knitr::opts_chunk$set(echo = T, message = FALSE)
library(Rcpp)
library(readxl)
library(dplyr)
library(tidyr)
library(ggplot2)
library(janitor)
library(grid)
library(ggthemes)
library(extrafont)
#font_import()
loadfonts(device = "win")
windowsFonts(Times = windowsFont("TT Times New Roman"))
library(lsmeans)
library(nlme)
library(car)
library(lme4)
library(multcomp)
library(lmerTest)
library(multcompView)
library(semPlot)
library(lavaan)
library(broom)
library(broom.mixed)
library(emmeans)
library(plyr)
#import data
soilhealth <- read_excel("7-30-21 part 11 nrcs soil health final data.xlsx")
#change column names
soilhealth <- soilhealth %>%
clean_names()
#str(soilhealth)
#View(soilhealth)
#names(soilhealth)
#convert variables to factors
soilhealth$nhorizon <- as.factor(soilhealth$nhorizon)
soilhealth$blk <- as.factor(soilhealth$blk)
soilhealth$horizon <- as.factor(soilhealth$horizon)
soilhealth$thorizon <- as.factor(soilhealth$thorizon)
soilhealth$rlanduse <- as.factor(soilhealth$rlanduse)
soilhealth$landuse <- as.factor(soilhealth$landuse)
soilhealth$prec <- as.factor(soilhealth$prec)
soilhealth$ag <- as.factor(soilhealth$ag)
soilhealth$tillage <- as.factor(soilhealth$tillage)
#convert variables to numeric
soilhealth$bdepth=as.numeric(soilhealth$bdepth)
soilhealth$precip <- as.numeric(soilhealth$precip)
soilhealth$t_np <- as.numeric(soilhealth$t_np)
soilhealth$to_cp <- as.numeric(soilhealth$to_cp)
soilhealth$ca <- as.numeric(soilhealth$ca)
soilhealth$cu <- as.numeric(soilhealth$cu)
soilhealth$mg <- as.numeric(soilhealth$mg)
soilhealth$mn <- as.numeric(soilhealth$mn)
soilhealth$na <- as.numeric(soilhealth$na)
soilhealth$p <- as.numeric(soilhealth$p)
soilhealth$p_h <- as.numeric(soilhealth$p_h)
soilhealth$k <- as.numeric(soilhealth$k)
soilhealth$zn <- as.numeric(soilhealth$zn)
soilhealth$fe <- as.numeric(soilhealth$fe)
soilhealth$cec <- as.numeric(soilhealth$cec)
soilhealth$mb <- as.numeric(soilhealth$mb)
soilhealth$gramp <- as.numeric(soilhealth$gramp)
soilhealth$gramn <- as.numeric(soilhealth$gramn)
soilhealth$actin <- as.numeric(soilhealth$actin)
soilhealth$amf <- as.numeric(soilhealth$amf)
soilhealth$fungi <- as.numeric(soilhealth$fungi)
soilhealth$fb <- as.numeric(soilhealth$fb)
soilhealth$pgrmp <- as.numeric(soilhealth$pgrmp)
soilhealth$pgrmn <- as.numeric(soilhealth$pgrmn)
soilhealth$pactin <- as.numeric(soilhealth$pactin)
soilhealth$pamf <- as.numeric(soilhealth$pamf)
soilhealth$pfungi <- as.numeric(soilhealth$pfungi)
#vartable(soilhealth)
# removes ottawa
soilhealth1 <- soilhealth %>%
filter(location!="Ottawa")
soilhealth1$landuse<- factor(soilhealth1$landuse,
levels = c(1,2,3),
labels = c("AG", "EA", "NP"))
#str(soilhealth1)
soilhealth1 <- as.data.frame(soilhealth1)
soilhealth2 <- soilhealth1
soilhealth2 <- soilhealth2[c(1,5,9,29,33,37,57,61,65,85,89,93,109,113,117,137,141,145,165,169,173,189,193,197,213,217,221),]
#soilhealth2
# keep nutrients
nut <- soilhealth1 %>%
dplyr::filter(location!="Ottawa") %>%
dplyr::select(location, treatment, bdepth, horizon, blk, replication, landuse, precip, clay, nh4, no3, t_np, to_cp, to_cg, t_nm, ca, cu, mg, mn, na, p, p_h, k, zn, fe, gwc, cec) %>%
dplyr::mutate(cn=(to_cp/t_np), ca_g=(ca/1000))
#str(nut)
#summary(nut)
#vartable(nut)
# keeps aggregate data
agg <- soilhealth1 %>%
dplyr::select(location, treatment, bdepth, horizon, blk, replication, landuse, precip, x20wsa2000, x20wsa250, x20wsa53, x20wsa20, x20mwd, x5wsa2000, x5wsa250, x5wsa53, x5wsa20, x5mwd, nagg, bd, clay)
#str(agg)
#summary(agg)
#plot(agg)
#vartable(agg)
# Keep respiration data, enzymes, proteins
# normalize the enzyme distributions
#vartable(agg)
epr <- soilhealth1 %>%
dplyr::select(location, treatment, bdepth, horizon, blk, replication, landuse, precip, ac, glucosidase, glucosaminidase, acidphosphotase, alkphosphatase, arylsulfatase, phosphodiesterase, protein, respiration, to_cg, t_nm, mb, gramp, gramn, actin, amf, fungi, fb, pgrmp,pgrmn, pactin, pamf, pfungi) %>%
dplyr::mutate(lnac=log(ac), lngluc=log(glucosidase), lnglucosam=log(glucosaminidase), lnacidp=log(acidphosphotase), lnalkp=log(alkphosphatase), lnary=log(arylsulfatase), lnpho=log(phosphodiesterase), lnprotein=log(protein), lngluc_glucosam= (lngluc/lnglucosam), lngluc_acidp= (lngluc/lnacidp), lngluc_alkp=(lngluc/lnalkp), lngluc_pho=(lngluc/lnpho), lngluc_ary=(lngluc/lnary))
#str(epr)
#vartable(epr)
ratios <- soilhealth1 %>%
dplyr::select(location, treatment, bdepth, horizon, blk, landuse, precip, replication, respiration, to_cg, t_nm, protein) %>%
dplyr::mutate(t_ng=(t_nm/1000), ptn=(protein/t_ng), rec=(respiration/to_cg))
#vartable(ratios)
#To deal with egative natural log values from enzymes, I added 1.1 to each variable.
epr2 <- soilhealth1 %>%
dplyr::select(location, treatment, bdepth, horizon, blk, landuse, precip, replication, ac, glucosidase, glucosaminidase, acidphosphotase, alkphosphatase, arylsulfatase, phosphodiesterase, protein, respiration) %>%
mutate(lnac=log(ac), lngluc=log(glucosidase*100), lnglucosam=log(glucosaminidase*100), lnacidp=log(acidphosphotase*100), lnalkp=log(alkphosphatase*100), lnary=log(arylsulfatase*100), lnpho=log(phosphodiesterase*100), lnprotein=log(protein), lngluc_glucosam= (lngluc/lnglucosam), lngluc_acidp= (lngluc/lnacidp), lngluc_alkp=(lngluc/lnalkp), lngluc_pho=(lngluc/lnpho), lngluc_ary=(lngluc/lnary))
#summary(epr1)
#remove IR from epr, epr2
epra <- epr %>%
filter(treatment!="IR")
epra2 <- epr2 %>%
filter(treatment!="IR")
#depth for biological
epra5 <- epra %>%
filter(bdepth==5)
epra10 <- epra %>%
filter(bdepth==10)
epra15 <- epra %>%
filter(bdepth==15)
#remove IR from nut
nutr <- nut %>%
filter(treatment!="IR")
#depth for chemical
nut5 <- nutr %>%
filter(bdepth==5)
nut10<- nutr %>%
filter(bdepth==10)
nut15<- nutr %>%
filter(bdepth==15)
#remove IR from agg
aggr <- agg %>%
filter(treatment!="IR")
#depth for phyisical
agg5 <- aggr %>%
filter(bdepth==5)
agg10 <- aggr %>%
filter(bdepth==10)
agg15 <- aggr %>%
filter(bdepth==15)
#depth for epr2 ratios
epra25 <- epra2 %>%
filter(bdepth==5)
epra210 <- epra2 %>%
filter(bdepth==10)
epra215 <- epra2 %>%
filter(bdepth==15)
#depth for ratios
ratio5 <- ratios %>%
filter(bdepth==5)
ratio10 <- ratios %>%
filter(bdepth==10)
ratio15 <- ratios %>%
filter(bdepth==15)
library(grid)
library(ggthemes)
#fcol <- c( "AG" = "black", "EA" = "grey40", "NP" = "grey90", "IR"="blue")
#kstate purple - 512888
fcol <- c( "AG" = "#F8A350", "EA" = "#FF9933", "NP" = "#512888", "IR"="#0033FF")
pd <- position_dodge(0.1)
theme_James <- function(base_size=14, base_family="TT Times New Roman") {
(theme_foundation(base_size=base_size, base_family=base_family)+
theme_bw()+
theme(panel.background = element_rect(colour = NA),
plot.background = element_rect(colour = NA),
axis.title = element_text(color="black",size=rel(1.2)),
axis.text = element_text(color="black", size = 12),
legend.key = element_rect(colour = NA),
legend.spacing = unit(0, "cm"),
legend.text = element_text(size=12),
legend.title = element_blank(),
panel.grid = element_blank(),
plot.title = element_text(color="Black",size = rel(1.5),face = "bold",hjust = 0.5),
strip.text = element_text(color="Black",size = rel(1),face="bold")
))
}
library(ggcorrplot)
# Compute a correlation matrix
names(soilhealth)
## [1] "sample_name" "location" "treatment"
## [4] "depth" "replication" "bdepth"
## [7] "nhorizon" "blk" "horizon"
## [10] "thorizon" "rlanduse" "landuse"
## [13] "elevation" "clay" "temp"
## [16] "precip" "prec" "ag"
## [19] "tillage" "nh4" "no3"
## [22] "t_np" "t_nm" "to_cp"
## [25] "to_cg" "ca" "cu"
## [28] "mg" "mn" "na"
## [31] "p" "p_h" "carbonate"
## [34] "k" "zn" "fe"
## [37] "cec" "gwc" "odad"
## [40] "bd" "ac" "x20wsa2000"
## [43] "x20wsa250" "x20wsa53" "x20wsa20"
## [46] "x20mwd" "x5wsa2000" "x5wsa250"
## [49] "x5wsa53" "x5wsa20" "x5mwd"
## [52] "nagg" "respiration" "mb"
## [55] "gramp" "gramn" "actin"
## [58] "amf" "fungi" "fb"
## [61] "glucosidase" "glucosaminidase" "acidphosphotase"
## [64] "alkphosphatase" "arylsulfatase" "phosphodiesterase"
## [67] "protein" "socstock" "tnstock"
## [70] "pgrmp" "pgrmn" "pactin"
## [73] "pamf" "pfungi"
soilmatrixtop3 <- soilhealth %>%
filter(location!="Ottawa", treatment!="IR", bdepth==c("5", "10", "15")) %>%
dplyr::select(t_np, to_cp, p, x20mwd, respiration, mb, gramp, gramn, actin, amf, fungi, fb, glucosidase, glucosaminidase, acidphosphotase, alkphosphatase, arylsulfatase, phosphodiesterase, protein, ac, p_h, bd) %>%
dplyr::select(where(is.numeric)) %>% drop_na()
## Warning in bdepth == c("5", "10", "15"): longer object length is not a multiple
## of shorter object length
soilmatrixtop3 <- na.omit(soilmatrixtop3)
names(soilmatrixtop3)
## [1] "t_np" "to_cp" "p"
## [4] "x20mwd" "respiration" "mb"
## [7] "gramp" "gramn" "actin"
## [10] "amf" "fungi" "fb"
## [13] "glucosidase" "glucosaminidase" "acidphosphotase"
## [16] "alkphosphatase" "arylsulfatase" "phosphodiesterase"
## [19] "protein" "ac" "p_h"
## [22] "bd"
colnames(soilmatrixtop3)[1] <- "TN"
colnames(soilmatrixtop3)[2] <- "SOC"
colnames(soilmatrixtop3)[3] <- "P"
colnames(soilmatrixtop3)[4] <- "MWD"
colnames(soilmatrixtop3)[5] <- "Resp"
colnames(soilmatrixtop3)[6] <- "MB"
colnames(soilmatrixtop3)[7] <- "GmP"
colnames(soilmatrixtop3)[8] <- "GmN"
colnames(soilmatrixtop3)[9] <- "Act"
colnames(soilmatrixtop3)[10] <- "AMF"
colnames(soilmatrixtop3)[11] <- "FUN"
colnames(soilmatrixtop3)[12] <- "F:B"
colnames(soilmatrixtop3)[13] <- "bG"
colnames(soilmatrixtop3)[14] <- "NAG"
colnames(soilmatrixtop3)[15] <- "AP"
colnames(soilmatrixtop3)[16] <- "ALK"
colnames(soilmatrixtop3)[17] <- "ARY"
colnames(soilmatrixtop3)[18] <- "PHO"
colnames(soilmatrixtop3)[19] <- "Pro"
colnames(soilmatrixtop3)[20] <- "POXC"
colnames(soilmatrixtop3)[21] <- "pH"
colnames(soilmatrixtop3)[22] <- "bd"
corr <- round(cor(soilmatrixtop3, method = "pearson"), 2)
#head(corr[,])
# Compute a matrix of correlation p-values
p.mat <- cor_pmat(soilmatrixtop3 , conf.level = 0.95)
ggcorrplot(corr, hc.order = TRUE, type = "lower", p.mat=p.mat, outline.col = "white", insig = "blank", lab=TRUE, lab_size = 2)
corpsoil <- ggcorrplot(corr, hc.order = TRUE, type = "lower", p.mat=p.mat, outline.col = "white", insig = "blank", lab=TRUE, lab_size = 2, title = "Spearman Correlation Matrix p > 0.05")
ggsave("corplot.png", corpsoil, width=15, height=10)
ggcorrplot(corr, sig.level = 0.05, method = "circle", hc.order = F, outline.color = "white",
type = "lower", lab = T, lab_size = 3, colors = c("tomato2", "white", "springgreen3"),
p.mat = p.mat, insig = "blank", ggtheme = theme_bw) + theme(panel.grid = element_blank(),
legend.position = c(0.1, 0.8), axis.text = element_text(face = "bold"))
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
ggcorrplot(corr, sig.level = 0.05, hc.order = F, type = "lower", lab=T, lab_size= 3, colors = c("tomato2", "white", "springgreen3"), p.mat=p.mat, outline.col = "white", insig = "blank") + theme(panel.grid = element_blank(),
legend.position = c(0.1, 0.8), axis.text = element_text(face = "bold"))
corsoil <- ggcorrplot(corr, tl.cex = 20, sig.level = 0.05, hc.order = F, type = "lower", lab=T, lab_size= 4.5, colors = c("tomato2", "white", "springgreen3"), p.mat=p.mat, outline.col = "white", insig = "blank") + theme(panel.grid = element_blank(),
legend.position = c(0.1, 0.8), axis.text = element_text(face = "bold"))
ggsave("corsoilplottop.png", corsoil, width=10, height=10)
x
## [1] "0-5 cm"
epra5$precip <- as.factor(epra5$precip)
bgluc5 <- lmer(glucosidase ~ landuse*precip + (1|replication), data=epra5, na.action=na.omit)
anova(bgluc5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 2919.0 1459.50 2 27 29.2361 1.753e-07 ***
## precip 2990.0 1495.00 2 27 29.9472 1.403e-07 ***
## landuse:precip 1979.9 494.98 4 27 9.9152 4.539e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
bgluc5_means <- lsmeans (bgluc5, ~landuse*precip, adjust="tukey")
bgluc5_pwc <- cld(bgluc5_means, adjust="none", Letters = letters, reversed=T)
bgluc5_pwc <- as.data.frame(bgluc5_pwc)
#Determining the real SE
real_se_bgluc5 <- epra5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n = n(),
mean = mean(glucosidase),
sd = sd(glucosidase)
) %>%
dplyr::mutate(se = sd / sqrt(n))
real_se_bgluc5 <- merge(df, real_se_bgluc5, by = c("precip"))
bg5 <- merge(bgluc5_pwc, real_se_bgluc5, by = c("precip", "landuse"))
bg5 <- as.data.frame(bg5)
bg5$location_f = factor(bg5$location, levels = c('Tribune', 'Hays', 'Manhattan'))
ggplot(data = bg5, aes(x = landuse, y = lsmean, fill = landuse)) +
geom_bar(position = position_dodge(),
stat = "identity",
colour = "black") +
geom_errorbar(aes(ymin = lsmean - se, ymax = lsmean + se),
width = .2,
# Width of the error bars
position = position_dodge(.9)) +
scale_y_continuous(limits = c(0, 70)) +
xlab("") +
ggtitle("A) 0-5 cm") +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab(expression(beta~-Glucosidase ~(mg ~kg^{-1} ~hr^{-1})))+
geom_label(aes(label=trimws(.group), y = lsmean+se +2),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3bgluc5.png", height = 5, width = 4)
y
## [1] "5-10 cm"
epra10$precip <- as.factor(epra10$precip)
bgluc10 <- lmer(glucosidase ~ landuse*precip + (1|replication), data=epra10, na.action=na.omit)
anova(bgluc10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 163.01 81.507 2 19.4401 2.3367 0.1232
## precip 117.35 58.674 2 8.0207 1.6821 0.2454
## landuse:precip 219.61 54.903 4 15.4087 1.5740 0.2310
bgluc10_means <- lsmeans (bgluc10, ~landuse*precip, adjust="tukey")
bgluc10_pwc <- cld(bgluc10_means, adjust="none", Letters = letters, reversed=T)
bgluc10_pwc <- as.data.frame(bgluc10_pwc)
#Determining the real SE
real_se_bgluc10 <- epra10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n = n(),
mean = mean(glucosidase),
sd = sd(glucosidase)
) %>%
dplyr::mutate(se = sd / sqrt(n))
real_se_bgluc10 <- merge(df, real_se_bgluc10, by = c("precip"))
bg10 <- merge(bgluc10_pwc, real_se_bgluc10, by = c("precip", "landuse"))
bg10 <- as.data.frame(bg10)
