library(readxl)
## Warning: package 'readxl' was built under R version 4.0.5
library(car)
## Warning: package 'car' was built under R version 4.0.5
## Loading required package: carData
car_sales <- read_excel("car_sales.xlsx")

car_sales$manufact <- as.factor(car_sales$manufact)
levels(car_sales$manufact)
##  [1] "Acura"         "Audi"          "BMW"           "Buick"        
##  [5] "Cadillac"      "Chevrolet"     "Chrysler"      "Dodge"        
##  [9] "Ford"          "Honda"         "Hyundai"       "Infiniti"     
## [13] "Jaguar"        "Jeep"          "Lexus"         "Lincoln"      
## [17] "Mercedes-Benz" "Mercury"       "Mitsubishi"    "Nissan"       
## [21] "Oldsmobile"    "Plymouth"      "Pontiac"       "Porsche"      
## [25] "Saab"          "Saturn"        "Subaru"        "Toyota"       
## [29] "Volkswagen"    "Volvo"
car_sales$model <- as.factor(car_sales$model)
levels(car_sales$model)
##   [1] "3000GT"            "300M"              "323i"             
##   [4] "328i"              "44442"             "44444"            
##   [7] "4Runner"           "528i"              "A4"               
##  [10] "A6"                "A8"                "Accent"           
##  [13] "Accord"            "Alero"             "Altima"           
##  [16] "Aurora"            "Avalon"            "Avenger"          
##  [19] "Beetle"            "Bonneville"        "Boxter"           
##  [22] "Bravada"           "Breeze"            "C-Class"          
##  [25] "C70"               "Cabrio"            "Camaro"           
##  [28] "Camry"             "Caravan"           "Carrera Cabriolet"
##  [31] "Carrera Coupe"     "Catera"            "Cavalier"         
##  [34] "Celica"            "Century"           "Cherokee"         
##  [37] "Cirrus"            "Civic"             "CL"               
##  [40] "CL500"             "CLK Coupe"         "Concorde"         
##  [43] "Continental"       "Contour"           "Corolla"          
##  [46] "Corvette"          "Cougar"            "CR-V"             
##  [49] "Crown Victoria"    "Cutlass"           "Dakota"           
##  [52] "DeVille"           "Diamante"          "Durango"          
##  [55] "E-Class"           "Eclipse"           "Elantra"          
##  [58] "Eldorado"          "ES300"             "Escalade"         
##  [61] "Escort"            "Expedition"        "Explorer"         
##  [64] "F-Series"          "Firebird"          "Focus"            
##  [67] "Forester"          "Frontier"          "Galant"           
##  [70] "Golf"              "Grand Am"          "Grand Cherokee"   
##  [73] "Grand Marquis"     "Grand Prix"        "GS300"            
##  [76] "GS400"             "GTI"               "I30"              
##  [79] "Impala"            "Integra"           "Intrepid"         
##  [82] "Intrigue"          "Jetta"             "Land Cruiser"     
##  [85] "LeSabre"           "LHS"               "LS"               
##  [88] "LS400"             "Lumina"            "LW"               
##  [91] "LX470"             "M-Class"           "Malibu"           
##  [94] "Maxima"            "Metro"             "Mirage"           
##  [97] "Montana"           "Monte Carlo"       "Montero"          
## [100] "Montero Sport"     "Mountaineer"       "Mustang"          
## [103] "Mystique"          "Navigator"         "Neon"             
## [106] "Odyssey"           "Outback"           "Park Avenue"      
## [109] "Passat"            "Passport"          "Pathfinder"       
## [112] "Prizm"             "Prowler"           "Quest"            
## [115] "Ram Pickup"        "Ram Van"           "Ram Wagon"        
## [118] "Ranger"            "RAV4"              "Regal"            
## [121] "RL"                "RX300"             "S-Class"          
## [124] "S-Type"            "S40"               "S70"              
## [127] "S80"               "Sable"             "SC"               
## [130] "Sebring Conv."     "Sebring Coupe"     "Sentra"           
## [133] "Seville"           "Sienna"            "Silhouette"       
## [136] "SL"                "SL-Class"          "SLK"              
## [139] "SLK230"            "Sonata"            "Stratus"          
## [142] "Sunfire"           "SW"                "Tacoma"           
## [145] "Taurus"            "TL"                "Town & Country"   
## [148] "Town car"          "V40"               "V70"              
## [151] "Villager"          "Viper"             "Voyager"          
## [154] "Windstar"          "Wrangler"          "Xterra"
car_sales$type <- as.factor(car_sales$type)
levels(car_sales$type)
## [1] "0" "1"
summary(car_sales)
##           manufact       model         sales            resale      type   
##  Dodge        : 11   Neon   :  2   Min.   :  0.11   Min.   : 5.16   0:116  
##  Ford         : 11   3000GT :  1   1st Qu.: 14.11   1st Qu.:11.26   1: 41  
##  Chevrolet    :  9   300M   :  1   Median : 29.45   Median :14.18          
##  Mercedes-Benz:  9   323i   :  1   Mean   : 53.00   Mean   :18.07          
##  Toyota       :  9   328i   :  1   3rd Qu.: 67.96   3rd Qu.:19.88          
##  Chrysler     :  7   44442  :  1   Max.   :540.56   Max.   :67.55          
##  (Other)      :101   (Other):150                    NA's   :36             
##      price           engine_s        horsepow        wheelbas    
##  Min.   : 9.235   Min.   :1.000   Min.   : 55.0   Min.   : 92.6  
##  1st Qu.:18.017   1st Qu.:2.300   1st Qu.:149.5   1st Qu.:103.0  
##  Median :22.799   Median :3.000   Median :177.5   Median :107.0  
##  Mean   :27.391   Mean   :3.061   Mean   :185.9   Mean   :107.5  
##  3rd Qu.:31.948   3rd Qu.:3.575   3rd Qu.:215.0   3rd Qu.:112.2  
##  Max.   :85.500   Max.   :8.000   Max.   :450.0   Max.   :138.7  
##  NA's   :2        NA's   :1       NA's   :1       NA's   :1      
##      width           length         curb_wgt        fuel_cap    
##  Min.   :62.60   Min.   :149.4   Min.   :1.895   Min.   :10.30  
##  1st Qu.:68.40   1st Qu.:177.6   1st Qu.:2.971   1st Qu.:15.80  
##  Median :70.55   Median :187.9   Median :3.342   Median :17.20  
##  Mean   :71.15   Mean   :187.3   Mean   :3.378   Mean   :17.95  
##  3rd Qu.:73.42   3rd Qu.:196.1   3rd Qu.:3.800   3rd Qu.:19.57  
##  Max.   :79.90   Max.   :224.5   Max.   :5.572   Max.   :32.00  
##  NA's   :1       NA's   :1       NA's   :2       NA's   :1      
##       mpg       
##  Min.   :15.00  
##  1st Qu.:21.00  
##  Median :24.00  
##  Mean   :23.84  
##  3rd Qu.:26.00  
##  Max.   :45.00  
##  NA's   :3
library(mice)
## Warning: package 'mice' was built under R version 4.0.5
## 
## Attaching package: 'mice'
## The following object is masked from 'package:stats':
## 
##     filter
## The following objects are masked from 'package:base':
## 
##     cbind, rbind
md.pattern(car_sales, plot = TRUE, rotate.names = FALSE)

##     manufact model sales type engine_s horsepow wheelbas width length fuel_cap
## 117        1     1     1    1        1        1        1     1      1        1
## 35         1     1     1    1        1        1        1     1      1        1
## 1          1     1     1    1        1        1        1     1      1        1
## 1          1     1     1    1        1        1        1     1      1        1
## 1          1     1     1    1        1        1        1     1      1        1
## 1          1     1     1    1        1        1        1     1      1        1
## 1          1     1     1    1        0        0        0     0      0        0
##            0     0     0    0        1        1        1     1      1        1
##     price curb_wgt mpg resale   
## 117     1        1   1      1  0
## 35      1        1   1      0  1
## 1       1        1   0      1  1
## 1       1        1   0      0  2
## 1       1        0   1      1  1
## 1       0        1   1      1  1
## 1       0        0   0      1  9
##         2        2   3     36 49
car_sales1 <- car_sales[-2]

md.pattern(car_sales1, plot = TRUE, rotate.names = FALSE)

