4, 3,~
## $ BFI_3 <dbl> 4, 5, 5, 5, 4, 5, 3, 4, 4, 5, 5, 4, 5, 4, 4, 4,~
## $ BFI_4 <dbl> 2, 1, 1, 5, 2, 1, 3, 4, 4, 5, 1, 4, 1, 2, 2, 4,~
## $ BFI_5 <dbl> 2, 2, 2, 3, 2, 2, 4, 4, 4, 5, 5, 4, 5, 3, 4, 3,~
## $ BFI_6 <dbl> 2, 2, 3, 3, 4, 1, 4, 4, 2, 5, 2, 2, 3, 2, 4, 2,~
## $ BFI_7 <dbl> 4, 4, 3, 5, 5, 3, 4, 3, 3, 4, 5, 4, 5, 3, 5, 3,~
## $ BFI_8 <dbl> 2, 2, 4, 4, 4, 2, 4, 3, 4, 4, 1, 2, 1, 4, 2, 2,~
## $ BFI_9 <dbl> 4, 3, 4, 2, 2, 4, 2, 2, 4, 2, 3, 1, 5, 4, 2, 2,~
## $ BFI_10 <dbl> 4, 3, 4, 4, 3, 5, 4, 4, 5, 4, 5, 5, 5, 4, 4, 5,~
## $ BFI_11 <dbl> 4, 3, 3, 2, 3, 4, 3, 3, 3, 1, 5, 2, 5, 4, 1, 5,~
## $ BFI_12 <dbl> 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 4, 1, 2,~
## $ BFI_13 <dbl> 4, 4, 4, 5, 5, 4, 4, 3, 4, 5, 5, 5, 5, 4, 5, 4,~
## $ BFI_14 <dbl> 4, 2, 3, 5, 5, 4, 5, 3, 5, 4, 4, 5, 1, 4, 4, 4,~
## $ BFI_15 <dbl> 2, 2, 1, 1, 2, 3, 4, 4, 5, 4, 5, 5, 5, 4, 4, 5,~
## $ BFI_16 <dbl> 4, 3, 4, 2, 2, 4, 4, 3, 4, 2, 5, 2, 5, 4, 2, 4,~
## $ BFI_17 <dbl> 4, 4, 4, 5, 3, 4, 4, 3, 4, 4, 5, 1, 1, 4, 4, 3,~
## $ BFI_18 <dbl> 4, 2, 2, 4, 1, 1, 2, 3, 2, 4, 1, 1, 1, 3, 2, 2,~
## $ BFI_19 <dbl> 4, 3, 2, 4, 5, 3, 4, 4, 4, 4, 4, 5, 2, 2, 4, 5,~
## $ BFI_20 <dbl> 2, 2, 2, 4, 4, 5, 4, 4, 5, 4, 4, 5, 5, 3, 2, 4,~
## $ BFI_21 <dbl> 2, 2, 2, 2, 5, 3, 2, 4, 1, 4, 1, 2, 1, 1, 4, 1,~
## $ BFI_22 <dbl> 4, 1, 5, 5, 4, 5, 4, 4, 1, 5, 5, 5, 5, 4, 4, 3,~
## $ BFI_23 <dbl> 2, 2, 3, 4, 3, 3, 4, 4, 4, 3, 1, 3, 1, 2, 2, 2,~
## $ BFI_24 <dbl> 4, 4, 4, 1, 3, 5, 2, 4, 2, 2, 5, 2, 5, 3, 2, 1,~
## $ BFI_25 <dbl> 2, 3, 2, 3, 2, 3, 2, 3, 4, 2, 3, 5, 5, 4, 4, 2,~
## $ BFI_26 <dbl> 4, 4, 2, 3, 1, 4, 2, 3, 5, 5, 2, 5, 5, 4, 2, 4,~
## $ BFI_27 <dbl> 2, 3, 3, 3, 1, 4, 4, 3, 5, 2, 1, 4, 1, 4, 4, 2,~
## $ BFI_28 <dbl> 4, 4, 4, 4, 5, NA, 4, 4, 4, 4, 5, 4, 5, 2, 4, 4~
## $ BFI_29 <dbl> 4, 2, 3, 4, 4, 5, 4, 4, 5, 5, 3, 5, 1, 4, 2, 5,~
## $ BFI_30 <dbl> 2, 3, 1, 4, 2, 5, 4, 3, 5, 5, 5, 4, 3, 4, 4, 4,~
## $ BFI_31 <dbl> 2, 2, 3, 4, 4, 4, 4, 5, 2, 4, 1, 3, 2, 2, 4, 1,~
## $ BFI_32 <dbl> 4, 4, 3, 5, 5, 5, 5, 4, 3, 4, 5, 4, 5, 4, 5, 3,~
## $ BFI_33 <dbl> 4, 4, 4, 4, 4, 4, 3, 4, 4, 2, 5, 4, 5, 4, 5, 4,~
## $ BFI_34 <dbl> 4, 4, 4, 2, 3, 4, 2, 4, 5, 2, 3, 4, 5, 4, 4, 1,~
## $ BFI_35 <dbl> 4, 4, 4, 5, 5, 5, 4, 4, 1, 4, 5, 4, 5, 4, 5, 3,~
## $ BFI_36 <dbl> 4, 4, 4, 4, 4, 5, 4, 2, 5, 2, 5, 3, 5, 4, 2, 5,~
## $ BFI_37 <dbl> 2, 2, 3, 1, 4, 4, 2, 4, 2, 2, 1, 5, 2, 4, 1, 2,~
## $ BFI_38 <dbl> 4, 4, 4, 4, 5, 5, 4, 4, 5, 4, 4, 5, 5, 2, 5, 4,~
## $ BFI_39 <dbl> 2, 4, 2, 4, 5, 3, 4, 5, 2, 4, 4, 5, 5, 2, 4, 5,~
## $ BFI_40 <dbl> 2, 3, 2, 3, 2, 5, 4, 3, 5, 4, 4, 5, 5, 4, 4, 5,~
## $ BFI_41 <dbl> 4, 3, 4, 1, 4, 5, 3, 3, 5, 1, 1, 1, 3, 2, 2, 2,~
## $ BFI_42 <dbl> 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 3, 5, 4, 4, 4,~
## $ BFI_43 <dbl> 2, 3, 4, 4, 4, 3, 3, 2, 4, 5, 3, 5, 5, 3, 2, 4,~
## $ BFI_44 <dbl> 2, 2, 1, 5, 2, 4, 2, 2, 4, 4, 5, 3, 1, 4, 4, 2,~
data_clean <- data %>%
rename(Age = Q1.1,
Gender = Q328,