bg10$location_f = factor(bg10$location, levels = c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=bg10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,70)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
ggtitle("B) 5-10 cm")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab(expression(beta~-Glucosidase ~(mg ~kg^{-1} ~hr^{-1}))) +
geom_label(aes(label=trimws(.group), y = lsmean+se +2),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3bgluc10.png", height=5, width=4)
z
## [1] "10-15 cm"
epra15$precip <- as.factor(epra15$precip)
bgluc15 <- lmer(glucosidase ~ landuse*precip + (1|replication), data=epra15, na.action=na.omit)
anova(bgluc15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 165.906 82.953 2 27 13.9815 6.799e-05 ***
## precip 214.256 107.128 2 27 18.0562 1.052e-05 ***
## landuse:precip 88.463 22.116 4 27 3.7275 0.01534 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
bgluc15_means <- lsmeans (bgluc15, ~landuse*precip, adjust="tukey")
bgluc15_pwc <- cld(bgluc15_means, adjust="none", Letters = letters, reversed=T)
bgluc15_pwc <- as.data.frame(bgluc15_pwc)
#Determining the real SE
real_se_bgluc15 <- epra15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(glucosidase),
sd=sd(glucosidase)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_bgluc15<- merge(df, real_se_bgluc15, by=c("precip"))
bg15 <- merge(bgluc15_pwc, real_se_bgluc15, by=c("precip", "landuse"))
bg15 <- as.data.frame(bg15)
bg15$location_f =factor(bg15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=bg15, aes(x=landuse, y=mean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=mean-se, ymax=mean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,70)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab(expression(beta~-Glucosidase ~(mg ~kg^{-1} ~hr^{-1}))) +
geom_label(aes(label=trimws(.group), y = lsmean+se +2),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3bgluc15.png", height=5, width=4)
x
## [1] "0-5 cm"
epra5$precip <- as.factor(epra5$precip)
glucsam5 <- lmer(glucosaminidase ~ landuse*precip + (1|replication), data=epra5, na.action=na.omit)
anova(glucsam5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 1021.33 510.66 2 19.493 67.2371 1.786e-09 ***
## precip 61.41 30.71 2 6.888 4.0429 0.06895 .
## landuse:precip 96.68 24.17 4 19.493 3.1823 0.03617 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
glucsam5_means_int <- lsmeans (glucsam5, ~landuse*precip, adjust="tukey")
glucsam5_pwc_int <- cld(glucsam5_means_int, adjust="none", Letters = letters, reversed=T)
glucsam5_pwc_int <- as.data.frame(glucsam5_pwc_int)
#Determining the real SE
real_se_glucsam5 <- epra5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(glucosaminidase),
sd=sd(glucosaminidase)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_glucsam5<- merge(df, real_se_glucsam5, by=c("precip"))
glucsam5_pwc_tp_5 <- merge(glucsam5_pwc_int, real_se_glucsam5, by=c("precip", "landuse"))
glucsam5_pwc_tp_5 <- as.data.frame(glucsam5_pwc_tp_5)
glucsam5_pwc_tp_5$location_f =factor(glucsam5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=glucsam5_pwc_tp_5, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,35)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab(expression(beta~-Glucosaminidase ~(mg ~kg^{-1} ~hr^{-1}))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+3),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3bglucsam5.png", height=5, width=4)
y
## [1] "5-10 cm"
epra10$precip <- as.factor(epra10$precip)
glucsam10 <- lmer(glucosaminidase ~ landuse*precip + (1|replication), data=epra10, na.action=na.omit)
anova(glucsam10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 316.19 158.094 2 19.0440 72.1280 1.3e-09 ***
## precip 0.05 0.025 2 9.1102 0.0114 0.988725
## landuse:precip 69.00 17.250 4 15.9060 7.8700 0.001066 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
glucsam10_means_tp <- lsmeans(glucsam10, ~landuse*precip, adjust="tukey")
glucsam10_pwc_tp <- cld(glucsam10_means_tp, adjust = "none", Letters = letters, reversed = T)
glucsam10_pwc_tp <- as.data.frame(glucsam10_pwc_tp)
#Determining the real SE
real_se_glucsam10 <- epra10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(glucosaminidase),
sd=sd(glucosaminidase)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_glucsam10 <- merge(df, real_se_glucsam10, by=c("precip"))
glucsam10_pwc_tp_10 <- merge(glucsam10_pwc_tp, real_se_glucsam10, by=c("precip", "landuse"))
glucsam10_pwc_tp_10 <- as.data.frame(glucsam10_pwc_tp_10)
glucsam10_pwc_tp_10$location_f =factor(glucsam10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=glucsam10_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,35)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab(expression(beta~-Glucosaminidase ~(mg ~kg^{-1} ~hr^{-1}))) +
geom_label(aes(label=trimws(.group), y = lsmean+3),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3bglucsam10.png", height=5, width=4)
z
## [1] "10-15 cm"
epra15$precip <- as.factor(epra15$precip)
glucsam15 <- lmer(glucosaminidase ~ landuse*precip + (1|replication), data=epra15, na.action=na.omit)
anova(glucsam15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 265.143 132.571 2 27 127.5786 1.745e-14 ***
## precip 10.113 5.057 2 27 4.8662 0.0156764 *
## landuse:precip 36.310 9.078 4 27 8.7357 0.0001166 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
glucsam15_means_tp <- lsmeans(glucsam15, ~landuse*precip, adjust="tukey")
glucsam15_pwc_tp <- cld(glucsam15_means_tp, adjust = "none", Letters = letters, reversed = T)
glucsam15_pwc_tp <- as.data.frame(glucsam15_pwc_tp)
#Determining the real SE
real_se_glucsam15 <- epra15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(glucosaminidase),
sd=sd(glucosaminidase)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_glucsam15 <- merge(df, real_se_glucsam15, by=c("precip"))
glucsam15_pwc_tp_15 <- merge(glucsam15_pwc_tp, real_se_glucsam15, by=c("precip", "landuse"))
glucsam15_pwc_tp_15 <- as.data.frame(glucsam15_pwc_tp_15)
glucsam15_pwc_tp_15$location_f =factor(glucsam15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=glucsam15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,35)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab(expression(beta~-Glucosaminidase ~(mg ~kg^{-1} ~hr^{-1}))) +
geom_label(aes(label=trimws(.group), y = lsmean+3),
label.padding = unit(.3,"lines"), show.legend=NA, label.size = NA, fill=NA, font="bold" ) +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3bglucsam15.png", height=5, width=4)
x
## [1] "0-5 cm"
epra5$precip <- as.factor(epra5$precip)
acpho5 <- lmer(acidphosphotase ~ landuse*precip + (1|replication), data=epra5, na.action=na.omit)
anova(acpho5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 265172 132586 2 20.2421 355.867 < 2.2e-16 ***
## precip 32076 16038 2 8.2925 43.047 4.175e-05 ***
## landuse:precip 39710 9927 4 20.2421 26.646 8.166e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
acpho5_means_tp <- lsmeans(acpho5, ~landuse*precip, adjust="tukey")
acpho5_pwc_tp <- cld(acpho5_means_tp, adjust = "none", Letters = letters, reversed = T)
acpho5_pwc_tp <- as.data.frame(acpho5_pwc_tp)
#Determining the real SE
real_se_acpho5 <- epra5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(acidphosphotase),
sd=sd(acidphosphotase)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_acpho5 <- merge(df, real_se_acpho5, by=c("precip"))
acpho5_pwc <- merge(acpho5_pwc_tp, real_se_acpho5, by=c("precip", "landuse"))
acpho5_pwc <- as.data.frame(acpho5_pwc)
acpho5_pwc$location_f =factor(acpho5_pwc$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=acpho5_pwc, aes(x=landuse, y=mean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=mean-se, ymax=mean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,400)) +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab(expression(Acid~ Phosphatase ~(mg ~kg^{-1} ~hr^{-1})))+
geom_label(aes(label=trimws(.group), y = lsmean+35),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3acidphos5.png", height=5, width=4)
y
## [1] "5-10 cm"
epra10$precip <- as.factor(epra10$precip)
acpho10 <- lmer(acidphosphotase ~ landuse*precip + (1|replication), data=epra10, na.action=na.omit)
anova(acpho10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 85297 42649 2 27 97.4347 4.478e-13 ***
## precip 7908 3954 2 27 9.0333 0.0009917 ***
## landuse:precip 13316 3329 4 27 7.6056 0.0003070 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
acpho10_means_tp <- lsmeans(acpho10, ~landuse*precip, adjust="tukey")
acpho10_pwc_tp <- cld(acpho10_means_tp, adjust = "none", Letters = letters, reversed = T)
acpho10_pwc_tp <- as.data.frame(acpho10_pwc_tp)
#Determining the real SE
real_se_acpho10 <- epra10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(acidphosphotase),
sd=sd(acidphosphotase)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_acpho10 <- merge(df, real_se_acpho10, by=c("precip"))
acpho10_pwc <- merge(acpho10_pwc_tp, real_se_acpho10, by=c("precip", "landuse"))
acpho10_pwc <- as.data.frame(acpho10_pwc)
acpho10_pwc$location_f =factor(acpho10_pwc$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=acpho10_pwc, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,400)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab(expression(Acid~ Phosphatase ~(mg ~kg^{-1} ~hr^{-1}))) +
geom_label(aes(label=trimws(.group), y = lsmean+35),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3acidphos10.png", height=5, width=4)
z
## [1] "10-15 cm"
epra15$precip <- as.factor(epra15$precip)
acpho15 <- lmer(acidphosphotase ~ landuse*precip + (1|replication), data=epra15, na.action=na.omit)
anova(acpho15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 33885 16942.6 2 27 59.8329 1.197e-10 ***
## precip 9346 4673.0 2 27 16.5026 2.079e-05 ***
## landuse:precip 7491 1872.6 4 27 6.6132 0.0007607 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
acpho15_means_tp <- lsmeans(acpho15, ~landuse*precip, adjust="tukey")
acpho15_pwc_tp <- cld(acpho15_means_tp, adjust = "none", Letters = letters, reversed = T)
acpho15_pwc_tp <- as.data.frame(acpho15_pwc_tp)
#Determining the real SE
real_se_acpho15 <- epra15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(acidphosphotase),
sd=sd(acidphosphotase)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_acpho15 <- merge(df, real_se_acpho15, by=c("precip"))
acpho15_pwc <- merge(acpho15_pwc_tp, real_se_acpho15, by=c("precip", "landuse"))
acpho15_pwc <- as.data.frame(acpho15_pwc)
acpho15_pwc$location_f =factor(acpho15_pwc$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=acpho15_pwc, aes(x=landuse, y=mean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=mean-se, ymax=mean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,400)) +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab(expression(Acid~ Phosphatase ~(mg ~kg^{-1} ~hr^{-1})))+
geom_label(aes(label=trimws(.group), y = lsmean+35),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3acidphos15.png", height=5, width=4)
x
## [1] "0-5 cm"
epra5$precip <- as.factor(epra5$precip)
akpho5 <- lmer(alkphosphatase ~ landuse*precip + (1|replication), data=epra5, na.action=na.omit)
anova(akpho5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 26411.8 13205.9 2 21.808 128.5598 8.521e-13 ***
## precip 1347.3 673.7 2 10.606 6.5582 0.014 *
## landuse:precip 4519.6 1129.9 4 21.808 10.9997 4.880e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
akpho5_means_tp <- lsmeans(akpho5, ~landuse*precip, adjust="tukey")
akpho5_pwc_tp <- cld(akpho5_means_tp, adjust = "none", Letters = letters, reversed = T)
akpho5_pwc_tp <- as.data.frame(akpho5_pwc_tp)
#Determining the real SE
real_se_akpho5 <- epra5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(alkphosphatase),
sd=sd(alkphosphatase)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_akpho5<- merge(df, real_se_akpho5, by=c("precip"))
akpho5_pwc_tp_5 <- merge(akpho5_pwc_tp, real_se_akpho5, by=c("precip", "landuse"))
akpho5_pwc_tp_5 <- as.data.frame(akpho5_pwc_tp_5)
akpho5_pwc_tp_5$location_f =factor(akpho5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=akpho5_pwc_tp_5, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,120)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab(expression(Alkaline~ Phosphatase ~(mg ~kg^{-1} ~hr^{-1}))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+5),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3alkphos5.png", height=5, width=4)
y
## [1] "5-10 cm"
epra10$precip <- as.factor(epra10$precip)
akpho10 <- lmer(alkphosphatase ~ landuse*precip + (1|replication), data=epra10, na.action=na.omit)
anova(akpho10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 5806.7 2903.36 2 27 48.8669 1.066e-09 ***
## precip 697.6 348.80 2 27 5.8708 0.007639 **
## landuse:precip 3257.7 814.43 4 27 13.7078 3.170e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
akpho10_means_tp <- lsmeans(akpho10, ~landuse*precip, adjust="tukey")
akpho10_pwc_tp <- cld(akpho10_means_tp, adjust = "none", Letters = letters, reversed = T)
akpho10_pwc_tp <- as.data.frame(akpho10_pwc_tp)
#Determining the real SE
real_se_akpho10 <- epra10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(alkphosphatase),
sd=sd(alkphosphatase)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_akpho10<- merge(df, real_se_akpho10, by=c("precip"))
akpho10_pwc_tp_10 <- merge(akpho10_pwc_tp, real_se_akpho10, by=c("precip", "landuse"))
akpho10_pwc_tp_10 <- as.data.frame(akpho10_pwc_tp_10)
akpho10_pwc_tp_10$location_f =factor(akpho10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=akpho10_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,120)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab(expression(Alkaline~ Phosphatase ~(mg ~kg^{-1} ~hr^{-1}))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+5),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3alkphos10.png", height=5, width=4)
z
## [1] "10-15 cm"
epra15$precip <- as.factor(epra15$precip)
akpho15 <- lmer(alkphosphatase ~ landuse*precip + (1|replication), data=epra15, na.action=na.omit)
anova(akpho15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 2738.95 1369.48 2 27 16.6134 1.978e-05 ***