##     manufact sales type engine_s horsepow wheelbas width length fuel_cap price
## 117        1     1    1        1        1        1     1      1        1     1
## 35         1     1    1        1        1        1     1      1        1     1
## 1          1     1    1        1        1        1     1      1        1     1
## 1          1     1    1        1        1        1     1      1        1     1
## 1          1     1    1        1        1        1     1      1        1     1
## 1          1     1    1        1        1        1     1      1        1     0
## 1          1     1    1        0        0        0     0      0        0     0
##            0     0    0        1        1        1     1      1        1     2
##     curb_wgt mpg resale   
## 117        1   1      1  0
## 35         1   1      0  1
## 1          1   0      1  1
## 1          1   0      0  2
## 1          0   1      1  1
## 1          1   1      1  1
## 1          0   0      1  9
##            2   3     36 49
methods(mice)
## Warning in .S3methods(generic.function, class, envir): function 'mice' appears
## not to be S3 generic; found functions that look like S3 methods
##  [1] mice.impute.2l.bin       mice.impute.2l.lmer      mice.impute.2l.norm     
##  [4] mice.impute.2l.pan       mice.impute.2lonly.mean  mice.impute.2lonly.norm 
##  [7] mice.impute.2lonly.pmm   mice.impute.cart         mice.impute.jomoImpute  
## [10] mice.impute.lda          mice.impute.logreg       mice.impute.logreg.boot 
## [13] mice.impute.mean         mice.impute.midastouch   mice.impute.mnar.logreg 
## [16] mice.impute.mnar.norm    mice.impute.norm         mice.impute.norm.boot   
## [19] mice.impute.norm.nob     mice.impute.norm.predict mice.impute.panImpute   
## [22] mice.impute.passive      mice.impute.pmm          mice.impute.polr        
## [25] mice.impute.polyreg      mice.impute.quadratic    mice.impute.rf          
## [28] mice.impute.ri           mice.impute.sample       mice.mids               
## [31] mice.theme              
## see '?methods' for accessing help and source code
imputation = mice(car_sales1, m=10, method=c("","","pmm","","pmm","pmm","pmm","pmm","pmm","pmm","pmm","pmm","pmm"), maxit = 5)
## 
##  iter imp variable
##   1   1  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   1   2  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   1   3  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   1   4  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   1   5  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   1   6  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   1   7  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   1   8  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   1   9  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   1   10  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   2   1  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   2   2  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   2   3  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   2   4  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   2   5  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   2   6  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   2   7  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   2   8  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   2   9  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   2   10  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   3   1  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   3   2  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   3   3  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   3   4  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   3   5  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   3   6  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   3   7  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   3   8  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   3   9  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   3   10  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   4   1  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   4   2  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   4   3  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   4   4  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   4   5  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   4   6  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   4   7  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   4   8  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   4   9  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   4   10  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   5   1  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   5   2  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   5   3  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   5   4  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   5   5  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   5   6  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   5   7  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   5   8  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   5   9  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
##   5   10  resale  price  engine_s  horsepow  wheelbas  width  length  curb_wgt  fuel_cap  mpg
## Warning: Number of logged events: 50
imputation$imp
## $manufact
##  [1] 1  2  3  4  5  6  7  8  9  10
## <0 rows> (or 0-length row.names)
## 
## $sales
##  [1] 1  2  3  4  5  6  7  8  9  10
## <0 rows> (or 0-length row.names)
## 
## $resale
##          1      2      3      4      5      6      7      8      9     10
## 8   22.525 26.050 23.555 26.975 25.725 26.975 22.525 22.525 22.525 27.100
## 19  25.725 26.975 36.225 26.975 32.075 36.125 28.675 26.975 22.525 32.075
## 28  10.790 11.295 11.225 10.290 12.025 12.640 12.025 11.260 11.240 13.245
## 35  17.325 16.360 22.255 18.225 19.540 17.810 19.690 19.690 20.430 19.540
## 45  19.490 20.525 16.640 20.525 19.125 23.575 19.125 17.325 23.575 17.810
## 51   7.825  5.160  7.850  7.425  7.425  5.860  7.825  7.825  7.850  7.425
## 67  29.725 22.525 29.725 28.675 27.100 26.050 32.075 32.075 26.050 32.075
## 73  41.450 28.675 36.225 28.675 34.080 34.080 41.250 36.125 40.375 40.375
## 75  50.375 41.450 41.250 50.375 39.000 41.250 41.450 41.250 39.000 40.375
## 76  29.725 29.725 22.525 27.100 32.075 26.050 29.725 28.675 26.050 27.100
## 79  20.525 20.525 22.525 19.890 19.690 26.975 17.525 25.725 16.640 19.875
## 97  32.075 27.100 27.100 36.125 34.080 32.075 36.225 36.225 28.675 29.725
## 98  36.125 29.725 26.975 28.675 36.225 34.080 28.675 36.125 36.125 28.675
## 99  28.675 36.125 28.675 34.080 41.450 36.125 36.125 41.450 36.225 28.675
## 100 58.600 67.550 67.550 58.600 58.600 58.600 58.470 67.550 67.550 50.375
## 101 26.975 26.975 21.725 29.725 27.100 28.675 26.050 32.075 26.975 27.100
## 107 13.240 15.075 13.325 14.010 15.240 13.740 14.210 17.805 16.575 12.760
## 108 12.545 13.225 13.175 10.395 12.760 13.790 10.290 13.175 15.240 11.295
## 110 12.025  9.850 13.325 13.740 13.425 15.075 12.360 13.210 12.275 16.575
## 111  7.750  7.850 10.595  9.200  9.200 11.240  9.200  7.750  7.750 10.790
## 118 28.675 25.725 26.975 26.050 36.225 22.525 32.075 36.225 28.675 27.100
## 124 16.575 18.810 15.510 19.425 14.875 19.540 20.940 16.575 13.740 13.760
## 128 23.555 21.725 23.575 22.525 23.575 23.575 26.050 23.575 19.890 19.890
## 129 18.810 16.360 15.510 20.525 18.810 13.775 20.430 20.525 15.510 18.225
## 133 11.525 13.880 13.790 10.395 10.290 10.025 11.295 15.445 10.025 11.425
## 134  9.800 11.525 10.595  8.835 11.260  9.125  8.325 12.025  8.910 11.295
## 135 14.875 14.795 13.760 20.940 13.225 14.875 15.125 15.510 13.325 14.875
## 136 16.360 16.575 15.445 18.810 17.805 13.775 15.510 20.940 15.240 19.425
## 142 18.225 16.725 13.025 16.725 14.875 19.490 17.810 15.510 16.725 22.255
## 151 10.290 13.240 14.010 13.240 13.325 11.525 12.025 12.760 13.425 12.360
## 152 13.360 14.180 16.575 18.810 16.360 15.380 20.940 17.810 13.760 15.510
## 153 19.540 17.710 17.710 19.490 14.875 19.540 18.810 18.225 16.725 15.510
## 154 18.225 18.225 19.875 20.525 20.190 19.490 20.430 19.890 18.810 20.525
## 155 16.640 16.640 16.640 21.725 19.490 19.690 17.525 17.525 19.125 17.525
## 156 28.675 26.050 32.075 29.725 26.050 27.100 28.675 28.675 27.100 26.975
## 157 21.725 22.525 25.725 25.725 18.225 25.725 26.050 26.975 23.555 26.050
## 
## $type
##  [1] 1  2  3  4  5  6  7  8  9  10
## <0 rows> (or 0-length row.names)
## 
## $price
##         1      2      3      4     5      6      7      8      9    10
## 3  25.345 25.345 31.807 24.997 26.31 26.399 28.340 31.930 25.450 28.80
## 34 31.930 25.345 27.560 25.345 33.95 24.400 29.299 22.288 29.185 25.45
## 
## $engine_s
##      1   2   3   4 5 6   7   8   9  10
## 34 2.4 2.5 4.7 2.9 3 3 2.2 3.3 2.5 3.5
## 
## $horsepow
##      1   2   3   4   5   6   7   8   9  10
## 34 160 175 230 170 193 170 161 205 175 210
## 
## $wheelbas
##        1     2     3     4   5     6   7     8   9    10
## 34 114.5 106.5 117.5 114.2 111 112.2 108 106.4 107 112.2
## 
## $width
##       1    2    3    4    5    6    7    8    9   10
## 34 69.3 67.9 79.1 72.1 73.1 70.3 70.3 69.6 71.4 72.2
## 
## $length
##        1   2   3     4     5     6     7     8     9    10
## 34 193.5 174 212 194.8 192.9 185.8 178.2 190.2 181.2 185.4
## 
## $curb_wgt
##        1     2     3     4     5     6     7     8     9    10
## 16 3.908 3.958 3.843 4.125 4.133 4.520 4.121 4.387 3.978 3.948
## 34 3.876 2.932 4.245 3.638 4.288 3.561 3.567 3.561 3.561 3.880
## 
## $fuel_cap
##       1  2  3    4    5    6  7    8    9   10
## 34 17.5 16 25 17.5 20.9 18.5 20 18.5 19.8 23.7
## 
## $mpg
##      1  2  3  4  5  6  7  8  9 10
## 34  21 22 16 21 18 22 22 18 23 19
## 39  19 24 22 23 22 23 22 24 21 26
## 110 23 24 24 25 26 25 23 22 25 24
car_sales2 = complete(imputation,6)