Gender_Text = Q328_4_TEXT,
Ethnicity = Q1.3,
Ethnicity_Text = Q1.3_17_TEXT)# str(data_clean)
data_clean <- data_clean %>%
mutate(Age = as.numeric(Age),
Gender = as.factor(Gender),
Ethnicity = as.factor(Ethnicity),
Behavior = as.factor(Behavior),
Is_Norm = as.factor(Is_Norm))
levels(data_clean$Is_Norm) <- c("Yes", "No")
levels(data_clean$Is_Norm)## [1] "Yes" "No"
n_distinct(data_clean$ID) # 320 participants## [1] 320
levels(data_clean$Gender) <- c("Female", "Male", "Non-binary", "Prefer to self-describe", "Prefer not to say")
levels(data_clean$Ethnicity) <- c("American Indian or Alaska Native", "Asian", "Black or African American", "Hispanic, Latinx or Spanish Origin", "Middle Eastern or North African", "Native Hawaiian or Other Pacific Islander", "White", "Some other ethnicity or origin", "I prefer not to answer")
levels(data_clean$Behavior) <- c("Wearing fashionable clothing", "Constantly using technology", "Limiting self-expression")data_clean <- data_clean %>%
mutate(values_avg = ((Values1 + Values2 + Values3)/3))data_clean %>%
filter(Is_Norm != "NA") %>%
ggplot(aes(x = Is_Norm, fill = Behavior)) +
geom_bar(position = "dodge") +
labs(x = "Is this a norm college students follow?", y = "Count")data_clean %>%
ggplot(aes(x = values_avg, y = Behavior, fill = Behavior, color = Behavior)) +
geom_density_ridges(alpha = 0.5) +
labs(x = "Personal Valuing of the Normative Behavior", y = NULL, fill = "Behavior", color = "Behavior")## Picking joint bandwidth of 0.246
data_clean %>%
ggplot(aes(x = Norm3, y = Behavior, fill = Behavior, color = Behavior)) +
geom_density_ridges(alpha = 0.5) +
labs(x = "Perceived Descriptive Norm", y = NULL, fill = "Behavior", color = "Behavior")## Picking joint bandwidth of 0.242
data_clean %>%
ggplot(aes(x = Norm4, y = Behavior, fill = Behavior, color = Behavior)) +
geom_density_ridges(alpha = 0.5) +
labs(x = "Perceived Inunctive Norm", y = NULL, fill = "Behavior", color = "Behavior")## Picking joint bandwidth of 0.281
ggplot(data_clean, aes(x = values_avg, y = Conform, color = Behavior)) +
geom_point(alpha = 0.25) +
geom_smooth(method = "lm", se = F) +
labs(title = "The Relationship Between Values and Norm Conformity", x = "Personal Valuing of the Normative Behavior", y = "Frequency of Following the Norm") +
theme_minimal() +
theme(text = element_text(size = 12)) +
theme(plot.title = element_text(size = 13)) +
theme(plot.title = element_text(hjust = 0.5))## `geom_smooth()` using formula 'y ~ x'
ggplot(data_clean, aes(x = values_avg, y = Conform, color = Behavior)) +
geom_point(alpha = 0.25) +
geom_smooth(method = "lm", se = F) +
facet_wrap(~Behavior) +
labs(title = "The Relationship Between Values and Norm Conformity", x = "Personal Valuing of the Normative Behavior", y = "Frequency of Following the Norm") +
theme_minimal() +
theme(text = element_text(size = 12)) +
theme(plot.title = element_text(size = 13)) +