## precip 433.98 216.99 2 27 2.6323 0.0902803 .
## landuse:precip 2446.00 611.50 4 27 7.4182 0.0003628 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
akpho15_means_tp <- lsmeans(akpho15, ~landuse*precip, adjust="tukey")
akpho15_pwc_tp <- cld(akpho15_means_tp, adjust = "none", Letters = letters, reversed = T)
akpho15_pwc_tp <- as.data.frame(akpho15_pwc_tp)
#Determining the real SE
real_se_akpho15 <- epra15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(alkphosphatase),
sd=sd(alkphosphatase)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_akpho15<- merge(df, real_se_akpho15, by=c("precip"))
akpho15_pwc_tp_15 <- merge(akpho15_pwc_tp, real_se_akpho15, by=c("precip", "landuse"))
akpho15_pwc_tp_15 <- as.data.frame(akpho15_pwc_tp_15)
akpho15_pwc_tp_15$location_f =factor(akpho15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=akpho15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,120)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab(expression(Alkaline~ Phosphatase ~(mg ~kg^{-1} ~hr^{-1}))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+5),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3alkphos15.png", height=5, width=4)
x
## [1] "0-5 cm"
epra5$precip <- as.factor(epra5$precip)
ary5 <- lmer(arylsulfatase ~ landuse*precip + (1|replication), data=epra5, na.action=na.omit)
anova(ary5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 15832.6 7916.3 2 21.560 1021.497 < 2.2e-16 ***
## precip 252.5 126.2 2 10.372 16.289 0.0006306 ***
## landuse:precip 705.4 176.4 4 21.560 22.757 1.774e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ary5_means_tp <- lsmeans(ary5, ~landuse*precip, adjust="tukey")
ary5_pwc_tp <- cld(ary5_means_tp, adjust = "none", Letters = letters, reversed = T)
ary5_pwc_tp <- as.data.frame(ary5_pwc_tp)
#Determining the real SE
real_se_ary5 <- epra5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(arylsulfatase),
sd=sd(arylsulfatase)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_ary5 <- merge(df, real_se_ary5, by=c("precip"))
ary5_pwc_tp_5 <- merge(ary5_pwc_tp, real_se_ary5, by=c("precip", "landuse"))
ary5_pwc_tp_5 <- as.data.frame(ary5_pwc_tp_5)
ary5_pwc_tp_5$location_f =factor(ary5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=ary5_pwc_tp_5, aes(x=landuse, y=mean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=mean-se, ymax=mean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,70)) +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab(expression(Arylsulfatase ~(mg ~kg^{-1} ~hr^{-1}))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+4),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3ary5.png", height=5, width=4)
y
## [1] "5-10 cm"
epra10$precip <- as.factor(epra10$precip)
ary10 <- lmer(arylsulfatase ~ landuse*precip + (1|replication), data=epra10, na.action=na.omit)
anova(ary10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 5991.2 2995.61 2 22.867 480.154 < 2.2e-16 ***
## precip 674.0 336.98 2 16.466 54.013 5.846e-08 ***
## landuse:precip 642.1 160.52 4 21.095 25.729 7.502e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ary10_means_tp <- lsmeans(ary10, ~landuse*precip, adjust="tukey")
ary10_pwc_tp <- cld(ary10_means_tp, adjust = "none", Letters = letters, reversed = T)
ary10_pwc_tp <- as.data.frame(ary10_pwc_tp)
#Determining the real SE
real_se_ary10 <- epra10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(arylsulfatase),
sd=sd(arylsulfatase)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_ary10<- merge(df, real_se_ary10, by=c("precip"))
ary10_pwc_tp_10 <- merge(ary10_pwc_tp, real_se_ary10, by=c("precip", "landuse"))
ary10_pwc_tp_10 <- as.data.frame(ary10_pwc_tp_10)
ary10_pwc_tp_10$location_f =factor(ary10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=ary10_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,70)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab(expression(Arylsulfatase ~(mg ~kg^{-1} ~hr^{-1}))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+4),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3ary10.png", height=5, width=4)
z
## [1] "10-15 cm"
epra15$precip <- as.factor(epra15$precip)
ary15 <- lmer(arylsulfatase ~ landuse*precip + (1|replication), data=epra15, na.action=na.omit)
anova(ary15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 4219.7 2109.87 2 21.467 283.6221 3.663e-16 ***
## precip 65.5 32.73 2 10.466 4.3998 0.0410429 *
## landuse:precip 220.3 55.08 4 21.467 7.4043 0.0006567 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ary15_means_tp <- lsmeans(ary15, ~landuse*precip, adjust="tukey")
ary15_pwc_tp <- cld(ary15_means_tp, adjust = "none", Letters = letters, reversed = T)
ary15_pwc_tp <- as.data.frame(ary15_pwc_tp)
#Determining the real SE
real_se_ary15 <- epra15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(arylsulfatase),
sd=sd(arylsulfatase)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_ary15 <- merge(df, real_se_ary15, by=c("precip"))
ary15_pwc_tp_15 <- merge(ary15_pwc_tp, real_se_ary15, by=c("precip", "landuse"))
ary15_pwc_tp_15 <- as.data.frame(ary15_pwc_tp_15)
ary15_pwc_tp_15$location_f =factor(ary15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=ary15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,70)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab(expression(Arylsulfatase ~(mg ~kg^{-1} ~hr^{-1}))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+4),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3ary15.png", height=5, width=4)
x
## [1] "0-5 cm"
epra5$precip <- as.factor(epra5$precip)
phos5 <- lmer(phosphodiesterase ~ landuse*precip + (1|replication), data=epra5, na.action=na.omit)
anova(phos5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 14835.3 7417.6 2 20.4399 359.6981 < 2.2e-16 ***
## precip 1377.0 688.5 2 8.9759 33.3867 6.963e-05 ***
## landuse:precip 307.1 76.8 4 20.4399 3.7232 0.01975 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
phos5_means_tp <- lsmeans(phos5, ~landuse*precip, adjust="tukey")
phos5_pwc_tp <- cld(phos5_means_tp, adjust = "none", Letters = letters, reversed = T)
phos5_pwc_tp <- as.data.frame(phos5_pwc_tp)
#Determining the real SE
real_se_phos5 <- epra5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(phosphodiesterase),
sd=sd(phosphodiesterase)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_phos5<- merge(df, real_se_phos5, by=c("precip"))
phos5_pwc_tp_5 <- merge(phos5_pwc_tp, real_se_phos5, by=c("precip", "landuse"))
phos5_pwc_tp_5 <- as.data.frame(phos5_pwc_tp_5)
phos5_pwc_tp_5$location_f =factor(phos5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=phos5_pwc_tp_5, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,80)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab(expression(Phosphodiesterase ~(mg ~kg^{-1} ~hr^{-1}))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+3),
label.padding = unit(.3,"lines"), show.legend=NA, label.size = NA, fill=NA, font="bold" ) +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3pho5.png", height=5, width=4)
y
## [1] "5-10 cm"
epra10$precip <- as.factor(epra10$precip)
phos10 <- lmer(phosphodiesterase ~ landuse*precip + (1|replication), data=epra10, na.action=na.omit)
anova(phos10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 3484.2 1742.10 2 24.626 107.858 6.563e-13 ***
## precip 1652.1 826.06 2 21.224 51.144 7.640e-09 ***
## landuse:precip 766.1 191.52 4 23.732 11.858 1.953e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
phos10_means_tp <- lsmeans(phos10, ~landuse*precip, adjust="tukey")
phos10_pwc_tp <- cld(phos10_means_tp, adjust = "none", Letters = letters, reversed = T)
phos10_pwc_tp <- as.data.frame(phos10_pwc_tp)
#Determining the real SE
real_se_phos10 <- epra10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(phosphodiesterase),
sd=sd(phosphodiesterase)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_phos10<- merge(df, real_se_phos10, by=c("precip"))
phos10_pwc_tp_10 <- merge(phos10_pwc_tp, real_se_phos10, by=c("precip", "landuse"))
phos10_pwc_tp_10 <- as.data.frame(phos10_pwc_tp_10)
phos10_pwc_tp_10$location_f =factor(phos10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=phos10_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,80)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab(expression(Phosphodiesterase ~(mg ~kg^{-1} ~hr^{-1}))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+3),
label.padding = unit(.3,"lines"), show.legend=NA, label.size = NA, fill=NA, font="bold" ) +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3pho10.png", height=5, width=4)
z
## [1] "10-15 cm"
epra15$precip <- as.factor(epra15$precip)
phos15 <- lmer(phosphodiesterase ~ landuse*precip + (1|replication), data=epra15, na.action=na.omit)
anova(phos15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 1749.81 874.90 2 27 31.2774 9.337e-08 ***
## precip 281.36 140.68 2 27 5.0292 0.0139137 *
## landuse:precip 874.60 218.65 4 27 7.8166 0.0002549 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
phos15_means_tp <- lsmeans(phos15, ~landuse*precip, adjust="tukey")
phos15_pwc_tp <- cld(phos15_means_tp, adjust = "none", Letters = letters, reversed = T)
phos15_pwc_tp <- as.data.frame(phos15_pwc_tp)
#Determining the real SE
real_se_phos15 <- epra15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(phosphodiesterase),
sd=sd(phosphodiesterase)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_phos15 <- merge(df, real_se_phos15, by=c("precip"))
phos15_pwc_tp_15 <- merge(phos15_pwc_tp, real_se_phos15, by=c("precip", "landuse"))
phos15_pwc_tp_15 <- as.data.frame(phos15_pwc_tp_15)
phos15_pwc_tp_15$location_f =factor(phos15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=phos15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,80)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab(expression(Phosphodiesterase ~(mg ~kg^{-1} ~hr^{-1}))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+3),
label.padding = unit(.3,"lines"), show.legend=NA, label.size = NA, fill=NA, font="bold" ) +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3pho15.png", height=5, width=4)
x
## [1] "0-5 cm"
epra5$precip <- as.factor(epra5$precip)
protein5 <- lmer(protein ~ landuse*precip + (1|replication), data=epra5, na.action=na.omit)
anova(protein5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 217.444 108.722 2 19.1466 72.152 1.215e-09 ***
## precip 44.081 22.041 2 7.0513 14.627 0.003096 **
## landuse:precip 90.177 22.544 4 19.1466 14.961 1.058e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
prot5_means_tp <- lsmeans(protein5, ~landuse*precip, adjust="tukey")
prot5_pwc_tp <- cld(prot5_means_tp, adjust = "none", Letters = letters, reversed = T)
prot5_pwc_tp <- as.data.frame(prot5_pwc_tp)
#Determining the real SE
real_se_prot5 <- epra5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(protein),
sd=sd(protein)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_prot5 <- merge(df, real_se_prot5, by=c("precip"))
prot5_pwc_tp_5 <- merge(prot5_pwc_tp, real_se_prot5, by=c("precip", "landuse"))
prot5_pwc_tp_5 <- as.data.frame(prot5_pwc_tp_5)
prot5_pwc_tp_5$location_f =factor(prot5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=prot5_pwc_tp_5, aes(x=landuse, y=mean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=mean-se, ymax=mean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,15)) +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab(expression(Protein ~Content ~(g~protein ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3protein5.png", height=5, width=4)
y
## [1] "5-10 cm"
epra10$precip <- as.factor(epra10$precip)
protein10 <- lmer(protein ~ landuse*precip + (1|replication), data=epra10, na.action=na.omit)
anova(protein10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 28.6485 14.3242 2 21.0171 22.3799 6.209e-06 ***
## precip 8.0651 4.0325 2 9.6116 6.3003 0.01785 *
## landuse:precip 11.6571 2.9143 4 17.1425 4.5532 0.01094 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
prot10_means_tp <- lsmeans(protein10, ~landuse*precip, adjust="tukey")
prot10_pwc_tp <- cld(prot10_means_tp, adjust = "none", Letters = letters, reversed = T)
prot10_pwc_tp <- as.data.frame(prot10_pwc_tp)
#Determining the real SE
real_se_prot10 <- epra10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(protein),
sd=sd(protein)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_prot10 <- merge(df, real_se_prot10, by=c("precip"))
prot10_pwc_tp_10 <- merge(prot10_pwc_tp, real_se_prot10, by=c("precip", "landuse"))
prot10_pwc_tp_10 <- as.data.frame(prot10_pwc_tp_10)
prot10_pwc_tp_10$location_f =factor(prot10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=prot10_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,15)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab(expression(Protein ~Content ~(g~protein ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3protein10.png", height=5, width=4)
z
## [1] "10-15 cm"
epra15$precip <- as.factor(epra15$precip)
protein15 <- lmer(protein ~ landuse*precip + (1|replication), data=epra15, na.action=na.omit)
anova(protein15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 28.8113 14.4056 2 18.3233 33.9912 6.821e-07 ***
## precip 0.2179 0.1090 2 6.4544 0.2571 0.7809
## landuse:precip 1.2661 0.3165 4 18.3233 0.7469 0.5725
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
prot15_means_tp <- lsmeans(protein15, ~landuse*precip, adjust="tukey")
prot15_pwc_tp <- cld(prot15_means_tp, adjust = "none", Letters = letters, reversed = T)
prot15_pwc_tp <- as.data.frame(prot15_pwc_tp)
#Determining the real SE
real_se_prot15 <- epra15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(protein),