model1 <- lm(sales~., data = car_sales2)
vif(model1)
##                GVIF Df GVIF^(1/(2*Df))
## manufact 510.111189 29        1.113484
## resale    44.315361  1        6.656978
## type       5.685071  1        2.384339
## price     31.366588  1        5.600588
## engine_s  16.105274  1        4.013138
## horsepow  11.807129  1        3.436150
## wheelbas   8.634535  1        2.938458
## width      5.446142  1        2.333697
## length    10.660976  1        3.265115
## curb_wgt  13.858025  1        3.722637
## fuel_cap   7.424258  1        2.724749
## mpg        7.588183  1        2.754666
anova(model1)
## Analysis of Variance Table
## 
## Response: sales
##            Df Sum Sq Mean Sq F value    Pr(>F)    
## manufact   29 322541   11122  4.5547 2.367e-09 ***
## resale      1  13295   13295  5.4443   0.02135 *  
## type        1   2715    2715  1.1120   0.29384    
## price       1   1728    1728  0.7076   0.40196    
## engine_s    1  11509   11509  4.7130   0.03197 *  
## horsepow    1   3188    3188  1.3055   0.25556    
## wheelbas    1  59994   59994 24.5686 2.470e-06 ***
## width       1   3945    3945  1.6154   0.20628    
## length      1   2438    2438  0.9986   0.31973    
## curb_wgt    1  11259   11259  4.6108   0.03385 *  
## fuel_cap    1   4709    4709  1.9286   0.16757    
## mpg         1   1383    1383  0.5665   0.45318    
## Residuals 116 283263    2442                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
car_sales3 <- car_sales2[-3]

model2 <- lm(sales~., data = car_sales3)
vif(model2)
##                GVIF Df GVIF^(1/(2*Df))
## manufact 173.843051 29        1.093008
## type       5.600459  1        2.366529
## price      9.389291  1        3.064195
## engine_s  13.525797  1        3.677743
## horsepow  11.785778  1        3.433042
## wheelbas   8.495348  1        2.914678
## width      5.395542  1        2.322831
## length    10.644132  1        3.262535
## curb_wgt  13.109593  1        3.620717
## fuel_cap   6.569842  1        2.563170
## mpg        7.396750  1        2.719697
anova(model2)
## Analysis of Variance Table
## 
## Response: sales
##            Df Sum Sq Mean Sq F value    Pr(>F)    
## manufact   29 322541   11122  4.5643 2.106e-09 ***
## type        1   1268    1268  0.5204   0.47210    
## price       1  10258   10258  4.2095   0.04243 *  
## engine_s    1   6319    6319  2.5933   0.11001    
## horsepow    1   2712    2712  1.1130   0.29360    
## wheelbas    1  70992   70992 29.1335 3.585e-07 ***
## width       1   3174    3174  1.3027   0.25606    
## length      1   1982    1982  0.8134   0.36898    
## curb_wgt    1   9375    9375  3.8472   0.05220 .  
## fuel_cap    1   7297    7297  2.9945   0.08619 .  
## mpg         1    947     947  0.3885   0.53428    
## Residuals 117 285103    2437                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
step.model2 <- step(model2, direction = "backward", trace = 0)
summary(step.model2)
## 
## Call:
## lm(formula = sales ~ manufact + engine_s + horsepow + wheelbas + 
##     curb_wgt + fuel_cap, data = car_sales3)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -136.171  -21.541   -1.164   15.252  247.236 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           -423.5998    83.6482  -5.064 1.47e-06 ***
## manufactAudi            16.6689    37.9920   0.439  0.66162    
## manufactBMW             -9.6708    37.2185  -0.260  0.79543    
## manufactBuick           19.9438    35.0361   0.569  0.57024    
## manufactCadillac        10.8292    33.7275   0.321  0.74870    
## manufactChevrolet       34.1374    30.9404   1.103  0.27206    
## manufactChrysler        -3.8099    30.5094  -0.125  0.90083    
## manufactDodge           34.4883    30.7892   1.120  0.26485    
## manufactFord           127.6008    30.6013   4.170 5.73e-05 ***
## manufactHonda           93.6553    32.9228   2.845  0.00521 ** 
## manufactHyundai         28.1879    38.4330   0.733  0.46470    
## manufactInfiniti        18.8499    54.8005   0.344  0.73146    
## manufactJaguar         -12.1587    55.1422  -0.220  0.82585    
## manufactJeep           110.1995    40.9063   2.694  0.00806 ** 
## manufactLexus           29.9758    32.2676   0.929  0.35474    
## manufactLincoln          6.5825    38.5688   0.171  0.86477    
## manufactMercedes-Benz   22.6979    29.7138   0.764  0.44641    
## manufactMercury         -4.7427    32.8272  -0.144  0.88536    
## manufactMitsubishi      25.6502    31.9233   0.803  0.42325    
## manufactNissan          36.5628    31.2437   1.170  0.24418    
## manufactOldsmobile      -9.3022    32.2628  -0.288  0.77359    
## manufactPlymouth       -36.6988    34.8986  -1.052  0.29507    
## manufactPontiac         23.4937    32.7363   0.718  0.47434    
## manufactPorsche         84.1075    41.4809   2.028  0.04478 *  
## manufactSaab            16.7040    42.9567   0.389  0.69806    
## manufactSaturn         -15.4567    34.3725  -0.450  0.65374    
## manufactSubaru          48.4913    42.5633   1.139  0.25682    
## manufactToyota          71.9888    30.2387   2.381  0.01883 *  
## manufactVolkswagen      27.6145    32.8547   0.841  0.40227    
## manufactVolvo           23.1805    32.3332   0.717  0.47479    
## engine_s                22.2340    13.0882   1.699  0.09191 .  
## horsepow                -0.4253     0.2084  -2.041  0.04342 *  
## wheelbas                 5.7923     0.8889   6.516 1.70e-09 ***
## curb_wgt               -26.1741    17.0890  -1.532  0.12820    
## fuel_cap                -4.4071     2.4547  -1.795  0.07507 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 48.55 on 122 degrees of freedom
## Multiple R-squared:  0.6017, Adjusted R-squared:  0.4907 
## F-statistic: 5.421 on 34 and 122 DF,  p-value: 1.987e-12
anova(step.model2)
## Analysis of Variance Table
## 
## Response: sales
##            Df Sum Sq Mean Sq F value    Pr(>F)    
## manufact   29 322541   11122  4.7188 6.526e-10 ***
## engine_s    1    675     675  0.2864  0.593522    
## horsepow    1  10806   10806  4.5847  0.034248 *  
## wheelbas    1  67033   67033 28.4400 4.513e-07 ***
## curb_wgt    1  25761   25761 10.9295  0.001243 ** 
## fuel_cap    1   7598    7598  3.2234  0.075067 .  
## Residuals 122 287554    2357                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
car_sales4 <- data.frame(car_sales3,car_sales$model)