theme(plot.title = element_text(hjust = 0.5))## `geom_smooth()` using formula 'y ~ x'
ggplot(data_clean, aes(x = Norm3, y = Conform, color = Behavior)) +
geom_point(alpha = 0.25) +
geom_smooth(method = "lm", se = F) +
labs(title = "The Relationship Between Descriptive Norms and Norm Conformity", x = "Perceived Descriptive Norm", y = "Frequency of Following the Norm") +
theme_minimal() +
theme(text = element_text(size = 12)) +
theme(plot.title = element_text(size = 13)) +
theme(plot.title = element_text(hjust = 0.5))## `geom_smooth()` using formula 'y ~ x'
ggplot(data_clean, aes(x = Norm3, y = Conform, color = Behavior)) +
geom_point(alpha = 0.25) +
geom_smooth(method = "lm", se = F) +
facet_wrap(~Behavior) +
labs(title = "The Relationship Between Descriptive Norms and Norm Conformity", x = "Perceived Descriptive Norm", y = "Frequency of Following the Norm") +
theme_minimal() +
theme(text = element_text(size = 12)) +
theme(plot.title = element_text(size = 13)) +
theme(plot.title = element_text(hjust = 0.5))## `geom_smooth()` using formula 'y ~ x'
ggplot(data_clean, aes(x = Norm4, y = Conform, color = Behavior)) +
geom_point(alpha = 0.25) +
geom_smooth(method = "lm", se = F) +
labs(title = "The Relationship Between Injunctive Norms and Norm Conformity", x = "Perceived Injunctive Norm", y = "Frequency of Following the Norm") +
theme_minimal() +
theme(text = element_text(size = 12)) +
theme(plot.title = element_text(size = 13)) +
theme(plot.title = element_text(hjust = 0.5))## `geom_smooth()` using formula 'y ~ x'
ggplot(data_clean, aes(x = Norm4, y = Conform, color = Behavior)) +
geom_point(alpha = 0.25) +
geom_smooth(method = "lm", se = F) +
facet_wrap(~Behavior) +
labs(title = "The Relationship Between Injunctive Norms and Norm Conformity", x = "Perceived Injunctive Norm", y = "Frequency of Following the Norm") +
theme_minimal() +
theme(text = element_text(size = 12)) +
theme(plot.title = element_text(size = 13)) +
theme(plot.title = element_text(hjust = 0.5))## `geom_smooth()` using formula 'y ~ x'
ggplot(data_clean, aes(x = values_avg, y = Deviate, color = Behavior)) +
geom_point(alpha = 0.25) +
geom_smooth(method = "lm", se = F) +
labs(title = "The Relationship Between Values and Norm Deviance", x = "Personal Valuing of the Normative Behavior", y = "Frequency of Deviating from the Norm") +
theme_minimal() +
theme(text = element_text(size = 12)) +
theme(plot.title = element_text(size = 13)) +
theme(plot.title = element_text(hjust = 0.5))## `geom_smooth()` using formula 'y ~ x'
ggplot(data_clean, aes(x = values_avg, y = Deviate, color = Behavior)) +
geom_point(alpha = 0.25) +
geom_smooth(method = "lm", se = F) +
facet_wrap(~Behavior) +
labs(title = "The Relationship Between Values and Norm Deviance", x = "Personal Valuing of the Normative Behavior", y = "Frequency of Deviating from the Norm") +
theme_minimal() +
theme(text = element_text(size = 12)) +
theme(plot.title = element_text(size = 13)) +