sd=sd(protein)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_prot15 <- merge(df, real_se_prot15, by=c("precip"))
prot15_pwc_tp_15 <- merge(prot15_pwc_tp, real_se_prot15, by=c("precip", "landuse"))
prot15_pwc_tp_15 <- as.data.frame(prot15_pwc_tp_15)
prot15_pwc_tp_15$location_f =factor(prot15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=prot15_pwc_tp_15, aes(x=landuse, y=mean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=mean-se, ymax=mean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,15)) +
xlab("")+
ggtitle("C) 10-15 cm")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab(expression(Protein ~Content ~(g~protein ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+1),
label.padding = unit(.3,"lines"), show.legend=NA, label.size = NA, fill=NA, font="bold" ) +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3protein15.png", height=5, width=4)
x
## [1] "0-5 cm"
epra5$precip <- as.factor(epra5$precip)
ac5 <- lmer(ac ~ landuse*precip + (1|replication), data=epra5, na.action=na.omit)
anova(ac5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 11652 5825.9 2 27 14.275 5.891e-05 ***
## precip 34811 17405.3 2 27 42.648 4.401e-09 ***
## landuse:precip 39551 9887.7 4 27 24.228 1.347e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ac5_means_tp <- lsmeans(ac5, ~landuse*precip, adjust="tukey")
ac5_pwc_tp <- cld(ac5_means_tp, adjust = "none", Letters = letters, reversed = T)
ac5_pwc_tp <- as.data.frame(ac5_pwc_tp)
#Determining the real SE
real_se_ac5 <- epra5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(ac),
sd=sd(ac)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_ac5<- merge(df, real_se_ac5, by=c("precip"))
ac5_pwc_tp_5 <- merge(ac5_pwc_tp, real_se_ac5, by=c("precip", "landuse"))
ac5_pwc_tp_5 <- as.data.frame(ac5_pwc_tp_5)
ac5_pwc_tp_5$location_f =factor(ac5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=ac5_pwc_tp_5, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,1700)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.2)) +
ylab(expression(Active ~Carbon~(mg ~Oxidizable ~C ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+100),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3ac5.png", height=5, width=4)
y
## [1] "5-10 cm"
epra10$precip <- as.factor(epra10$precip)
ac10 <- lmer(ac ~ landuse*precip + (1|replication), data=epra10, na.action=na.omit)
anova(ac10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 14172 7086 2 27 32.198 7.094e-08 ***
## precip 40129 20065 2 27 91.171 9.814e-13 ***
## landuse:precip 64376 16094 4 27 73.129 4.350e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ac10_means_tp <- lsmeans(ac10, ~landuse*precip, adjust="tukey")
ac10_pwc_tp <- cld(ac10_means_tp, adjust = "none", Letters = letters, reversed = T)
ac10_pwc_tp <- as.data.frame(ac10_pwc_tp)
#Determining the real SE
real_se_ac10 <- epra10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(ac),
sd=sd(ac)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_ac10 <- merge(df, real_se_ac10, by=c("precip"))
ac10_pwc_tp_10 <- merge(ac10_pwc_tp, real_se_ac10, by=c("precip", "landuse"))
ac10_pwc_tp_10 <- as.data.frame(ac10_pwc_tp_10)
ac10_pwc_tp_10$location_f =factor(ac10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=ac10_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,1700)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.2)) +
ylab(expression(Active ~Carbon~(mg ~Oxidizable ~C ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+100),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3ac10.png", height=5, width=4)
z
## [1] "10-15 cm"
epra15$precip <- as.factor(epra15$precip)
ac15 <- lmer(ac ~ landuse*precip + (1|replication), data=epra15, na.action=na.omit)
anova(ac15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 19507 9753.3 2 21.532 68.081 4.901e-10 ***
## precip 56085 28042.4 2 10.929 195.744 2.769e-09 ***
## landuse:precip 44618 11154.5 4 21.532 77.862 1.736e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ac15_means_tp <- lsmeans(ac15, ~landuse*precip, adjust="tukey")
ac15_pwc_tp <- cld(ac15_means_tp, adjust = "none", Letters = letters, reversed = T)
ac15_pwc_tp <- as.data.frame(ac15_pwc_tp)
#Determining the rea
real_se_ac15 <- epra15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(ac),
sd=sd(ac)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_ac15 <- merge(df, real_se_ac15, by=c("precip"))
ac15_pwc_tp_15 <- merge(ac15_pwc_tp, real_se_ac15, by=c("precip","landuse"))
ac15_pwc_tp_15 <- as.data.frame(ac15_pwc_tp_15)
ac15_pwc_tp_15$location_f =factor(ac15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=ac15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,1700)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.2)) +
ylab(expression(Active ~Carbon~(mg ~Oxidizable ~C ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+100),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3ac15.png", height=5, width=4)
x
## [1] "0-5 cm"
epra5$precip <- as.factor(epra5$precip)
respiration5 <- lmer(respiration ~ landuse*precip + (1|replication), data=epra5, na.action=na.omit)
anova(respiration5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 57.712 28.8558 2 22.596 31.407 2.990e-07 ***
## precip 44.808 22.4038 2 12.325 24.385 5.196e-05 ***
## landuse:precip 38.296 9.5739 4 22.596 10.420 6.178e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
respiration5_means_tp <- lsmeans(respiration5, ~landuse*precip, adjust="tukey")
respiration5_pwc_tp <- cld(respiration5_means_tp, adjust = "none", Letters = letters, reversed = T)
respiration5_pwc_tp <- as.data.frame(respiration5_pwc_tp)
#Determining the real SE
real_se_respiration5 <- epra5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(respiration),
sd=sd(respiration)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_respiration5<- merge(df, real_se_respiration5, by=c("precip"))
respiration5_pwc_tp_5 <- merge(respiration5_pwc_tp, real_se_respiration5, by=c("precip", "landuse"))
respiration5_pwc_tp_5 <- as.data.frame(respiration5_pwc_tp_5)
respiration5_pwc_tp_5$location_f =factor(respiration5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=respiration5_pwc_tp_5, aes(x=landuse, y=mean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=mean-se, ymax=mean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,10)) +
xlab("")+
ggtitle("A) 0-5 cm")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab(expression(~Respiration ~(mg ~CO[2]~g^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3respiration5.png", height=5, width=4)
y
## [1] "5-10 cm"
epra10$precip <- as.factor(epra10$precip)
respiration10 <- lmer(respiration ~ landuse*precip + (1|replication), data=epra10, na.action=na.omit)
anova(respiration10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 11.8739 5.9369 2 24.564 42.896 9.682e-09 ***
## precip 12.2047 6.1023 2 23.306 44.091 1.199e-08 ***
## landuse:precip 7.5323 1.8831 4 24.093 13.606 6.169e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
resp10_means_tp <- lsmeans(respiration10, ~landuse*precip, adjust="tukey")
resp10_pwc_tp <- cld(resp10_means_tp, adjust = "none", Letters = letters, reversed = T)
resp10_pwc_tp <- as.data.frame(resp10_pwc_tp)
#Determining the real SE
real_se_resp10 <- epra10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(respiration),
sd=sd(respiration)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_resp10 <- merge(df, real_se_resp10, by=c("precip"))
resp10_pwc_tp_10 <- merge(resp10_pwc_tp, real_se_resp10, by=c("precip", "landuse"))
resp10_pwc_tp_10 <- as.data.frame(resp10_pwc_tp_10)
resp10_pwc_tp_10$location_f =factor(resp10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=resp10_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,10)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.8)) +
ylab(expression(~Respiration ~(mg ~CO[2]~g^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3respiration10.png", height=5, width=4)
z
## [1] "10-15 cm"
epra15$precip <- as.factor(epra15$precip)
respiration15 <- lmer(respiration ~ landuse*precip + (1|replication), data=epra15, na.action=na.omit)
anova(respiration15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 9.2111 4.6055 2 27 75.650 8.567e-12 ***
## precip 7.8223 3.9112 2 27 64.244 5.438e-11 ***
## landuse:precip 7.4452 1.8613 4 27 30.574 1.135e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
resp15_means_tp <- lsmeans(respiration15, ~landuse*precip, adjust="tukey")
resp15_pwc_tp <- cld(resp15_means_tp, adjust = "none", Letters = letters, reversed = T)
resp15_pwc_tp <- as.data.frame(resp15_pwc_tp)
#Determining the real SE
real_se_resp15 <- epra15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(respiration),
sd=sd(respiration)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_resp15 <- merge(df, real_se_resp15, by=c("precip"))
resp15_pwc_tp_15 <- merge(resp15_pwc_tp, real_se_resp15, by=c("precip", "landuse"))
resp15_pwc_tp_15 <- as.data.frame(resp15_pwc_tp_15)
resp15_pwc_tp_15$location_f =factor(resp15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=resp15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,10)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.8)) +
ylab(expression(~Respiration ~(mg ~CO[2]~g^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+1),
label.padding = unit(.3,"lines"), show.legend=NA, label.size = NA, fill=NA, font="bold" ) +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3respiration15.png", height=5, width=4)
x
## [1] "0-5 cm"
epra5$precip <- as.factor(epra5$precip)
mb5 <- lmer(mb ~ landuse*precip + (1|replication), data=epra5, na.action=na.omit)
anova(mb5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 20569.9 10285.0 2 18.5851 98.9978 1.23e-10 ***
## precip 2016.9 1008.4 2 7.6531 9.7066 0.0079577 **
## landuse:precip 3417.3 854.3 4 18.5620 8.2234 0.0005386 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
mb5_means_tp <- lsmeans(mb5, ~landuse*precip, adjust="tukey")
mb5_pwc_tp <- cld(mb5_means_tp, adjust = "none", Letters = letters, reversed = T)
mb5_pwc_tp <- as.data.frame(mb5_pwc_tp)
#Determining the real SE
real_se_mb5 <- epra5 %>%
dplyr::group_by(precip, landuse) %>%
na.omit()%>%
dplyr::summarise(
n=n(),
mean=mean(mb),
sd=sd(mb)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_mb5 <- merge(df, real_se_mb5, by=c("precip"))
mb5_pwc_tp_5 <- merge(mb5_pwc_tp, real_se_mb5, by=c("precip", "landuse"))
mb5_pwc_tp_5 <- as.data.frame(mb5_pwc_tp_5)
mb5_pwc_tp_5$location_f =factor(mb5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=mb5_pwc_tp_5, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,135)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab(expression(Microbial~ Biomass~ (nmol ~PLFA ~g^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+5),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3mb5.png", height=5, width=4)
y
## [1] "5-10 cm"
epra10$precip <- as.factor(epra10$precip)
mb10 <- lmer(mb ~ landuse*precip + (1|replication), data=epra10, na.action=na.omit)
anova(mb10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 8285.9 4142.9 2 14.9326 44.6757 4.987e-07 ***
## precip 1362.7 681.3 2 8.7923 7.3473 0.013306 *
## landuse:precip 2413.4 603.4 4 14.1330 6.5063 0.003481 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
mb10_means_tp <- lsmeans(mb10, ~landuse*precip, adjust="tukey")
mb10_pwc_tp <- cld(mb10_means_tp, adjust = "none", Letters = letters, reversed = T)
mb10_pwc_tp <- as.data.frame(mb10_pwc_tp)
#Determining the real SE
real_se_mb10 <- epra10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(mb),
sd=sd(mb)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_mb10<- merge(df, real_se_mb10, by=c("precip"))
mb10_pwc_tp_10 <- merge(mb10_pwc_tp, real_se_mb10, by=c("precip", "landuse"))
mb10_pwc_tp_10 <- as.data.frame(mb10_pwc_tp_10)
mb10_pwc_tp_10$location_f =factor(mb10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=mb10_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,135)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.8)) +
ylab(expression(Microbial~ Biomass~ (nmol ~PLFA ~g^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+5),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3mb10.png", height=5, width=4)
z
## [1] "10-15 cm"
epra15$precip <- as.factor(epra15$precip)
mb15 <- lmer(mb ~ landuse*precip + (1|replication), data=epra15, na.action=na.omit)
anova(mb15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 4955.6 2477.79 2 20.6683 41.807 5.446e-08 ***
## precip 2565.5 1282.73 2 8.9024 21.643 0.0003812 ***
## landuse:precip 3014.7 753.68 4 20.6683 12.717 2.235e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
mb15_means_tp <- lsmeans(mb15, ~landuse*precip, adjust="tukey")
mb15_pwc_tp <- cld(mb15_means_tp, adjust = "none", Letters = letters, reversed = T)
mb15_pwc_tp <- as.data.frame(mb15_pwc_tp)
#Determining the real SE
real_se_mb15 <- epra15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(mb),
sd=sd(mb)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_mb15<- merge(df, real_se_mb15, by=c("precip"))
mb15_pwc_tp_15 <- merge(mb15_pwc_tp, real_se_mb15, by=c("precip", "landuse"))
mb15_pwc_tp_15 <- as.data.frame(mb15_pwc_tp_15)
mb15_pwc_tp_15$location_f =factor(mb15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=mb15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,135)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.8)) +
ylab(expression(Microbial~ Biomass~ (nmol ~PLFA ~g^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+5),
label.padding = unit(.3,"lines"), show.legend=NA, label.size = NA, fill=NA, font="bold" ) +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3mb15.png", height=5, width=4)
x
## [1] "0-5 cm"
epra5$precip <- as.factor(epra5$precip)