model3 <- lm(sales~manufact+engine_s+horsepow+wheelbas+fuel_cap, data = car_sales4)
summary(model3)
## 
## Call:
## lm(formula = sales ~ manufact + engine_s + horsepow + wheelbas + 
##     fuel_cap, data = car_sales4)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -139.599  -18.812   -1.504   15.204  255.224 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           -429.8772    84.0036  -5.117 1.16e-06 ***
## manufactAudi            20.1029    38.1327   0.527 0.599018    
## manufactBMW             -6.2275    37.3532  -0.167 0.867865    
## manufactBuick           23.4910    35.1502   0.668 0.505192    
## manufactCadillac         5.8197    33.7517   0.172 0.863384    
## manufactChevrolet       43.3119    30.5206   1.419 0.158398    
## manufactChrysler        -1.9075    30.6504  -0.062 0.950478    
## manufactDodge           47.3414    29.7852   1.589 0.114531    
## manufactFord           136.9068    30.1557   4.540 1.32e-05 ***
## manufactHonda           94.9986    33.0907   2.871 0.004821 ** 
## manufactHyundai         37.0094    38.2063   0.969 0.334610    
## manufactInfiniti        23.9638    54.9972   0.436 0.663798    
## manufactJaguar         -14.0450    55.4292  -0.253 0.800393    
## manufactJeep           121.1636    40.4948   2.992 0.003349 ** 
## manufactLexus           26.7646    32.3751   0.827 0.410006    
## manufactLincoln          6.6066    38.7793   0.170 0.865004    
## manufactMercedes-Benz   22.2982    29.8748   0.746 0.456857    
## manufactMercury         -0.3329    32.8792  -0.010 0.991938    
## manufactMitsubishi      32.4197    31.7883   1.020 0.309796    
## manufactNissan          40.6248    31.3008   1.298 0.196756    
## manufactOldsmobile      -5.7580    32.3553  -0.178 0.859047    
## manufactPlymouth       -30.3704    34.8422  -0.872 0.385095    
## manufactPontiac         30.7552    32.5679   0.944 0.346847    
## manufactPorsche         90.7112    41.4814   2.187 0.030650 *  
## manufactSaab            20.2420    43.1286   0.469 0.639656    
## manufactSaturn          -9.2081    34.3158  -0.268 0.788892    
## manufactSubaru          47.6416    42.7919   1.113 0.267737    
## manufactToyota          78.0185    30.1449   2.588 0.010812 *  
## manufactVolkswagen      30.6585    32.9735   0.930 0.354300    
## manufactVolvo           23.9185    32.5060   0.736 0.463241    
## engine_s                15.0822    12.2936   1.227 0.222231    
## horsepow                -0.3842     0.2078  -1.849 0.066831 .  
## wheelbas                 5.4981     0.8727   6.300 4.81e-09 ***
## fuel_cap                -6.6944     1.9589  -3.417 0.000857 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 48.81 on 123 degrees of freedom
## Multiple R-squared:  0.594,  Adjusted R-squared:  0.4851 
## F-statistic: 5.454 on 33 and 123 DF,  p-value: 2.191e-12
anova(model3)
## Analysis of Variance Table
## 
## Response: sales
##            Df Sum Sq Mean Sq F value    Pr(>F)    
## manufact   29 322541   11122  4.6677 8.132e-10 ***
## engine_s    1    675     675  0.2833 0.5955176    
## horsepow    1  10806   10806  4.5350 0.0352007 *  
## wheelbas    1  67033   67033 28.1322 5.080e-07 ***
## fuel_cap    1  27829   27829 11.6792 0.0008574 ***
## Residuals 123 293084    2383                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.0.5
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.0.5
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
## 
##     recode
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
car_sales4 %>%
  ggplot(aes(x=manufact, y=log(sales)))+
  geom_point(aes(size=sales, col = manufact), alpha=1)+
  geom_smooth(method = lm)
## `geom_smooth()` using formula 'y ~ x'

car_sales4 %>%
  ggplot(aes(x=log(sales), y=log(horsepow)))+
  geom_point(aes(size=sales, col = manufact), alpha=1)+
  geom_smooth(method = lm)
## `geom_smooth()` using formula 'y ~ x'

car_sales4 %>%
  ggplot(aes(x=log(sales), y=log(wheelbas)))+
  geom_point(aes(size=sales, col = manufact), alpha=1)+
  geom_smooth(method = lm)
## `geom_smooth()` using formula 'y ~ x'

car_sales4 %>%
  ggplot(aes(x=log(sales), y=log(fuel_cap)))+
  geom_point(aes(size=sales, col = manufact), alpha=1)+
  geom_smooth(method = lm)
## `geom_smooth()` using formula 'y ~ x'

car_sales4 %>%
  filter(manufact == "Ford" | manufact == "Honda" | manufact == "Jeep" | manufact == "Porsche" | manufact == "Toyota") %>%
  ggplot(aes(x=car_sales.model, y=log(sales)))+
  geom_point(aes(size=sales, col = car_sales.model), alpha=1)+
  geom_smooth(method = lm)+
  facet_wrap(~manufact)
## `geom_smooth()` using formula 'y ~ x'

car_sales4 %>%
  filter(manufact == "Ford" | manufact == "Honda" | manufact == "Jeep" | manufact == "Porsche" | manufact == "Toyota") %>%
  ggplot(aes(x=log(sales), y=log(horsepow)))+
  geom_point(aes(size=sales, col = car_sales.model), alpha=1)+
  geom_smooth(method = lm)
## `geom_smooth()` using formula 'y ~ x'

car_sales4 %>%
  filter(manufact == "Ford" | manufact == "Honda" | manufact == "Jeep" | manufact == "Porsche" | manufact == "Toyota") %>%
  ggplot(aes(x=log(sales), y=log(wheelbas)))+
  geom_point(aes(size=sales, col = car_sales.model), alpha=1)+
  geom_smooth(method = lm)
## `geom_smooth()` using formula 'y ~ x'

car_sales4 %>%
  filter(manufact == "Ford" | manufact == "Honda" | manufact == "Jeep" | manufact == "Porsche" | manufact == "Toyota") %>%
  ggplot(aes(x=log(sales), y=log(fuel_cap)))+
  geom_point(aes(size=sales, col = car_sales.model), alpha=1)+
  geom_smooth(method = lm)
## `geom_smooth()` using formula 'y ~ x'