theme(plot.title = element_text(hjust = 0.5))## `geom_smooth()` using formula 'y ~ x'
ggplot(data_clean, aes(x = Norm3, y = Deviate, color = Behavior)) +
geom_point(alpha = 0.25) +
geom_smooth(method = "lm", se = F) +
labs(title = "The Relationship Between Descriptive Norms and Norm Conformity", x = "Perceived Descriptive Norm", y = "Frequency of Deviating from the Norm") +
theme_minimal() +
theme(text = element_text(size = 12)) +
theme(plot.title = element_text(size = 13)) +
theme(plot.title = element_text(hjust = 0.5))## `geom_smooth()` using formula 'y ~ x'
ggplot(data_clean, aes(x = Norm3, y = Deviate, color = Behavior)) +
geom_point(alpha = 0.25) +
geom_smooth(method = "lm", se = F) +
facet_wrap(~Behavior) +
labs(title = "The Relationship Between Descriptive Norms and Norm Conformity", x = "Perceived Descriptive Norm", y = "Frequency of Deviating from the Norm") +
theme_minimal() +
theme(text = element_text(size = 12)) +
theme(plot.title = element_text(size = 13)) +
theme(plot.title = element_text(hjust = 0.5))## `geom_smooth()` using formula 'y ~ x'
ggplot(data_clean, aes(x = Norm4, y = Deviate, color = Behavior)) +
geom_point(alpha = 0.25) +
geom_smooth(method = "lm", se = F) +
labs(title = "The Relationship Between Injunctive Norms and Norm Conformity", x = "Perceived Injunctive Norm", y = "Frequency of Deviating from the Norm") +
theme_minimal() +
theme(text = element_text(size = 12)) +
theme(plot.title = element_text(size = 13)) +
theme(plot.title = element_text(hjust = 0.5))## `geom_smooth()` using formula 'y ~ x'
ggplot(data_clean, aes(x = Norm4, y = Deviate, color = Behavior)) +
geom_point(alpha = 0.25) +
geom_smooth(method = "lm", se = F) +
facet_wrap(~Behavior) +
labs(title = "The Relationship Between Injunctive Norms and Norm Conformity", x = "Perceived Injunctive Norm", y = "Frequency of Deviating from the Norm") +
theme_minimal() +
theme(text = element_text(size = 12)) +
theme(plot.title = element_text(size = 13)) +
theme(plot.title = element_text(hjust = 0.5))## `geom_smooth()` using formula 'y ~ x'
mlm1 <- lmer(Conform ~ 1 + values_avg*Norm3*Norm4 + (1 | Behavior),
data = data_clean)
anova(mlm1)## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## values_avg 6.5805 6.5805 1 892.15 8.3181 0.00402 **
## Norm3 4.1400 4.1400 1 892.06 5.2332 0.02239 *
## Norm4 0.1617 0.1617 1 892.17 0.2045 0.65126
## values_avg:Norm3 0.3229 0.3229 1 892.26 0.4081 0.52308
## values_avg:Norm4 0.0813 0.0813 1 892.06 0.1028 0.74863
## Norm3:Norm4 0.3011 0.3011 1 892.43 0.3806 0.53744
## values_avg:Norm3:Norm4 0.1234 0.1234 1 892.23 0.1560 0.69296
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mlm1)## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Conform ~ 1 + values_avg * Norm3 * Norm4 + (1 | Behavior)
## Data: data_clean
##
## REML criterion at convergence: 2390.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.2543 -0.6307 -0.0050 0.6501 2.9165