gramp5 <- lmer(gramp ~ landuse*precip + (1|replication), data=epra5, na.action=na.omit)
anova(gramp5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 1390.00 695.00 2 18.535 65.9953 3.716e-09 ***
## precip 137.74 68.87 2 7.589 6.5398 0.022331 *
## landuse:precip 248.19 62.05 4 18.512 5.8917 0.003094 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
gramp5_means_tp <- lsmeans(gramp5, ~landuse*precip, adjust="tukey")
gramp5_pwc_tp <- cld(gramp5_means_tp, adjust = "none", Letters = letters, reversed = T)
gramp5_pwc_tp <- as.data.frame(gramp5_pwc_tp)
#Determining the real SE
real_se_gramp5 <- epra5 %>%
na.omit()%>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(gramp),
sd=sd(gramp)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_gramp5 <- merge(df, real_se_gramp5, by=c("precip"))
gramp5_pwc_tp_5 <- merge(gramp5_pwc_tp, real_se_gramp5, by=c("precip", "landuse"))
gramp5_pwc_tp_5 <- as.data.frame(gramp5_pwc_tp_5)
gramp5_pwc_tp_5$location_f =factor(gramp5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=gramp5_pwc_tp_5, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,40)) +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
theme_James() +
ggtitle("A) 0-5 cm")+
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab(expression(~Gram~("+") ~Bacteria ~(nmol ~PLFA ~g^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+2),
label.padding = unit(.3,"lines"), show.legend=NA, label.size = NA, fill=NA, font="bold" ) +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3gramp0-5.png", height=5, width=4)
y
## [1] "5-10 cm"
epra10$precip <- as.factor(epra10$precip)
gramp10 <- lmer(gramp ~ landuse*precip + (1|replication), data=epra10, na.action=na.omit)
anova(gramp10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 947.57 473.79 2 14.1828 65.6542 6.762e-08 ***
## precip 115.41 57.71 2 8.7816 7.9967 0.010525 *
## landuse:precip 277.80 69.45 4 13.8634 9.6240 0.000609 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
gramp10_means_tp <- lsmeans(gramp10, ~landuse*precip, adjust="tukey")
gramp10_pwc_tp <- cld(gramp10_means_tp, adjust = "none", Letters = letters, reversed = T)
gramp10_pwc_tp <- as.data.frame(gramp10_pwc_tp)
#Determining the real SE
real_se_gramp10 <- epra10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(gramp),
sd=sd(gramp)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_gramp10 <- merge(df, real_se_gramp10, by=c("precip"))
gramp10_pwc_tp_10 <- merge(gramp10_pwc_tp, real_se_gramp10, by=c("precip", "landuse"))
gramp10_pwc_tp_10 <- as.data.frame(gramp10_pwc_tp_10)
gramp10_pwc_tp_10$location_f =factor(gramp10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=gramp10_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,40)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.8)) +
ylab(expression(~Gram~("+") ~Bacteria ~(nmol ~PLFA ~g^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+2),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3gramp10.png", height=5, width=4)
z
## [1] "10-15 cm"
epra15$precip <- as.factor(epra15$precip)
gramp15 <- lmer(gramp ~ landuse*precip + (1|replication), data=epra15, na.action=na.omit)
anova(gramp15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 890.17 445.08 2 20.1911 81.588 2.123e-10 ***
## precip 235.03 117.52 2 7.6771 21.542 0.0007098 ***
## landuse:precip 531.44 132.86 4 20.1911 24.354 1.760e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
gramp15_means_tp <- lsmeans(gramp15, ~landuse*precip, adjust="tukey")
gramp15_pwc_tp <- cld(gramp15_means_tp, adjust = "none", Letters = letters, reversed = T)
gramp15_pwc_tp <- as.data.frame(gramp15_pwc_tp)
#Determining the real SE
real_se_gramp15 <- epra15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(gramp),
sd=sd(gramp)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_gramp15 <- merge(df, real_se_gramp15, by=c("precip"))
gramp15_pwc_tp_15 <- merge(gramp15_pwc_tp, real_se_gramp15, by=c("precip", "landuse"))
gramp15_pwc_tp_15 <- as.data.frame(gramp15_pwc_tp_15)
gramp15_pwc_tp_15$location_f =factor(gramp15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=gramp15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,40)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.8)) +
ylab(expression(~Gram~("+") ~Bacteria ~(nmol ~PLFA ~g^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+2),
label.padding = unit(.3,"lines"), show.legend=NA, label.size = NA, fill=NA, font="bold" ) +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3gramp15.png", height=5, width=4)
x
## [1] "0-5 cm"
epra5$precip <- as.factor(epra5$precip)
gramn5 <- lmer(gramn ~ landuse*precip + (1|replication), data=epra5, na.action=na.omit)
anova(gramn5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 120.571 60.286 2 17.8605 62.4002 8.735e-09 ***
## precip 20.725 10.362 2 6.7766 10.7257 0.00795 **
## landuse:precip 14.647 3.662 4 17.8354 3.7903 0.02112 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
gramn5_means_tp <- lsmeans(gramn5, ~landuse*precip, adjust="tukey")
gramn5_pwc_tp <- cld(gramn5_means_tp, adjust = "none", Letters = letters, reversed = T)
gramn5_pwc_tp <- as.data.frame(gramn5_pwc_tp)
#Determining the real SE
real_se_gramn5 <- epra5 %>%
dplyr::group_by(precip, landuse) %>%
na.omit() %>%
dplyr::summarise(
n=n(),
mean=mean(gramn),
sd=sd(gramn)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_gramn5 <- merge(df, real_se_gramn5, by=c("precip"))
gramn5_pwc_tp_5 <- merge(gramn5_pwc_tp, real_se_gramn5, by=c("precip", "landuse"))
gramn5_pwc_tp_5 <- as.data.frame(gramn5_pwc_tp_5)
gramn5_pwc_tp_5$location_f =factor(gramn5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=gramn5_pwc_tp_5, aes(x=landuse, y=mean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=mean-se, ymax=mean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,15)) +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab(expression(~Gram~("-") ~Bacteria ~(nmol ~PLFA ~g^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+1),
label.padding = unit(.3,"lines"), show.legend=NA, label.size = NA, fill=NA, font="bold" ) +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3gramn5.png", height=5, width=4)
y
## [1] "5-10 cm"
epra10$precip <- as.factor(epra10$precip)
gramn10 <- lmer(gramn ~ landuse*precip + (1|replication), data=epra10, na.action=na.omit)
anova(gramn10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 51.857 25.9286 2 14.6677 22.1820 3.673e-05 ***
## precip 8.191 4.0955 2 8.7899 3.5037 0.07604 .
## landuse:precip 16.143 4.0359 4 14.0384 3.4527 0.03658 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
gramn10_means_tp <- lsmeans(gramn10, ~landuse*precip, adjust="tukey")
gramn10_pwc_tp <- cld(gramn10_means_tp, adjust = "none", Letters = letters, reversed = T)
gramn10_pwc_tp <- as.data.frame(gramn10_pwc_tp)
#Determining the real SE
real_se_gramn10 <- epra10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(gramn),
sd=sd(gramn)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_gramn10 <- merge(df, real_se_gramn10, by=c("precip"))
gramn10_pwc_tp_10 <- merge(gramn10_pwc_tp, real_se_gramn10, by=c("precip", "landuse"))
gramn10_pwc_tp_10 <- as.data.frame(gramn10_pwc_tp_10)
gramn10_pwc_tp_10$location_f =factor(gramn10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=gramn10_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,15)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.8)) +
ylab(expression(~Gram~("-") ~Bacteria ~(nmol ~PLFA ~g^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3gramn10.png", height=5, width=4)
z
## [1] "10-15 cm"
epra15$precip <- as.factor(epra15$precip)
gramn15 <- lmer(gramn ~ landuse*precip + (1|replication), data=epra15, na.action=na.omit)
anova(gramn15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 27.7142 13.8571 2 17.5098 30.6316 1.915e-06 ***
## precip 4.9768 2.4884 2 7.5285 5.5007 0.0336944 *
## landuse:precip 14.1746 3.5436 4 17.5674 7.8333 0.0008243 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
gramn15_means_tp <- lsmeans(gramn15, ~landuse*precip, adjust="tukey")
gramn15_pwc_tp <- cld(gramn15_means_tp, adjust = "none", Letters = letters, reversed = T)
gramn15_pwc_tp <- as.data.frame(gramn15_pwc_tp)
#Determining the real SE
real_se_gramn15 <- epra15 %>%
dplyr::group_by(precip, landuse) %>%
na.omit() %>%
dplyr::summarise(
n=n(),
mean=mean(gramn),
sd=sd(gramn)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_gramn15 <- merge(df, real_se_gramn15, by=c("precip"))
gramn15_pwc_tp_15 <- merge(gramn15_pwc_tp, real_se_gramn15, by=c("precip", "landuse"))
gramn15_pwc_tp_15 <- as.data.frame(gramn15_pwc_tp_15)
gramn15_pwc_tp_15$location_f =factor(gramn15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=gramn15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,15)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.8)) +
ylab(expression(~Gram~("-") ~Bacteria ~(nmol ~PLFA ~g^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+1),
label.padding = unit(.3,"lines"), show.legend=NA, label.size = NA, fill=NA, font="bold" ) +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3gramn15.png", height=5, width=4)
x
## [1] "0-5 cm"
epra5$precip <- as.factor(epra5$precip)
actin5 <- lmer(actin ~ landuse*precip + (1|replication), data=epra5, na.action=na.omit)
anova(actin5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 1.3825 0.69127 2 21.325 11.2296 0.0004664 ***
## precip 3.1010 1.55049 2 12.731 25.1874 3.756e-05 ***
## landuse:precip 1.5151 0.37877 4 21.300 6.1531 0.0018809 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
actin5_means_tp <- lsmeans(actin5, ~landuse*precip, adjust="tukey")
actin5_pwc_tp <- cld(actin5_means_tp, adjust = "none", Letters = letters, reversed = T)
actin5_pwc_tp <- as.data.frame(actin5_pwc_tp)
#Determining the real SE
real_se_actin5 <- epra5 %>%
na.omit()%>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(actin),
sd=sd(actin)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_actin5 <- merge(df, real_se_actin5, by=c("precip"))
actin5_pwc_tp_5 <- merge(actin5_pwc_tp, real_se_actin5, by=c("precip", "landuse"))
actin5_pwc_tp_5 <- as.data.frame(actin5_pwc_tp_5)
actin5_pwc_tp_5$location_f =factor(actin5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=actin5_pwc_tp_5, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,2)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.8)) +
ylab(expression(Actinomycetes ~(nmol ~PLFA ~g^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+.1),
label.padding = unit(.3,"lines"), show.legend=NA, label.size = NA, fill=NA, font="bold" ) +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3actin5.png", height=5, width=4)
y
## [1] "5-10 cm"
epra10$precip <- as.factor(epra10$precip)
actin10 <- lmer(actin ~ landuse*precip + (1|replication), data=epra10, na.action=na.omit)
anova(actin10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 1.4104 0.70520 2 27 25.718 5.590e-07 ***
## precip 2.8343 1.41714 2 27 51.682 5.872e-10 ***
## landuse:precip 1.3386 0.33465 4 27 12.204 8.569e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
actin10_means_tp <- lsmeans(actin10, ~landuse*precip, adjust="tukey")
actin10_pwc_tp <- cld(actin10_means_tp, adjust = "none", Letters = letters, reversed = T)
actin10_pwc_tp <- as.data.frame(actin10_pwc_tp)
#Determining the real SE
real_se_actin10 <- epra10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(actin),
sd=sd(actin)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_actin10 <- merge(df, real_se_actin10, by=c("precip"))
actin10_pwc_tp_10 <- merge(actin10_pwc_tp, real_se_actin10, by=c("precip", "landuse"))
actin10_pwc_tp_10 <- as.data.frame(actin10_pwc_tp_10)
actin10_pwc_tp_10$location_f =factor(actin10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=actin10_pwc_tp_10, aes(x=landuse, y=mean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=mean-se, ymax=mean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,2)) +
xlab("")+
ggtitle("B) 5-10 cm")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab(expression(~Actinomycetes ~(nmol ~PLFA ~g^{-1} ~soil)))+
geom_label(aes(label=trimws(.group), y = lsmean+se+.1),
label.padding = unit(.3,"lines"), show.legend=NA, label.size = NA, fill=NA, font="bold" ) +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3actin10.png", height=5, width=4)
z
## [1] "10-15 cm"
epra15$precip <- as.factor(epra15$precip)
actin15 <- lmer(actin ~ landuse*precip + (1|replication), data=epra15, na.action=na.omit)
anova(actin15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 1.0504 0.52521 2 27 20.720 3.521e-06 ***
## precip 1.6279 0.81396 2 27 32.112 7.277e-08 ***
## landuse:precip 1.8102 0.45255 4 27 17.854 2.821e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
actin15_means_tp <- lsmeans(actin15, ~landuse*precip, adjust="tukey")
actin15_pwc_tp <- cld(actin15_means_tp, adjust = "none", Letters = letters, reversed = T)
actin15_pwc_tp <- as.data.frame(actin15_pwc_tp)
#Determining the real SE
real_se_actin15 <- epra15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(actin),
sd=sd(actin)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_actin15 <- merge(df, real_se_actin15, by=c("precip"))
actin15_pwc_tp_15 <- merge(actin15_pwc_tp, real_se_actin15, by=c("precip", "landuse"))
actin15_pwc_tp_15 <- as.data.frame(actin15_pwc_tp_15)
actin15_pwc_tp_15$location_f =factor(actin15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=actin15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,2)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.8)) +
ylab(expression(Actinomycetes ~(nmol ~PLFA ~g^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+.1),