model4 <- lm(sales~manufact+car_sales.model, data = car_sales4)
summary(model4)
## 
## Call:
## lm(formula = sales ~ manufact + car_sales.model, data = car_sales4)
## 
## Residuals:
## ALL 157 residuals are 0: no residual degrees of freedom!
## 
## Coefficients: (28 not defined because of singularities)
##                                  Estimate Std. Error t value Pr(>|t|)
## (Intercept)                        39.384         NA      NA       NA
## manufactAudi                      -38.004         NA      NA       NA
## manufactBMW                       -21.857         NA      NA       NA
## manufactBuick                      -0.034         NA      NA       NA
## manufactCadillac                  -23.441         NA      NA       NA
## manufactChevrolet                  -7.085         NA      NA       NA
## manufactChrysler                   14.096         NA      NA       NA
## manufactDodge                      28.071         NA      NA       NA
## manufactFord                      116.403         NA      NA       NA
## manufactHonda                     -26.529         NA      NA       NA
## manufactHyundai                    -9.934         NA      NA       NA
## manufactInfiniti                  -15.671         NA      NA       NA
## manufactJaguar                    -23.917         NA      NA       NA
## manufactJeep                       16.173         NA      NA       NA
## manufactLexus                      11.854         NA      NA       NA
## manufactLincoln                     9.527         NA      NA       NA
## manufactMercedes-Benz             -37.858         NA      NA       NA
## manufactMercury                   -19.004         NA      NA       NA
## manufactMitsubishi                -39.274         NA      NA       NA
## manufactNissan                     14.774         NA      NA       NA
## manufactOldsmobile                -15.023         NA      NA       NA
## manufactPlymouth                  -15.229         NA      NA       NA
## manufactPontiac                    12.261         NA      NA       NA
## manufactPorsche                   -38.104         NA      NA       NA
## manufactSaab                      -30.193         NA      NA       NA
## manufactSaturn                    -34.161         NA      NA       NA
## manufactSubaru                      7.723         NA      NA       NA
## manufactToyota                     44.703         NA      NA       NA
## manufactVolkswagen                 11.718         NA      NA       NA
## manufactVolvo                     -21.853         NA      NA       NA
## car_sales.model300M               -22.784         NA      NA       NA
## car_sales.model323i                 2.220         NA      NA       NA
## car_sales.model328i                -8.296         NA      NA       NA
## car_sales.model44442                2.924         NA      NA       NA
## car_sales.model44444                   NA         NA      NA       NA
## car_sales.model4Runner            -15.676         NA      NA       NA
## car_sales.model528i                    NA         NA      NA       NA
## car_sales.modelA4                  19.017         NA      NA       NA
## car_sales.modelA6                  17.400         NA      NA       NA
## car_sales.modelA8                      NA         NA      NA       NA
## car_sales.modelAccent              11.734         NA      NA       NA
## car_sales.modelAccord             218.047         NA      NA       NA
## car_sales.modelAlero               55.894         NA      NA       NA
## car_sales.modelAltima              33.936         NA      NA       NA
## car_sales.modelAurora              -9.671         NA      NA       NA
## car_sales.modelAvalon             -20.238         NA      NA       NA
## car_sales.modelAvenger            -62.721         NA      NA       NA
## car_sales.modelBeetle              -1.639         NA      NA       NA
## car_sales.modelBonneville         -15.700         NA      NA       NA
## car_sales.modelBoxter               7.702         NA      NA       NA
## car_sales.modelBravada             -4.344         NA      NA       NA
## car_sales.modelBreeze             -18.915         NA      NA       NA
## car_sales.modelC-Class             16.866         NA      NA       NA
## car_sales.modelC70                -14.038         NA      NA       NA
## car_sales.modelCabrio             -41.533         NA      NA       NA
## car_sales.modelCamaro              -5.897         NA      NA       NA
## car_sales.modelCamry              163.907         NA      NA       NA
## car_sales.modelCaravan            114.294         NA      NA       NA
## car_sales.modelCarrera Cabriolet    0.586         NA      NA       NA
## car_sales.modelCarrera Coupe           NA         NA      NA       NA
## car_sales.modelCatera              -4.758         NA      NA       NA
## car_sales.modelCavalier           113.220         NA      NA       NA
## car_sales.modelCelica             -50.818         NA      NA       NA
## car_sales.modelCentury             52.211         NA      NA       NA
## car_sales.modelCherokee            24.999         NA      NA       NA
## car_sales.modelCirrus             -21.174         NA      NA       NA
## car_sales.modelCivic              186.830         NA      NA       NA
## car_sales.modelCL                 -25.270         NA      NA       NA
## car_sales.modelCL500               -0.572         NA      NA       NA
## car_sales.modelCLK Coupe           10.066         NA      NA       NA
## car_sales.modelConcorde           -22.332         NA      NA       NA
## car_sales.modelContinental        -35.113         NA      NA       NA
## car_sales.modelContour           -120.719         NA      NA       NA
## car_sales.modelCorolla             58.448         NA      NA       NA
## car_sales.modelCorvette           -14.352         NA      NA       NA
## car_sales.modelCougar               6.149         NA      NA       NA
## car_sales.modelCR-V                60.348         NA      NA       NA
## car_sales.modelCrown Victoria     -92.384         NA      NA       NA
## car_sales.modelCutlass            -23.249         NA      NA       NA
## car_sales.modelDakota              43.858         NA      NA       NA
## car_sales.modelDeVille             47.786         NA      NA       NA
## car_sales.modelDiamante             5.601         NA      NA       NA
## car_sales.modelDurango             33.868         NA      NA       NA
## car_sales.modelE-Class             26.076         NA      NA       NA
## car_sales.modelEclipse             42.431         NA      NA       NA
## car_sales.modelElantra             37.242         NA      NA       NA
## car_sales.modelEldorado            -9.407         NA      NA       NA
## car_sales.modelES300              -27.166         NA      NA       NA
## car_sales.modelEscalade            -1.158         NA      NA       NA
## car_sales.modelEscort             -85.560         NA      NA       NA
## car_sales.modelExpedition         -30.449         NA      NA       NA
## car_sales.modelExplorer           120.960         NA      NA       NA
## car_sales.modelF-Series           384.774         NA      NA       NA
## car_sales.modelFirebird           -31.734         NA      NA       NA
## car_sales.modelFocus               19.883         NA      NA       NA
## car_sales.modelForester           -14.079         NA      NA       NA
## car_sales.modelFrontier            10.847         NA      NA       NA
## car_sales.modelGalant              55.506         NA      NA       NA
## car_sales.modelGolf               -41.341         NA      NA       NA
## car_sales.modelGrand Am            79.452         NA      NA       NA
## car_sales.modelGrand Cherokee     101.483         NA      NA       NA
## car_sales.modelGrand Marquis       60.794         NA      NA       NA
## car_sales.modelGrand Prix          40.719         NA      NA       NA
## car_sales.modelGS300              -38.540         NA      NA       NA
## car_sales.modelGS400              -47.904         NA      NA       NA
## car_sales.modelGTI                -45.506         NA      NA       NA
## car_sales.modelI30                     NA         NA      NA       NA
## car_sales.modelImpala              75.696         NA      NA       NA