##
## Random effects:
## Groups Name Variance Std.Dev.
## Behavior (Intercept) 0.1109 0.3330
## Residual 0.7911 0.8894
## Number of obs: 902, groups: Behavior, 3
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 0.469526 0.614501 167.448551 0.764 0.44590
## values_avg 0.725133 0.251424 892.152706 2.884 0.00402 **
## Norm3 0.369487 0.161516 892.060053 2.288 0.02239 *
## Norm4 -0.099209 0.219407 892.169980 -0.452 0.65126
## values_avg:Norm3 -0.042848 0.067070 892.257981 -0.639 0.52308
## values_avg:Norm4 0.026714 0.083339 892.055749 0.321 0.74863
## Norm3:Norm4 0.034440 0.055825 892.432780 0.617 0.53744
## values_avg:Norm3:Norm4 -0.008182 0.020716 892.227179 -0.395 0.69296
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) vls_vg Norm3 Norm4 vl_:N3 vl_:N4 Nr3:N4
## values_avg -0.834
## Norm3 -0.877 0.804
## Norm4 -0.813 0.715 0.761
## vls_vg:Nrm3 0.791 -0.938 -0.885 -0.656
## vls_vg:Nrm4 0.781 -0.891 -0.723 -0.886 0.807
## Norm3:Norm4 0.796 -0.693 -0.862 -0.944 0.730 0.828
## vls_v:N3:N4 -0.776 0.876 0.825 0.851 -0.894 -0.950 -0.890
mlm2 <- lmer(Deviate ~ 1 + values_avg*Norm3*Norm4 + (1 | Behavior),
data = data_clean)
anova(mlm2)## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## values_avg 1.75284 1.75284 1 894.31 1.7016 0.1924
## Norm3 1.54781 1.54781 1 894.12 1.5026 0.2206
## Norm4 1.47750 1.47750 1 894.38 1.4343 0.2314
## values_avg:Norm3 0.40615 0.40615 1 894.62 0.3943 0.5302
## values_avg:Norm4 0.02067 0.02067 1 894.08 0.0201 0.8874
## Norm3:Norm4 2.59110 2.59110 1 894.99 2.5154 0.1131
## values_avg:Norm3:Norm4 0.31755 0.31755 1 894.53 0.3083 0.5789
summary(mlm2)## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Deviate ~ 1 + values_avg * Norm3 * Norm4 + (1 | Behavior)
## Data: data_clean
##
## REML criterion at convergence: 2630.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.6428 -0.7108 -0.0558 0.7224 3.1826
##
## Random effects:
## Groups Name Variance Std.Dev.
## Behavior (Intercept) 0.05257 0.2293
## Residual 1.03010 1.0149
## Number of obs: 904, groups: Behavior, 3
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2.98458 0.67884 524.86861 4.397 1.33e-05 ***
## values_avg -0.37413 0.28681 894.31272 -1.304 0.192
## Norm3 0.22605 0.18441 894.11812 1.226 0.221
## Norm4 0.29980 0.25033 894.37995 1.198 0.231
## values_avg:Norm3 -0.04806 0.07655 894.61653 -0.628 0.530
## values_avg:Norm4 0.01347 0.09507 894.08491 0.142 0.887
## Norm3:Norm4 -0.10103 0.06370 894.99388 -1.586 0.113
## values_avg:Norm3:Norm4 0.01312 0.02364 894.53491 0.555 0.579
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) vls_vg Norm3 Norm4 vl_:N3 vl_:N4 Nr3:N4
## values_avg -0.861
## Norm3 -0.906 0.804
## Norm4 -0.839 0.715 0.761
## vls_vg:Nrm3 0.817 -0.938 -0.885 -0.655
## vls_vg:Nrm4 0.806 -0.891 -0.723 -0.887 0.807
## Norm3:Norm4 0.822 -0.694 -0.862 -0.944 0.730 0.828
## vls_v:N3:N4 -0.802 0.876 0.825 0.851 -0.894 -0.950 -0.890