label.padding = unit(.3,"lines"), show.legend=NA, label.size = NA, fill=NA, font="bold" ) +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3actin15.png", height=5, width=4)
x
## [1] "0-5 cm"
epra5$precip <- as.factor(epra5$precip)
amf5 <- lmer(amf ~ landuse*precip + (1|replication), data=epra5, na.action=na.omit)
anova(amf5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 244.28 122.142 2 25 85.559 6.573e-12 ***
## precip 320.02 160.008 2 25 112.084 3.297e-13 ***
## landuse:precip 85.27 21.318 4 25 14.933 2.319e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
amf5_means_tp <- lsmeans(amf5, ~landuse*precip, adjust="tukey")
amf5_pwc_tp <- cld(amf5_means_tp, adjust = "none", Letters = letters, reversed = T)
amf5_pwc_tp <- as.data.frame(amf5_pwc_tp)
#Determining the real SE
real_se_amf5 <- epra5 %>%
na.omit()%>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(amf),
sd=sd(amf)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_amf5 <- merge(df, real_se_amf5, by=c("precip"))
amf5_pwc_tp_5 <- merge(amf5_pwc_tp, real_se_amf5, by=c("precip", "landuse"))
amf5_pwc_tp_5 <- as.data.frame(amf5_pwc_tp_5)
amf5_pwc_tp_5$location_f =factor(amf5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=amf5_pwc_tp_5, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,20)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.8)) +
ylab(expression(Arbuscular ~Mycorrhizal ~Fungi ~(nmol ~PLFA ~g^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3amf5.png", height=5, width=4)
y
## [1] "5-10 cm"
epra10$precip <- as.factor(epra10$precip)
amf10 <- lmer(amf ~ landuse*precip + (1|replication), data=epra10, na.action=na.omit)
anova(amf10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 131.575 65.787 2 27 119.004 4.068e-14 ***
## precip 157.225 78.612 2 27 142.204 4.607e-15 ***
## landuse:precip 95.673 23.918 4 27 43.266 2.294e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
amf10_means_tp <- lsmeans(amf10, ~landuse*precip, adjust="tukey")
amf10_pwc_tp <- cld(amf10_means_tp, adjust = "none", Letters = letters, reversed = T)
amf10_pwc_tp <- as.data.frame(amf10_pwc_tp)
#Determining the real SE
real_se_amf10 <- epra10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(amf),
sd=sd(amf)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_amf10 <- merge(df, real_se_amf10, by=c("precip"))
amf10_pwc_tp_10 <- merge(amf10_pwc_tp, real_se_amf10, by=c("precip", "landuse"))
amf10_pwc_tp_10 <- as.data.frame(amf10_pwc_tp_10)
amf10_pwc_tp_10$location_f =factor(amf10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=amf10_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,20)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.8)) +
ylab(expression(Arbuscular ~Mycorrhizal ~Fungi ~(nmol ~PLFA ~g^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3amf10.png", height=5, width=4)
z
## [1] "10-15 cm"
epra15$precip <- as.factor(epra15$precip)
amf15 <- lmer(amf ~ landuse*precip + (1|replication), data=epra15, na.action=na.omit)
anova(amf15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 118.707 59.354 2 27 93.399 7.385e-13 ***
## precip 80.685 40.343 2 27 63.483 6.211e-11 ***
## landuse:precip 73.818 18.454 4 27 29.040 1.983e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
amf15_means_tp <- lsmeans(amf15, ~landuse*precip, adjust="tukey")
amf15_pwc_tp <- cld(amf15_means_tp, adjust = "none", Letters = letters, reversed = T)
amf15_pwc_tp <- as.data.frame(amf15_pwc_tp)
#Determining the real SE
real_se_amf15 <- epra15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(amf),
sd=sd(amf)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_amf15 <- merge(df, real_se_amf15, by=c("precip"))
amf15_pwc_tp_15 <- merge(amf15_pwc_tp, real_se_amf15, by=c("precip", "landuse"))
amf15_pwc_tp_15 <- as.data.frame(amf15_pwc_tp_15)
amf15_pwc_tp_15$location_f =factor(amf15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=amf15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,20)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.8)) +
ylab(expression(Arbuscular ~Mycorrhizal ~Fungi ~(nmol ~PLFA ~g^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+1),
label.padding = unit(.3,"lines"), show.legend=NA, label.size = NA, fill=NA, font="bold" ) +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3amf15.png", height=5, width=4)
x
## [1] "0-5 cm"
epra5$precip <- as.factor(epra5$precip)
fungi5 <- lmer(fungi ~ landuse*precip + (1|replication), data=epra5, na.action=na.omit)
anova(fungi5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 13.0833 6.5416 2 15.5262 21.6886 3.196e-05 ***
## precip 3.5098 1.7549 2 5.5028 5.8183 0.043897 *
## landuse:precip 7.4228 1.8557 4 15.3225 6.1525 0.003719 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fungi5_means_tp <- lsmeans(fungi5, ~landuse*precip, adjust="tukey")
fungi5_pwc_tp <- cld(fungi5_means_tp, adjust = "none", Letters = letters, reversed = T)
fungi5_pwc_tp <- as.data.frame(fungi5_pwc_tp)
#Determining the real SE
real_se_fungi5 <- epra5 %>%
dplyr::group_by(precip, landuse) %>%
na.omit()%>%
dplyr::summarise(
n=n(),
mean=mean(fungi),
sd=sd(fungi)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_fungi5 <- merge(df, real_se_fungi5, by=c("precip"))
fungi5_pwc_tp_5 <- merge(fungi5_pwc_tp, real_se_fungi5, by=c("precip", "landuse"))
fungi5_pwc_tp_5 <- as.data.frame(fungi5_pwc_tp_5)
fungi5_pwc_tp_5$location_f =factor(fungi5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=fungi5_pwc_tp_5, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,5)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab(expression(Saprophytic ~Fungi~ (nmol ~PLFA ~g^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+.2),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3fungi5.png", height=5, width=4)
y
## [1] "5-10 cm"
epra10$precip <- as.factor(epra10$precip)
fungi10 <- lmer(fungi ~ landuse*precip + (1|replication), data=epra10, na.action=na.omit)
anova(fungi10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 4.6926 2.34632 2 13.2577 30.5984 1.077e-05 ***
## precip 0.8777 0.43883 2 6.6477 5.7228 0.03586 *
## landuse:precip 1.6742 0.41854 4 11.7489 5.4582 0.01008 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fungi10_means_tp <- lsmeans(fungi10, ~landuse*precip, adjust="tukey")
fungi10_pwc_tp <- cld(fungi10_means_tp, adjust = "none", Letters = letters, reversed = T)
fungi10_pwc_tp <- as.data.frame(fungi10_pwc_tp)
#Determining the real SE
real_se_fungi10 <- epra10 %>%
dplyr::group_by(precip, landuse) %>%
na.omit()%>%
dplyr::summarise(
n=n(),
mean=mean(fungi),
sd=sd(fungi)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_fungi10 <- merge(df, real_se_fungi10, by=c("precip"))
fungi10_pwc_tp_10 <- merge(fungi10_pwc_tp, real_se_fungi10, by=c("precip", "landuse"))
fungi10_pwc_tp_10 <- as.data.frame(fungi10_pwc_tp_10)
fungi10_pwc_tp_10$location_f =factor(fungi10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=fungi10_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,5)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.8)) +
ylab(expression(Saprophytic ~Fungi~ (nmol ~PLFA ~g^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+.2),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3fungi10.png", height=5, width=4)
z
## [1] "10-15 cm"
epra15$precip <- as.factor(epra15$precip)
fungi15 <- lmer(fungi ~ landuse*precip + (1|replication), data=epra15, na.action=na.omit)
anova(fungi15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 6.0142 3.00710 2 20.1907 120.838 5.815e-12 ***
## precip 1.8528 0.92638 2 7.6639 37.226 0.000113 ***
## landuse:precip 3.4034 0.85086 4 20.1907 34.191 9.998e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fungi15_means_tp <- lsmeans(fungi15, ~landuse*precip, adjust="tukey")
fungi15_pwc_tp <- cld(fungi15_means_tp, adjust = "none", Letters = letters, reversed = T)
fungi15_pwc_tp <- as.data.frame(fungi15_pwc_tp)
#Determining the real SE
real_se_fungi15 <- epra15 %>%
dplyr::group_by(precip, landuse) %>%
na.omit()%>%
dplyr::summarise(
n=n(),
mean=mean(fungi),
sd=sd(fungi)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_fungi15 <- merge(df, real_se_fungi15, by=c("precip"))
fungi15_pwc_tp_15 <- merge(fungi15_pwc_tp, real_se_fungi15, by=c("precip", "landuse"))
fungi15_pwc_tp_15 <- as.data.frame(fungi15_pwc_tp_15)
fungi15_pwc_tp_15$location_f =factor(fungi15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=fungi15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,5)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm ")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.8)) +
ylab(expression(Saprophytic ~Fungi~ (nmol ~PLFA ~g^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+.2),
label.padding = unit(.3,"lines"), show.legend=NA, label.size = NA, fill=NA, font="bold" ) +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3fungi15.png", height=5, width=4)
x
## [1] "0-5 cm"
epra5$precip <- as.factor(epra5$precip)
fb5 <- lmer(fb ~ landuse*precip + (1|replication), data=epra5, na.action=na.omit)
anova(fb5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 0.037308 0.018654 2 17.3899 6.6136 0.007310 **
## precip 0.072335 0.036167 2 6.2649 12.8230 0.006099 **
## landuse:precip 0.025567 0.006392 4 17.3668 2.2662 0.103705
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fb5_means_tp <- lsmeans(fb5, ~landuse*precip, adjust="tukey")
fb5_pwc_tp <- cld(fb5_means_tp, adjust = "none", Letters = letters, reversed = T)
fb5_pwc_tp <- as.data.frame(fb5_pwc_tp)
#Determining the real SE
real_se_fb5 <- epra5 %>%
dplyr::group_by(precip, landuse) %>%
na.omit()%>%
dplyr::summarise(
n=n(),
mean=mean(fb),
sd=sd(fb)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_fb5 <- merge(df, real_se_fb5, by=c("precip"))
fb5_pwc_tp_5 <- merge(fb5_pwc_tp, real_se_fb5, by=c("precip", "landuse"))
fb5_pwc_tp_5 <- as.data.frame(fb5_pwc_tp_5)
fb5_pwc_tp_5$location_f =factor(fb5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=fb5_pwc_tp_5, aes(x=landuse, y=mean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=mean-se, ymax=mean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,1)) +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
labs( y="Fungi to Bacteria ratio") +
geom_label(aes(label=trimws(.group), y = lsmean+se+.1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3fb5.png", height=5, width=4)
y
## [1] "5-10 cm"
epra10$precip <- as.factor(epra10$precip)
fb10 <- lmer(fb ~ landuse*precip + (1|replication), data=epra10, na.action=na.omit)
anova(fb10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 0.013176 0.0065880 2 16.7961 1.1473 0.3412
## precip 0.023826 0.0119128 2 8.8916 2.0745 0.1822
## landuse:precip 0.033426 0.0083565 4 14.8765 1.4552 0.2651
fb10_means_tp <- lsmeans(fb10, ~landuse*precip, adjust="tukey")
fb10_pwc_tp <- cld(fb10_means_tp, adjust = "none", Letters = letters, reversed = T)
fb10_pwc_tp <- as.data.frame(fb10_pwc_tp)
#Determining the real SE
real_se_fb10 <- epra10 %>%
dplyr::group_by(precip, landuse) %>%
na.omit()%>%
dplyr::summarise(
n=n(),
mean=mean(fb),
sd=sd(fb)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_fb10 <- merge(df, real_se_fb10, by=c("precip"))
fb10_pwc_tp_10 <- merge(fb10_pwc_tp, real_se_fb10, by=c("precip", "landuse"))
fb10_pwc_tp_10 <- as.data.frame(fb10_pwc_tp_10)
fb10_pwc_tp_10$location_f =factor(fb10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=fb10_pwc_tp_10, aes(x=landuse, y=mean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=mean-se, ymax=mean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,1)) +
xlab("")+
ggtitle("B) 5-10 cm")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
labs( y="Fungi to Bacteria ratio") +
geom_label(aes(label=trimws(.group), y = lsmean+se+.1),
label.padding = unit(.3,"lines"), show.legend=NA, label.size = NA, fill=NA, font="bold" ) +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3fb10.png", height=5, width=4)
Manhattan>Hays>Tribune
z
## [1] "10-15 cm"
epra15$precip <- as.factor(epra15$precip)
fb15 <- lmer(fb ~ landuse*precip + (1|replication), data=epra15, na.action=na.omit)
anova(fb15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 0.091051 0.045526 2 19.3841 11.4501 0.0005212 ***
## precip 0.033189 0.016594 2 7.6208 4.1736 0.0596901 .
## landuse:precip 0.041191 0.010298 4 19.3761 2.5900 0.0690034 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fb15_means_tp <- lsmeans(fb15, ~landuse*precip, adjust="tukey")
fb15_pwc_tp <- cld(fb15_means_tp, adjust = "none", Letters = letters, reversed = T)
fb15_pwc_tp <- as.data.frame(fb15_pwc_tp)
#Determining the real SE
real_se_fb15 <- epra15 %>%
dplyr::group_by(precip, landuse) %>%
na.omit()%>%
dplyr::summarise(
n=n(),
mean=mean(fb),
sd=sd(fb)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_fb15 <- merge(df, real_se_fb15, by=c("precip"))
fb15_pwc_tp_15 <- merge(fb15_pwc_tp, real_se_fb15, by=c("precip", "landuse"))
fb15_pwc_tp_15 <- as.data.frame(fb15_pwc_tp_15)
fb15_pwc_tp_15$location_f =factor(fb15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=fb15_pwc_tp_15, aes(x=landuse, y=mean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=mean-se, ymax=mean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,1)) +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
labs( y="Fungi to Bacteria ratio") +
geom_label(aes(label=trimws(.group), y = lsmean+se+.1),
label.padding = unit(.3,"lines"), show.legend=NA, label.size = NA, fill=NA, font="bold" ) +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3fb15.png", height=5, width=4)
x
## [1] "0-5 cm"
nut5$precip <- as.factor(nut5$precip)
t_nm5 <- lmer(t_nm ~ landuse*precip + (1|replication), data=nut5, na.action=na.omit)
anova(t_nm5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 3363.5 1681.75 2 22.061 58.5860 1.494e-09 ***