## car_sales.modelIntegra            -22.465         NA      NA       NA
## car_sales.modelIntrepid            20.573         NA      NA       NA
## car_sales.modelIntrigue            14.193         NA      NA       NA
## car_sales.modelJetta               32.619         NA      NA       NA
## car_sales.modelLand Cruiser       -74.252         NA      NA       NA
## car_sales.modelLeSabre             43.907         NA      NA       NA
## car_sales.modelLHS                -40.018         NA      NA       NA
## car_sales.modelLS                  44.766         NA      NA       NA
## car_sales.modelLS400              -44.863         NA      NA       NA
## car_sales.modelLumina              -7.670         NA      NA       NA
## car_sales.modelLW                   3.249         NA      NA       NA
## car_sales.modelLX470              -42.112         NA      NA       NA
## car_sales.modelM-Class             27.450         NA      NA       NA
## car_sales.modelMalibu             102.827         NA      NA       NA
## car_sales.modelMaxima              25.695         NA      NA       NA
## car_sales.modelMetro              -10.444         NA      NA       NA
## car_sales.modelMirage              26.122         NA      NA       NA
## car_sales.modelMontana            -12.073         NA      NA       NA
## car_sales.modelMonte Carlo         10.294         NA      NA       NA
## car_sales.modelMontero             11.227         NA      NA       NA
## car_sales.modelMontero Sport       39.238         NA      NA       NA
## car_sales.modelMountaineer          7.229         NA      NA       NA
## car_sales.modelMustang            -42.418         NA      NA       NA
## car_sales.modelMystique            -6.029         NA      NA       NA
## car_sales.modelNavigator          -25.986         NA      NA       NA
## car_sales.modelNeon                 8.579         NA      NA       NA
## car_sales.modelOdyssey             63.174         NA      NA       NA
## car_sales.modelOutback                 NA         NA      NA       NA
## car_sales.modelPark Avenue        -11.499         NA      NA       NA
## car_sales.modelPassat                  NA         NA      NA       NA
## car_sales.modelPassport                NA         NA      NA       NA
## car_sales.modelPathfinder         -11.584         NA      NA       NA
## car_sales.modelPrizm                   NA         NA      NA       NA
## car_sales.modelProwler            -22.283         NA      NA       NA
## car_sales.modelQuest              -26.850         NA      NA       NA
## car_sales.modelRam Pickup         159.606         NA      NA       NA
## car_sales.modelRam Van            -36.417         NA      NA       NA
## car_sales.modelRam Wagon          -50.688         NA      NA       NA
## car_sales.modelRanger              64.863         NA      NA       NA
## car_sales.modelRAV4               -58.981         NA      NA       NA
## car_sales.modelRegal                   NA         NA      NA       NA
## car_sales.modelRL                 -30.796         NA      NA       NA
## car_sales.modelRX300                   NA         NA      NA       NA
## car_sales.modelS-Class             15.248         NA      NA       NA
## car_sales.modelS-Type                  NA         NA      NA       NA
## car_sales.modelS40                 -0.574         NA      NA       NA
## car_sales.modelS70                 -2.286         NA      NA       NA
## car_sales.modelS80                  1.438         NA      NA       NA
## car_sales.modelSable               47.576         NA      NA       NA
## car_sales.modelSC                  19.323         NA      NA       NA
## car_sales.modelSebring Conv.      -20.705         NA      NA       NA
## car_sales.modelSebring Coupe      -45.626         NA      NA       NA
## car_sales.modelSentra             -11.515         NA      NA       NA
## car_sales.modelSeville                 NA         NA      NA       NA
## car_sales.modelSienna             -18.968         NA      NA       NA
## car_sales.modelSilhouette              NA         NA      NA       NA
## car_sales.modelSL                  75.397         NA      NA       NA
## car_sales.modelSL-Class             1.785         NA      NA       NA
## car_sales.modelSLK                  6.472         NA      NA       NA
## car_sales.modelSLK230                  NA         NA      NA       NA
## car_sales.modelSonata                  NA         NA      NA       NA
## car_sales.modelStratus              3.731         NA      NA       NA
## car_sales.modelSunfire                 NA         NA      NA       NA
## car_sales.modelSW                      NA         NA      NA       NA
## car_sales.modelTacoma                  NA         NA      NA       NA
## car_sales.modelTaurus              90.028         NA      NA       NA
## car_sales.modelTL                      NA         NA      NA       NA
## car_sales.modelTown & Country          NA         NA      NA       NA
## car_sales.modelTown car                NA         NA      NA       NA
## car_sales.modelV40                -13.986         NA      NA       NA
## car_sales.modelV70                     NA         NA      NA       NA
## car_sales.modelVillager                NA         NA      NA       NA
## car_sales.modelViper              -66.539         NA      NA       NA
## car_sales.modelVoyager                 NA         NA      NA       NA
## car_sales.modelWindstar                NA         NA      NA       NA
## car_sales.modelWrangler                NA         NA      NA       NA
## car_sales.modelXterra                  NA         NA      NA       NA
## 
## Residual standard error: NaN on 0 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:    NaN 
## F-statistic:   NaN on 156 and 0 DF,  p-value: NA
anova(model4)
## Warning in anova.lm(model4): ANOVA F-tests on an essentially perfect fit are
## unreliable
## Analysis of Variance Table
## 
## Response: sales
##                  Df Sum Sq Mean Sq F value Pr(>F)
## manufact         29 322541 11122.1               
## car_sales.model 127 399427  3145.1               
## Residuals         0      0
model5 <- lm(sales~car_sales.model, data = car_sales4)
summary(model5)
## 
## Call:
## lm(formula = sales ~ car_sales.model, data = car_sales4)
## 
## Residuals:
##          1          2          3          4          5          6          7 
## -3.159e-15 -1.659e-15  3.334e-15  2.190e-16 -1.604e-16 -1.051e-16 -1.231e-16 
##          8          9         10         11         12         13         14 
## -1.193e-16 -1.222e-16 -1.021e-16  2.913e-16 -1.172e-15 -1.152e-15 -4.370e-16 
##         15         16         17         18         19         20         21 
##  1.006e-15  5.323e-15  2.004e-16 -5.590e-17 -3.813e-16 -6.889e-17 -4.544e-17 
##         22         23         24         25         26         27         28 
## -3.064e-16 -3.494e-16 -3.071e-17 -7.654e-17 -9.322e-16  1.180e-15 -3.253e-16 
##         29         30         31         32         33         34         35 
## -1.543e-15 -3.979e-16 -3.844e-17 -4.193e-16 -1.530e-15  1.031e-15 -5.861e-17 
##         36         37         38         39         40         41         42 
##  2.165e+01 -6.115e-17  2.098e-15 -3.092e-15 -5.951e-15  1.737e-15 -6.775e-16 
##         43         44         45         46         47         48         49 
##  2.126e-15  5.437e-16  4.327e-16 -4.093e-17 -6.498e-16  1.487e-15 -1.177e-15 
##         50         51         52         53         54         55         56 
##  1.210e-15 -1.066e-15 -1.260e-15  2.106e-16 -1.954e-15 -3.722e-16  6.270e-16 
##         57         58         59         60         61         62         63 
##  9.323e-16 -8.996e-16 -5.347e-17  7.187e-17 -3.407e-14 -1.538e-15 -4.036e-17 
##         64         65         66         67         68         69         70 
##  4.327e-16 -4.591e-15 -1.260e-15  6.825e-16 -1.538e-15 -1.174e-13 -2.334e-16 
##         71         72         73         74         75         76         77 
##  9.963e-17 -2.334e-16  5.437e-16 -8.996e-16  1.820e-15  5.540e-15  5.437e-16 
##         78         79         80         81         82         83         84 
## -1.233e-15  6.547e-16  2.098e-15  9.963e-17 -3.074e-14  4.049e-16  1.198e-13 
##         85         86         87         88         89         