## precip 212.2 106.11 2 11.550 3.6965 0.057429 .
## landuse:precip 539.3 134.83 4 22.061 4.6971 0.006794 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
t_nm5_means_tp <- lsmeans(t_nm5, ~landuse*precip, adjust="tukey")
t_nm5_pwc_tp <- cld(t_nm5_means_tp, adjust = "none", Letters = letters, reversed = T)
t_nm5_pwc_tp <- as.data.frame(t_nm5_pwc_tp)
#Determining the real SE
real_se_t_nm5 <- nut5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(t_nm),
sd=sd(t_nm)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_t_nm5 <- merge(df, real_se_t_nm5, by=c("precip"))
t_nm5_pwc_tp_5 <- merge(t_nm5_pwc_tp, real_se_t_nm5, by=c("precip", "landuse"))
t_nm5_pwc_tp_5 <- as.data.frame(t_nm5_pwc_tp_5)
t_nm5_pwc_tp_5$location_f =factor(t_nm5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=t_nm5_pwc_tp_5, aes(x=landuse, y=mean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=mean-se, ymax=mean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0, 70)) +
xlab("")+
ggtitle("A) 0-5 cm")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab(expression(Total~ Nitrogen ~(~mg ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+5),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3t_nm5.png", height=5, width=4)
y
## [1] "5-10 cm"
nut10$precip <- as.factor(nut10$precip)
t_nm10 <- lmer(t_nm ~ landuse*precip + (1|replication), data=nut10, na.action=na.omit)
anova(t_nm10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 807.06 403.53 2 27 74.4974 1.021e-11 ***
## precip 26.72 13.36 2 27 2.4667 0.10378
## landuse:precip 69.61 17.40 4 27 3.2128 0.02793 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
t_nm10_means_tp <- lsmeans(t_nm10, ~landuse*precip, adjust="tukey")
t_nm10_pwc_tp <- cld(t_nm10_means_tp, adjust = "none", Letters = letters, reversed = T)
t_nm10_pwc_tp <- as.data.frame(t_nm10_pwc_tp)
#Determining the real SE
real_se_t_nm10 <- nut10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(t_nm),
sd=sd(t_nm)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_t_nm10 <- merge(df, real_se_t_nm10, by=c("precip"))
t_nm10_pwc_tp_10 <- merge(t_nm10_pwc_tp, real_se_t_nm10, by=c("precip", "landuse"))
t_nm10_pwc_tp_10 <- as.data.frame(t_nm10_pwc_tp_10)
t_nm10_pwc_tp_10$location_f =factor(t_nm10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=t_nm10_pwc_tp_10, aes(x=landuse, y=mean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=mean-se, ymax=mean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0, 70)) +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab(expression(Total~ Nitrogen ~(~mg ~kg^{-1} ~soil)))+
geom_label(aes(label=trimws(.group), y = lsmean+se+5),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3t_nm10.png", height=5, width=4)
z
## [1] "10-15 cm"
nut15$precip <- as.factor(nut15$precip)
t_nm15 <- lmer(t_nm ~ landuse*precip + (1|replication), data=nut15, na.action=na.omit)
anova(t_nm15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 370.06 185.028 2 27 41.9811 5.171e-09 ***
## precip 18.39 9.194 2 27 2.0861 0.143727
## landuse:precip 86.78 21.694 4 27 4.9223 0.004117 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
t_nm15_means_tp <- lsmeans(t_nm15, ~landuse*precip, adjust="tukey")
t_nm15_pwc_tp <- cld(t_nm15_means_tp, adjust = "none", Letters = letters, reversed = T)
t_nm15_pwc_tp <- as.data.frame(t_nm15_pwc_tp)
#Determining the real SE
real_se_t_nm15 <- nut15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(t_nm),
sd=sd(t_nm)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_t_nm15 <- merge(df, real_se_t_nm15, by=c("precip"))
t_nm15_pwc_tp_15 <- merge(t_nm15_pwc_tp, real_se_t_nm15, by=c("precip", "landuse"))
t_nm15_pwc_tp_15 <- as.data.frame(t_nm15_pwc_tp_15)
t_nm15_pwc_tp_15$location_f =factor(t_nm15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=t_nm15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0, 70)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.8)) +
ylab(expression(Total~ Nitrogen ~(~mg ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+5),
label.padding = unit(.3,"lines"), show.legend=NA, label.size = NA, fill=NA, font="bold" ) +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3t_np15.png", height=5, width=4)
x
## [1] "0-5 cm"
nut5$precip <- as.factor(nut5$precip)
to_cg5 <- lmer(to_cg ~ landuse*precip + (1|replication), data=nut5, na.action=na.omit)
anova(to_cg5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 6819.7 3409.8 2 22.001 74.8600 1.525e-10 ***
## precip 144.2 72.1 2 10.953 1.5827 0.249007
## landuse:precip 866.7 216.7 4 22.001 4.7568 0.006431 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
to_cg5_means_tp <- lsmeans(to_cg5, ~landuse*precip, adjust="tukey")
to_cg5_pwc_tp <- cld(to_cg5_means_tp, adjust = "none", Letters = letters, reversed = T)
to_cg5_pwc_tp <- as.data.frame(to_cg5_pwc_tp)
#Determining the real SE
real_se_to_cg5 <- nut5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(to_cg),
sd=sd(to_cg)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_to_cg5 <- merge(df, real_se_to_cg5, by=c("precip"))
to_cg5_pwc_tp_5 <- merge(to_cg5_pwc_tp, real_se_to_cg5, by=c("precip", "landuse"))
to_cg5_pwc_tp_5 <- as.data.frame(to_cg5_pwc_tp_5)
to_cg5_pwc_tp_5$location_f =factor(to_cg5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=to_cg5_pwc_tp_5, aes(x=landuse, y=mean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=mean-se, ymax=mean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,70)) +
xlab("")+
ggtitle("A) 0-5 cm")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab(expression(Soil~ Organic ~Carbon ~(~g ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+5),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3to_cp5.png", height=5, width=4)
y
## [1] "5-10 cm"
nut10$precip <- as.factor(nut10$precip)
to_cg10 <- lmer(to_cg ~ landuse*precip + (1|replication), data=nut10, na.action=na.omit)
anova(to_cg10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 1438.07 719.03 2 27 130.536 1.319e-14 ***
## precip 242.70 121.35 2 27 22.030 2.120e-06 ***
## landuse:precip 154.96 38.74 4 27 7.033 0.0005146 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
to_cg10_means_tp <- lsmeans(to_cg10, ~landuse*precip, adjust="tukey")
to_cg10_pwc_tp <- cld(to_cg10_means_tp, adjust = "none", Letters = letters, reversed = T)
to_cg10_pwc_tp <- as.data.frame(to_cg10_pwc_tp)
#Determining the real SE
real_se_to_cg10 <- nut10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(to_cg),
sd=sd(to_cg)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_to_cg10 <- merge(df, real_se_to_cg10, by=c("precip"))
to_cg10_pwc_tp_10 <- merge(to_cg10_pwc_tp, real_se_to_cg10, by=c("precip", "landuse"))
to_cg10_pwc_tp_10 <- as.data.frame(to_cg10_pwc_tp_10)
to_cg10_pwc_tp_10$location_f =factor(to_cg10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=to_cg10_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,70)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
ylab(expression(Soil~ Organic ~Carbon ~(~g ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+5),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3to_cp10.png", height=5, width=4)
z
## [1] "10-15 cm"
nut15$precip <- as.factor(nut15$precip)
to_cg15 <- lmer(to_cg ~ landuse*precip + (1|replication), data=nut15, na.action=na.omit)
anova(to_cg15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 696.14 348.07 2 22.464 64.6753 4.780e-10 ***
## precip 306.41 153.21 2 12.489 28.4674 2.228e-05 ***
## landuse:precip 166.07 41.52 4 22.464 7.7142 0.0004555 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
to_cg15_means_tp <- lsmeans(to_cg15, ~landuse*precip, adjust="tukey")
to_cg15_pwc_tp <- cld(to_cg15_means_tp, adjust = "none", Letters = letters, reversed = T)
to_cg15_pwc_tp <- as.data.frame(to_cg15_pwc_tp)
#Determining the real SE
real_se_to_cg15 <- nut15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(to_cg),
sd=sd(to_cg)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_to_cg15 <- merge(df, real_se_to_cg15, by=c("precip"))
to_cg15_pwc_tp_15 <- merge(to_cg15_pwc_tp, real_se_to_cg15, by=c("precip", "landuse"))
to_cg15_pwc_tp_15 <- as.data.frame(to_cg15_pwc_tp_15)
to_cg15_pwc_tp_15$location_f =factor(to_cg15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=to_cg15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,70)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm ")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
ylab(expression(Soil~ Organic ~Carbon ~(~g ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+5),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3to_cp15.png", height=5, width=4)
x
## [1] "0-5 cm"
nut5$precip <- as.factor(nut5$precip)
ca5 <- lmer(ca ~ landuse*precip + (1|replication), data=nut5, na.action=na.omit)
anova(ca5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 7009233 3504617 2 27 49.290 9.728e-10 ***
## precip 31173574 15586787 2 27 219.216 < 2.2e-16 ***
## landuse:precip 15354522 3838631 4 27 53.987 1.710e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ca5_means_tp <- lsmeans(ca5, ~landuse*precip, adjust="tukey")
ca5_pwc_tp <- cld(ca5_means_tp, adjust = "none", Letters = letters, reversed = T)
ca5_pwc_tp <- as.data.frame(ca5_pwc_tp)
#Determining the real SE
real_se_ca5 <- nut5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(ca),
sd=sd(ca)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_ca5 <- merge(df, real_se_ca5, by=c("precip"))
ca5_pwc_tp_5 <- merge(ca5_pwc_tp, real_se_ca5, by=c("precip", "landuse"))
ca5_pwc_tp_5 <- as.data.frame(ca5_pwc_tp_5)
ca5_pwc_tp_5$location_f =factor(ca5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=ca5_pwc_tp_5, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,7000)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
ylab(expression(~Extractable ~Ca ~Content ~(mg ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+800),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3ca5.png", height=5, width=4)
y
## [1] "5-10 cm"
nut10$precip <- as.factor(nut10$precip)
ca10 <- lmer(ca ~ landuse*precip + (1|replication), data=nut10, na.action=na.omit)
anova(ca10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 9036133 4518066 2 24.347 62.697 2.491e-10 ***
## precip 21699428 10849714 2 22.878 150.561 6.797e-14 ***
## landuse:precip 17326979 4331745 4 23.817 60.111 4.237e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ca10_means_tp <- lsmeans(ca10, ~landuse*precip, adjust="tukey")
ca10_pwc_tp <- cld(ca10_means_tp, adjust = "none", Letters = letters, reversed = T)
ca10_pwc_tp <- as.data.frame(ca10_pwc_tp)
#Determining the real SE
real_se_ca10 <- nut10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(ca),
sd=sd(ca)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_ca10 <- merge(df, real_se_ca10, by=c("precip"))
ca10_pwc_tp_10 <- merge(ca10_pwc_tp, real_se_ca10, by=c("precip", "landuse"))
ca10_pwc_tp_10 <- as.data.frame(ca10_pwc_tp_10)
ca10_pwc_tp_10$location_f =factor(ca10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=ca10_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,7000)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
ylab(expression(~Extractable ~Ca ~Content ~(mg ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+800),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3ca10.png", height=5, width=4)
z
## [1] "10-15 cm"
nut15$precip <- as.factor(nut15$precip)
ca15 <- lmer(ca ~ landuse*precip + (1|replication), data=nut15, na.action=na.omit)
anova(ca15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 7358980 3679490 2 27 12.6716 0.0001315 ***
## precip 5663302 2831651 2 27 9.7518 0.0006491 ***
## landuse:precip 7035408 1758852 4 27 6.0572 0.0012981 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ca15_means_tp <- lsmeans(ca15, ~landuse*precip, adjust="tukey")
ca15_pwc_tp <- cld(ca15_means_tp, adjust = "none", Letters = letters, reversed = T)
ca15_pwc_tp <- as.data.frame(ca15_pwc_tp)
#Determining the real SE
real_se_ca15 <- nut15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(ca),
sd=sd(ca)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_ca15 <- merge(df, real_se_ca15, by=c("precip"))
ca15_pwc_tp_15 <- merge(ca15_pwc_tp, real_se_ca15, by=c("precip", "landuse"))
ca15_pwc_tp_15 <- as.data.frame(ca15_pwc_tp_15)
ca15_pwc_tp_15$location_f =factor(ca15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=ca15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,7000)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
ylab(expression(~Extractable ~Ca ~Content ~(mg ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+800),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3ca15.png", height=5, width=4)
x
## [1] "0-5 cm"
nut5$precip <- as.factor(nut5$precip)
cu5 <- lmer(cu ~ landuse*precip + (1|replication), data=nut5, na.action=na.omit)
anova(cu5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 0.35389 0.17694 2 27 9.800 0.0006312 ***
## precip 0.75056 0.37528 2 27 20.785 3.433e-06 ***
## landuse:precip 0.74444 0.18611 4 27 10.308 3.361e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
cu5_means_tp <- lsmeans(cu5, ~landuse*precip, adjust="tukey")
cu5_pwc_tp <- cld(cu5_means_tp, adjust = "none", Letters = letters, reversed = T)
cu5_pwc_tp <- as.data.frame(cu5_pwc_tp)
#Determining the real SE
real_se_cu5 <- nut5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(cu),
sd=sd(cu)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_cu5 <- merge(df, real_se_cu5, by=c("precip"))
cu5_pwc_tp_5 <- merge(cu5_pwc_tp, real_se_cu5, by=c("precip", "landuse"))
cu5_pwc_tp_5 <- as.data.frame(cu5_pwc_tp_5)
cu5_pwc_tp_5$location_f =factor(cu5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=cu5_pwc_tp_5, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,3)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
ylab(expression(~Extractable ~Cu ~Content ~(mg ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+.1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3cu5.png", height=5, width=4)
y
## [1] "5-10 cm"
nut10$precip <- as.factor(nut10$precip)
cu10 <- lmer(cu ~ landuse*precip + (1|replication), data=nut10, na.action=na.omit)
anova(cu10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 0.37167 0.18583 2 27 7.8093 0.002108 **
## precip 0.78167 0.39083 2 27 16.4241 2.154e-05 ***
## landuse:precip 0.93167 0.23292 4 27 9.7879 5.010e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
cu10_means_tp <- lsmeans(cu10, ~landuse*precip, adjust="tukey")
cu10_pwc_tp <- cld(cu10_means_tp, adjust = "none", Letters = letters, reversed = T)
cu10_pwc_tp <- as.data.frame(cu10_pwc_tp)
#Determining the real SE
real_se_cu10 <- nut10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(cu),
sd=sd(cu)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_cu10 <- merge(df, real_se_cu10, by=c("precip"))
cu10_pwc_tp_10 <- merge(cu10_pwc_tp, real_se_cu10, by=c("precip", "landuse"))
cu10_pwc_tp_10 <- as.data.frame(cu10_pwc_tp_10)
cu10_pwc_tp_10$location_f =factor(cu10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=cu10_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,3)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
ylab(expression(~Extractable ~Cu ~Content ~(mg ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+.1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3cu10.png", height=5, width=4)
z
## [1] "10-15 cm"
nut15$precip <- as.factor(nut15$precip)
cu15 <- lmer(cu ~ landuse*precip + (1|replication), data=nut15, na.action=na.omit)
anova(cu15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 0.06056 0.03028 2 22.025 0.3403 0.7152350
## precip 2.48820 1.24410 2 11.788 13.9826 0.0007733 ***
## landuse:precip 0.36444 0.09111 4 22.025 1.0240 0.4167914
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
cu15_means <- lsmeans(cu15, ~landuse*precip, adjust="tukey")
cu15_pwc_tp <- cld(cu15_means, adjust = "none", Letters = letters, reversed = T)
cu15_pwc_tp <- as.data.frame(cu15_pwc_tp)
#Determining the real SE
real_se_cu15 <- nut15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(cu),
sd=sd(cu)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_cu15 <- merge(df, real_se_cu15, by=c("precip"))
cu15_pwc_tp_15 <- merge(cu15_pwc_tp, real_se_cu15, by=c("precip", "landuse"))
cu15_pwc_tp_15 <- as.data.frame(cu15_pwc_tp_15)
cu15_pwc_tp_15$location_f =factor(cu15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=cu15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,3)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
ylab(expression(~Extractable ~Cu ~Content ~(mg ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+.1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3cu15.png", height=5, width=4)
x
## [1] "0-5 cm"
nut5$precip <- as.factor(nut5$precip)
mg5 <- lmer(mg ~ landuse*precip + (1|replication), data=nut5, na.action=na.omit)
anova(mg5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 57111 28555 2 27 16.242 2.338e-05 ***