90         91 
##  1.432e-15 -2.334e-16  3.772e-16  7.935e-16  1.043e-15 -2.890e-16  9.963e-17 
##         92         93         94         95         96         97         98 
## -1.224e-16 -6.081e-17 -2.890e-16 -1.177e-15 -2.121e-15 -1.566e-15  1.551e-16 
##         99        100        101        102        103        104        105 
## -9.466e-17  1.636e-17  2.106e-16 -1.011e-15 -2.048e-17  4.412e-17  2.069e-14 
##        106        107        108        109        110        111        112 
##  1.654e-15  1.551e-16 -1.502e-16 -2.612e-16 -2.565e-15 -3.751e-17 -6.755e-17 
##        113        114        115        116        117        118        119 
## -9.084e-17  7.760e-15 -2.165e+01 -6.300e-17 -6.775e-16  5.437e-16 -2.334e-16 
##        120        121        122        123        124        125        126 
##  1.265e-15  1.636e-17  7.102e-16 -6.085e-17  5.437e-16 -6.014e-17 -6.758e-17 
##        127        128        129        130        131        132        133 
## -4.070e-17 -7.392e-17 -7.500e-17 -4.555e-16  8.768e-16  1.765e-15  7.658e-16 
##        134        135        136        137        138        139        140 
## -1.140e-17  3.772e-16  7.187e-17  1.829e-16 -5.925e-17 -5.925e-17 -4.815e-17 
##        141        142        143        144        145        146        147 
## -2.334e-16 -6.775e-16  2.106e-16 -1.007e-16  1.551e-16  4.882e-16  8.213e-16 
##        148        149        150        151        152        153        154 
##  4.327e-16 -6.948e-17  3.217e-16 -6.134e-17  6.547e-16  4.327e-16  8.768e-16 
##        155        156        157 
##  2.209e-15 -6.202e-17 -2.334e-16 
## 
## Coefficients:
##                                  Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                         0.110     30.618   0.004   0.9977  
## car_sales.model300M                30.586     43.300   0.706   0.6085  
## car_sales.model323i                19.637     43.300   0.454   0.7289  
## car_sales.model328i                 9.121     43.300   0.211   0.8678  
## car_sales.model44442               12.005     43.300   0.277   0.8278  
## car_sales.model44444                9.081     43.300   0.210   0.8684  
## car_sales.model4Runner             68.301     43.300   1.577   0.3597  
## car_sales.model528i                17.417     43.300   0.402   0.7565  
## car_sales.modelA4                  20.287     43.300   0.469   0.7211  
## car_sales.modelA6                  18.670     43.300   0.431   0.7408  
## car_sales.modelA8                   1.270     43.300   0.029   0.9813  
## car_sales.modelAccent              41.074     43.300   0.949   0.5168  
## car_sales.modelAccord             230.792     43.300   5.330   0.1181  
## car_sales.modelAlero               80.145     43.300   1.851   0.3153  
## car_sales.modelAltima              87.984     43.300   2.032   0.2911  
## car_sales.modelAurora              14.580     43.300   0.337   0.7932  
## car_sales.modelAvalon              63.739     43.300   1.472   0.3799  
## car_sales.modelAvenger              4.624     43.300   0.107   0.9323  
## car_sales.modelBeetle              49.353     43.300   1.140   0.4585  
## car_sales.modelBonneville          35.835     43.300   0.828   0.5599  
## car_sales.modelBoxter               8.872     43.300   0.205   0.8713  
## car_sales.modelBravada             19.907     43.300   0.460   0.7257  
## car_sales.modelBreeze               5.130     43.300   0.118   0.9249  
## car_sales.modelC-Class             18.282     43.300   0.422   0.7457  
## car_sales.modelC70                  3.383     43.300   0.078   0.9504  
## car_sales.modelCabrio               9.459     43.300   0.218   0.8631  
## car_sales.modelCamaro              26.292     43.300   0.607   0.6526  
## car_sales.modelCamry              247.884     43.300   5.725   0.1101  
## car_sales.modelCaravan            181.639     43.300   4.195   0.1490  
## car_sales.modelCarrera Cabriolet    1.756     43.300   0.041   0.9742  
## car_sales.modelCarrera Coupe        1.170     43.300   0.027   0.9828  
## car_sales.modelCatera              11.075     43.300   0.256   0.8406  
## car_sales.modelCavalier           145.409     43.300   3.358   0.1843  
## car_sales.modelCelica              33.159     43.300   0.766   0.5839  
## car_sales.modelCentury             91.451     43.300   2.112   0.2815  
## car_sales.modelCherokee            80.446     43.300   1.858   0.3143  
## car_sales.modelCirrus              32.196     43.300   0.744   0.5930  
## car_sales.modelCivic              199.575     43.300   4.609   0.1360  
## car_sales.modelCL                  14.004     43.300   0.323   0.8009  
## car_sales.modelCL500                0.844     43.300   0.019   0.9876  
## car_sales.modelCLK Coupe           11.482     43.300   0.265   0.8350  
## car_sales.modelConcorde            31.038     43.300   0.717   0.6041  
## car_sales.modelContinental         13.688     43.300   0.316   0.8051  
## car_sales.modelContour             34.958     43.300   0.807   0.5676  
## car_sales.modelCorolla            142.425     43.300   3.289   0.1879  
## car_sales.modelCorvette            17.837     43.300   0.412   0.7512  
## car_sales.modelCougar              26.419     43.300   0.610   0.6512  
## car_sales.modelCR-V                73.093     43.300   1.688   0.3405  
## car_sales.modelCrown Victoria      63.293     43.300   1.462   0.3820  
## car_sales.modelCutlass              1.002     43.300   0.023   0.9853  
## car_sales.modelDakota             111.203     43.300   2.568   0.2364  
## car_sales.modelDeVille             63.619     43.300   1.469   0.3804  
## car_sales.modelDiamante             5.601     43.300   0.129   0.9181  
## car_sales.modelDurango            101.213     43.300   2.337   0.2574  
## car_sales.modelE-Class             27.492     43.300   0.635   0.6399  
## car_sales.modelEclipse             42.431     43.300   0.980   0.5065  
## car_sales.modelElantra             66.582     43.300   1.538   0.3671  
## car_sales.modelEldorado             6.426     43.300   0.148   0.9062  
## car_sales.modelES300               23.962     43.300   0.553   0.6782  
## car_sales.modelEscalade            14.675     43.300   0.339   0.7920  
## car_sales.modelEscort              70.117     43.300   1.619   0.3522  
## car_sales.modelExpedition         125.228     43.300   2.892   0.2119  
## car_sales.modelExplorer           276.637     43.300   6.389   0.0988 .
## car_sales.modelF-Series           540.451     43.300  12.482   0.0509 .
## car_sales.modelFirebird            19.801     43.300   0.457   0.7269  
## car_sales.modelFocus              175.560     43.300   4.055   0.1539  
## car_sales.modelForester            32.918     43.300   0.760   0.5862  
## car_sales.modelFrontier            64.895     43.300   1.499   0.3746  
## car_sales.modelGalant              55.506     43.300   1.282   0.4218  
## car_sales.modelGolf                 9.651     43.300   0.223   0.8604  
## car_sales.modelGrand Am           130.987     43.300   3.025   0.2032  
## car_sales.modelGrand Cherokee     156.930     43.300   3.624   0.1714  
## car_sales.modelGrand Marquis       81.064     43.300   1.872   0.3123  
## car_sales.modelGrand Prix          92.254     43.300   2.131   0.2794  
## car_sales.modelGS300               12.588     43.300   0.291   0.8199  
## car_sales.modelGS400                3.224     43.300   0.074   0.9527  
## car_sales.modelGTI                  5.486     43.300   0.127   0.9198  
## car_sales.modelI30                 23.603     43.300   0.545   0.6823  
## car_sales.modelImpala             107.885     43.300   2.492   0.2430  
## car_sales.modelIntegra             16.809     43.300   0.388   0.7643  
## car_sales.modelIntrepid            87.918     43.300   2.030   0.2913  
## car_sales.modelIntrigue            38.444     43.300   0.888   0.5378  
## car_sales.modelJetta               83.611     43.300   1.931   0.3042  
## car_sales.modelLand Cruiser         9.725     43.300   0.225   0.8594  
## car_sales.modelLeSabre             83.147     43.300   1.920   0.3057  
## car_sales.modelLHS                 13.352     43.300   0.308   0.8096  
## car_sales.modelLS                  49.879     43.300   1.152   0.4551  
## car_sales.modelLS400                6.265     43.300   0.145   0.9085  
## car_sales.modelLumina              24.519     43.300   0.566   0.6720  
## car_sales.modelLW                   8.362     43.300   0.193   0.8786  
## car_sales.modelLX470                9.016     43.300   0.208   0.8693  
## car_sales.modelM-Class             28.866     43.300   0.667   0.6257  
## car_sales.modelMalibu             135.016     43.300   3.118   0.1976  
## car_sales.modelMaxima              79.743     43.300   1.842   0.3167  
## car_sales.modelMetro               21.745     43.300   0.502   0.7037  
## car_sales.modelMirage              26.122     43.300   0.603   0.6544  
## car_sales.modelMontana             39.462     43.300   0.911   0.5295  
## car_sales.modelMonte Carlo         42.483     43.300   0.981   0.5061  
## car_sales.modelMontero             11.227     43.300   0.259   0.8385  
## car_sales.modelMontero Sport       39.238     43.300   0.906   0.5313  
## car_sales.modelMountaineer         27.499     43.300   0.635   0.6398  
## car_sales.modelMustang            113.259     43.300   2.616   0.2325  
## car_sales.modelMystique            14.241     43.300   0.329   0.7977  
## car_sales.modelNavigator           22.815     43.300   0.527   0.6913  
## car_sales.modelNeon                54.274     37.499   1.447   0.3849  
## car_sales.modelOdyssey             75.919     43.300   1.753   0.3300  
## car_sales.modelOutback             46.997     43.300   1.085   0.4739  
## car_sales.modelPark Avenue         27.741     43.300   0.641   0.6373  
## car_sales.modelPassat              50.992     43.300   1.178   0.4482  
## car_sales.modelPassport            12.745     43.300   0.294   0.8178  
## car_sales.modelPathfinder          42.464     43.300   0.981   0.5062  
## car_sales.modelPrizm               32.189     43.300   0.743   0.5930  
## car_sales.modelProwler              1.762     43.300   0.041   0.9741  
## car_sales.modelQuest               27.198     43.300   0.628   0.6430  
## car_sales.modelRam Pickup         226.951     43.300   5.241   0.1200  
## car_sales.modelRam Van             30.928     43.300   0.714   0.6051  
## car_sales.modelRam Wagon           16.657     43.300   0.385   0.7662  
## car_sales.modelRanger             220.540     43.300   5.093   0.1234  
## car_sales.modelRAV4                24.996     43.300   0.577   0.6667  
## car_sales.modelRegal               39.240     43.300   0.906   0.5313  
## car_sales.modelRL                   8.478     43.300   0.196   0.8769  
## car_sales.modelRX300               51.128     43.300   1.181   0.4473  
## car_sales.modelS-Class             16.664     43.300   0.385   0.7661  
## car_sales.modelS-Type              15.357     43.300   0.355   0.7830  
## car_sales.modelS40                 16.847     43.300   0.389   0.7638  
## car_sales.modelS70                 15.135     43.300   0.350   0.7859  
## car_sales.modelS80                 18.859     43.300   0.436   0.7385  
## car_sales.modelSable               67.846     43.300   1.567   0.3616  
## car_sales.modelSC                  24.436     43.300   0.564   0.6729  
## car_sales.modelSebring Conv.       32.665     43.300   0.754   0.5886  
## car_sales.modelSebring Coupe        7.744     43.300   0.179   0.8873  
## car_sales.modelSentra              42.533     43.300   0.982   0.5057  
## car_sales.modelSeville             15.833     43.300   0.366   0.7768  
## car_sales.modelSienna              65.009     43.300   1.501   0.3741  
## car_sales.modelSilhouette          24.251     43.300   0.560   0.6750  
## car_sales.modelSL                  80.510     43.300   1.859   0.3141  
## car_sales.modelSL-Class             3.201     43.300   0.074   0.9530  
## car_sales.modelSLK                  7.888     43.300   0.182   0.8853  
## car_sales.modelSLK230               1.416     43.300   0.033   0.9792  
## car_sales.modelSonata              29.340     43.300   0.678   0.6209  
## car_sales.modelStratus             71.076     43.300   1.641   0.3483  
## car_sales.modelSunfire             51.535     43.300   1.190   0.4449  
## car_sales.modelSW                   5.113     43.300   0.118   0.9252  
## car_sales.modelTacoma              83.977     43.300   1.939   0.3031  
## car_sales.modelTaurus             245.705     43.300   5.674   0.1110  
## car_sales.modelTL                  39.274     43.300   0.907   0.5310  
## car_sales.modelTown & Country      53.370     43.300   1.233   0.4339  
## car_sales.modelTown car            48.801     43.300   1.127   0.4620  
## car_sales.modelV40                  3.435     43.300   0.079   0.9496  
## car_sales.modelV70                 17.421     43.300   0.402   0.7565  
## car_sales.modelVillager            20.270     43.300   0.468   0.7213  
## car_sales.modelViper                0.806     43.300   0.019   0.9882  
## car_sales.modelVoyager             24.045     43.300   0.555   0.6773  
## car_sales.modelWindstar           155.677     43.300   3.595   0.1727  
## car_sales.modelWrangler            55.447     43.300   1.281   0.4221  
## car_sales.modelXterra              54.048     43.300   1.248   0.4300  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 30.62 on 1 degrees of freedom
## Multiple R-squared:  0.9987, Adjusted R-squared:  0.7974 
## F-statistic: 4.962 on 155 and 1 DF,  p-value: 0.3459
anova(model5)
## Analysis of Variance Table
## 
## Response: sales
##                  Df Sum Sq Mean Sq F value Pr(>F)
## car_sales.model 155 721031  4651.8  4.9622 0.3459
## Residuals         1    937   937.4
model6 <- lm(sales~manufact, data = car_sales4)
summary(model6)
## 
## Call:
## lm(formula = sales ~ manufact, data = car_sales4)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -148.81  -19.00   -5.62   14.59  356.69 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             19.751     28.041   0.704  0.48249    
## manufactAudi            -6.232     42.833  -0.146  0.88455    
## manufactBMW             -4.250     42.833  -0.099  0.92113    
## manufactBuick           40.754     39.655   1.028  0.30605    
## manufactCadillac         2.684     37.620   0.071  0.94323    
## manufactChevrolet       41.845     33.701   1.242  0.21665    
## manufactChrysler         9.066     35.151   0.258  0.79689    
## manufactDodge           62.990     32.744   1.924  0.05663 .  
## manufactFord           164.125     32.744   5.012 1.76e-06 ***
## manufactHonda           98.784     37.620   2.626  0.00971 ** 
## manufactHyundai         26.024     42.833   0.608  0.54455    
## manufactInfiniti         3.962     62.701   0.063  0.94972    
## manufactJaguar          -4.284     62.701  -0.068  0.94563    
## manufactJeep            77.966     42.833   1.820  0.07107 .  
## manufactLexus           -1.944     36.200  -0.054  0.95726    
## manufactLincoln          8.793     42.833   0.205  0.83767    
## manufactMercedes-Benz   -6.737     33.701  -0.200  0.84186    
## manufactMercury         19.915     36.200   0.550  0.58319    
## manufactMitsubishi       6.091     35.151   0.173  0.86271    
## manufactNissan          37.339     35.151   1.062  0.29013    
## manufactOldsmobile      10.080     36.200   0.278  0.78111    
## manufactPlymouth        -3.751     39.655  -0.095  0.92479    
## manufactPontiac         42.004     36.200   1.160  0.24809    
## manufactPorsche        -15.709     42.833  -0.367  0.71442    
## manufactSaab            -9.098     48.568  -0.187  0.85170    
## manufactSaturn          14.019     37.620   0.373  0.71004    
## manufactSubaru          20.316     48.568   0.418  0.67643    
## manufactToyota          62.494     33.701   1.854  0.06600 .  
## manufactVolkswagen      15.117     36.200   0.418  0.67694    
## manufactVolvo           -7.128     36.200  -0.197  0.84422    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 56.08 on 127 degrees of freedom
## Multiple R-squared:  0.4468, Adjusted R-squared:  0.3204 
## F-statistic: 3.536 on 29 and 127 DF,  p-value: 4.745e-07
anova(model6)
## Analysis of Variance Table
## 
## Response: sales
##            Df Sum Sq Mean Sq F value    Pr(>F)    
## manufact   29 322541 11122.1  3.5363 4.745e-07 ***
## Residuals 127 399427  3145.1                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1