## precip 39459 19730 2 27 11.222 0.0002836 ***
## landuse:precip 241814 60453 4 27 34.386 3.111e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
mg5_means_tp <- lsmeans(mg5, ~landuse*precip, adjust="tukey")
mg5_pwc_tp <- cld(mg5_means_tp, adjust = "none", Letters = letters, reversed = T)
mg5_pwc_tp <- as.data.frame(mg5_pwc_tp)
#Determining the real SE
real_se_mg5 <- nut5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(mg),
sd=sd(mg)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_mg5 <- merge(df, real_se_mg5, by=c("precip"))
mg5_pwc_tp_5 <- merge(mg5_pwc_tp, real_se_mg5, by=c("precip", "landuse"))
mg5_pwc_tp_5 <- as.data.frame(mg5_pwc_tp_5)
mg5_pwc_tp_5$location_f =factor(mg5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=mg5_pwc_tp_5, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,600)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
ylab(expression(~Extractable ~Mg ~Content ~(mg ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+50),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3mg5.png", height=5, width=4)
y
## [1] "5-10 cm"
nut10$precip <- as.factor(nut10$precip)
mg10 <- lmer(mg ~ landuse*precip + (1|replication), data=nut10, na.action=na.omit)
anova(mg10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 46535 23268 2 27 28.783 2.024e-07 ***
## precip 54057 27028 2 27 33.435 4.946e-08 ***
## landuse:precip 329907 82477 4 27 102.028 6.884e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
mg10_means_tp <- lsmeans(mg10, ~landuse*precip, adjust="tukey")
mg10_pwc_tp <- cld(mg10_means_tp, adjust = "none", Letters = letters, reversed = T)
mg10_pwc_tp <- as.data.frame(mg10_pwc_tp)
#Determining the real SE
real_se_mg10 <- nut10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(mg),
sd=sd(mg)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_mg10 <- merge(df, real_se_mg10, by=c("precip"))
mg10_pwc_tp_10 <- merge(mg10_pwc_tp, real_se_mg10, by=c("precip", "landuse"))
mg10_pwc_tp_10 <- as.data.frame(mg10_pwc_tp_10)
mg10_pwc_tp_10$location_f =factor(mg10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=mg10_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,600)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
ylab(expression(~Extractable ~Mg ~Content ~(mg ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+50),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3mg10.png", height=5, width=4)
z
## [1] "10-15 cm"
nut5$precip <- as.factor(nut5$precip)
mg15 <- lmer(mg ~ landuse*precip + (1|replication), data=nut5, na.action=na.omit)
anova(mg15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 57111 28555 2 27 16.242 2.338e-05 ***
## precip 39459 19730 2 27 11.222 0.0002836 ***
## landuse:precip 241814 60453 4 27 34.386 3.111e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
mg15_means_tp <- lsmeans(mg15, ~landuse*precip, adjust="tukey")
mg15_pwc_tp <- cld(mg15_means_tp, adjust = "none", Letters = letters, reversed = T)
mg15_pwc_tp <- as.data.frame(mg15_pwc_tp)
mg15_pwc_tp
## landuse precip lsmean SE df lower.CL upper.CL .group
## 7 NP 850 477.550 20.96458 27 434.5342 520.5658 a
## 1 AG 579 466.375 20.96458 27 423.3592 509.3908 a
## 2 EA 850 422.150 20.96458 27 379.1342 465.1658 ab
## 6 NP 472 377.675 20.96458 27 334.6592 420.6908 bc
## 5 EA 579 377.500 20.96458 27 334.4842 420.5158 bc
## 3 NP 579 320.250 20.96458 27 277.2342 363.2658 cd
## 8 EA 472 285.225 20.96458 27 242.2092 328.2408 de
## 4 AG 472 259.075 20.96458 27 216.0592 302.0908 e
## 9 AG 850 163.700 20.96458 27 120.6842 206.7158 f
#Determining the real SE
real_se_mg15 <- nut15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(mg),
sd=sd(mg)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_mg15 <- merge(df, real_se_mg15, by=c("precip"))
mg15_pwc_tp_15 <- merge(mg15_pwc_tp, real_se_mg15, by=c("precip", "landuse"))
mg15_pwc_tp_15 <- as.data.frame(mg15_pwc_tp_15)
mg15_pwc_tp_15$location_f =factor(mg15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=mg15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,600)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
ylab(expression(~Extractable ~Mg ~Content ~(mg ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+80),
label.padding = unit(.3,"lines"), show.legend=NA, label.size = NA, fill=NA, font="bold" ) +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3mg15.png", height=5, width=4)
x
## [1] "0-5 cm"
nut5$precip <- as.factor(nut5$precip)
mn5 <- lmer(mn ~ landuse*precip + (1|replication), data=nut5, na.action=na.omit)
anova(mn5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 242.6 121.3 2 27 0.6326 0.538894
## precip 7248.9 3624.5 2 27 18.9060 7.346e-06 ***
## landuse:precip 4656.5 1164.1 4 27 6.0723 0.001279 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
mn5_means_tp <- lsmeans(mn5, ~landuse*precip, adjust="tukey")
mn5_pwc_tp <- cld(mn5_means_tp, adjust = "none", Letters = letters, reversed = T)
mn5_pwc_tp <- as.data.frame(mn5_pwc_tp)
#Determining the real SE
real_se_mn5 <- nut5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(mn),
sd=sd(mn)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_mn5 <- merge(df, real_se_mn5, by=c("precip"))
mn5_pwc_tp_5 <- merge(mn5_pwc_tp, real_se_mn5, by=c("precip", "landuse"))
mn5_pwc_tp_5 <- as.data.frame(mn5_pwc_tp_5)
mn5_pwc_tp_5$location_f =factor(mn5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=mn5_pwc_tp_5, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,150)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
ylab(expression(~Extractable ~Mn ~Content ~(mg ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+10),
label.padding = unit(.3,"lines"), show.legend=NA, label.size = NA, fill=NA, font="bold" ) +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3mn5.png", height=5, width=4)
y
## [1] "5-10 cm"
nut10$precip <- as.factor(nut10$precip)
mn10 <- lmer(mn ~ landuse*precip + (1|replication), data=nut10, na.action=na.omit)
anova(mn10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 182.81 91.41 2 20.868 1.7656 0.195694
## precip 1554.28 777.14 2 9.467 15.0116 0.001159 **
## landuse:precip 2685.85 671.46 4 16.975 12.9702 5.099e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
mn10_means_tp <- lsmeans(mn10, ~landuse*precip, adjust="tukey")
mn10_pwc_tp <- cld(mn10_means_tp, adjust = "none", Letters = letters, reversed = T)
mn10_pwc_tp <- as.data.frame(mn10_pwc_tp)
#Determining the real SE
real_se_mn10 <- nut10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(mn),
sd=sd(mn)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_mn10 <- merge(df, real_se_mn10, by=c("precip"))
mn10_pwc_tp <- merge(mn10_pwc_tp, real_se_mn10, by=c("precip", "landuse"))
mn10_pwc_tp <- as.data.frame(mn10_pwc_tp)
mn10_pwc_tp$location_f =factor(mn10_pwc_tp$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=mn10_pwc_tp, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,150)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
ylab(expression(~Extractable ~Mn ~Content ~(mg ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+10),
label.padding = unit(.3,"lines"), show.legend=NA, label.size = NA, fill=NA, font="bold" ) +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3mn10.png", height=5, width=4)
z
## [1] "10-15 cm"
nut15$precip <- as.factor(nut15$precip)
mn15 <- lmer(mn ~ landuse*precip + (1|replication), data=nut15, na.action=na.omit)
anova(mn15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 353.51 176.75 2 27 2.7892 0.079227 .
## precip 429.43 214.71 2 27 3.3882 0.048657 *
## landuse:precip 1488.64 372.16 4 27 5.8727 0.001557 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
mn15_means_tp <- lsmeans(mn15, ~landuse*precip, adjust="tukey")
mn15_pwc_tp <- cld(mn15_means_tp, adjust = "none", Letters = letters, reversed = T)
mn15_pwc_tp <- as.data.frame(mn15_pwc_tp)
#Determining the real SE
real_se_mn15 <- nut15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(mn),
sd=sd(mn)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_mn15 <- merge(df, real_se_mn15, by=c("precip"))
mn15_pwc_tp_15 <- merge(mn15_pwc_tp, real_se_mn15, by=c("precip", "landuse"))
mn15_pwc_tp_15 <- as.data.frame(mn15_pwc_tp_15)
mn15_pwc_tp_15$location_f =factor(mn15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=mn15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,150)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
ylab(expression(~Extractable ~Mn ~Content ~(mg ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+10),
label.padding = unit(.3,"lines"), show.legend=NA, label.size = NA, fill=NA, font="bold" ) +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3mn15.png", height=5, width=4)
x
## [1] "0-5 cm"
nut5$precip <- as.factor(nut5$precip)
na5 <- lmer(na ~ landuse*precip + (1|replication), data=nut5, na.action=na.omit)
anova(na5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 29.40 14.70 2 22.427 1.9051 0.1721177
## precip 989.15 494.57 2 11.629 64.1072 5.246e-07 ***
## landuse:precip 220.04 55.01 4 22.427 7.1306 0.0007342 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
na5_means_tp <- lsmeans(na5, ~landuse*precip, adjust="tukey")
na5_pwc_tp <- cld(na5_means_tp, adjust = "none", Letters = letters, reversed = T)
na5_pwc_tp <- as.data.frame(na5_pwc_tp)
#Determining the real SE
real_se_na5 <- nut5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(na),
sd=sd(na)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_na5<- merge(df, real_se_na5, by=c("precip"))
na5_pwc_tp_5 <- merge(na5_pwc_tp, real_se_na5, by=c("precip", "landuse"))
na5_pwc_tp_5 <- as.data.frame(na5_pwc_tp_5)
na5_pwc_tp_5$location_f =factor(na5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=na5_pwc_tp_5, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,140)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
ylab(expression(~Extractable ~Na ~Content ~(mg ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+5),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3na5.png", height=5, width=4)
y
## [1] "5-10 cm"
nut10$precip <- as.factor(nut10$precip)
na10 <- lmer(na ~ landuse*precip + (1|replication), data=nut10, na.action=na.omit)
anova(na10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 721.38 360.69 2 27 6.0314 0.0068328 **
## precip 2068.41 1034.21 2 27 17.2938 1.463e-05 ***
## landuse:precip 1545.63 386.41 4 27 6.4614 0.0008785 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
na10_means_tp <- lsmeans(na10, ~landuse*precip, adjust="tukey")
na10_pwc_tp <- cld(na10_means_tp, adjust = "none", Letters = letters, reversed = T)
na10_pwc_tp <- as.data.frame(na10_pwc_tp)
#Determining the real SE
real_se_na10 <- nut10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(na),
sd=sd(na)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_na10 <- merge(df, real_se_na10, by=c("precip"))
na10_pwc_tp_10 <- merge(na10_pwc_tp, real_se_na10, by=c("precip", "landuse"))
na10_pwc_tp_10 <- as.data.frame(na10_pwc_tp_10)
na10_pwc_tp_10$location_f =factor(na10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=na10_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,140)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
ylab(expression(~Extractable ~Na ~Content ~(mg ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+5),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3na10.png", height=5, width=4)
z
## [1] "10-15 cm"
nut15$precip <- as.factor(nut15$precip)
na15 <- lmer(na ~ landuse*precip + (1|replication), data=nut15, na.action=na.omit)
anova(na15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 3773.7 1886.9 2 23.033 3.5038 0.046932 *
## precip 7890.5 3945.2 2 13.932 7.3262 0.006696 **
## landuse:precip 11474.1 2868.5 4 23.033 5.3268 0.003462 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
na15_means_tp <- lsmeans(na15, ~landuse*precip, adjust="tukey")
na15_pwc_tp <- cld(na15_means_tp, adjust = "none", Letters = letters, reversed = T)
na15_pwc_tp <- as.data.frame(na15_pwc_tp)
#Determining the real SE
real_se_na15 <- nut15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(na),
sd=sd(na)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_na15<- merge(df, real_se_na15, by=c("precip"))
na15_pwc_tp_15 <- merge(na15_pwc_tp, real_se_na15, by=c("precip", "landuse"))
na15_pwc_tp_15 <- as.data.frame(na15_pwc_tp_15)
na15_pwc_tp_15$location_f =factor(na15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=na15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,140)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
ylab(expression(~Extractable ~Na ~Content ~(mg ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+5),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3na15.png", height=5, width=4)
x
## [1] "0-5 cm"
nut5$precip <- as.factor(nut5$precip)
p5 <- lmer(p ~ landuse*precip + (1|replication), data=nut5, na.action=na.omit)
anova(p5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 21336 10668 2 27 40.5810 7.301e-09 ***
## precip 73716 36858 2 27 140.2049 5.486e-15 ***
## landuse:precip 8487 2122 4 27 8.0712 0.0002044 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
p5_means_tp <- lsmeans(p5, ~landuse*precip, adjust="tukey")
p5_pwc_tp <- cld(p5_means_tp, adjust = "none", Letters = letters, reversed = T)
p5_pwc_tp <- as.data.frame(p5_pwc_tp)
#Determining the real SE
real_se_p5 <- nut5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(p),
sd=sd(p)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_p5 <- merge(df, real_se_p5, by=c("precip"))
p5_pwc_tp_5 <- merge(p5_pwc_tp, real_se_p5, by=c("precip", "landuse"))
p5_pwc_tp_5 <- as.data.frame(p5_pwc_tp_5)
p5_pwc_tp_5$location_f =factor(p5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=p5_pwc_tp_5, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,180)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.8,0.85)) +
ylab(expression(~Extractable ~P ~Content ~(mg ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+10),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3p5.png", height=5, width=4)
y
## [1] "5-10 cm"
nut10$precip <- as.factor(nut10$precip)
p10 <- lmer(p ~ landuse*precip + (1|replication), data=nut10, na.action=na.omit)
anova(p10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 15284 7641.9 2 27 34.241 3.931e-08 ***
## precip 62416 31208.2 2 27 139.834 5.667e-15 ***
## landuse:precip 14130 3532.4 4 27 15.828 8.723e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
p10_means_tp <- lsmeans(p10, ~landuse*precip, adjust="tukey")
p10_pwc_tp <- cld(p10_means_tp, adjust = "none", Letters = letters, reversed = T)
p10_pwc_tp <- as.data.frame(p10_pwc_tp)
#Determining the real SE
real_se_p10 <- nut10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(p),
sd=sd(p)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_p10 <- merge(df, real_se_p10, by=c("precip"))
p10_pwc_tp_10 <- merge(p10_pwc_tp, real_se_p10, by=c("precip", "landuse"))
p10_pwc_tp_10 <- as.data.frame(p10_pwc_tp_10)
p10_pwc_tp_10$location_f =factor(p10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=p10_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,180)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.8,0.85)) +
ylab(expression(~Extractable ~P ~Content ~(mg ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+10),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3p10.png", height=5, width=4)
z
## [1] "10-15 cm"
nut15$precip <- as.factor(nut15$precip)
p15 <- lmer(p ~ landuse*precip + (1|replication), data=nut15, na.action=na.omit)
anova(p15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 5499.4 2749.7 2 19.3987 8.2129 0.0026063 **
## precip 17013.2 8506.6 2 7.2177 25.4077 0.0005407 ***
## landuse:precip 6094.0 1523.5 4 19.3987 4.5505 0.0092835 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
p15_means_tp <- lsmeans(p15, ~landuse*precip, adjust="tukey")
p15_pwc_tp <- cld(p15_means_tp, adjust = "none", Letters = letters, reversed = T)
p15_pwc_tp <- as.data.frame(p15_pwc_tp)
#Determining the real SE
real_se_p15 <- nut15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(p),
sd=sd(p)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_p15 <- merge(df, real_se_p15, by=c("precip"))
p15_pwc_tp_15 <- merge(p15_pwc_tp, real_se_p15, by=c("precip", "landuse"))
p15_pwc_tp_15 <- as.data.frame(p15_pwc_tp_15)
p15_pwc_tp_15$location_f =factor(p15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=p15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,180)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.8,0.85)) +
ylab(expression(~Extractable ~P ~Content ~(mg ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+10),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3p15.png", height=5, width=4)
x
## [1] "0-5 cm"
nut5$precip <- as.factor(nut5$precip)
k5 <- lmer(k ~ landuse*precip + (1|replication), data=nut5, na.action=na.omit)
anova(k5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 34783 17392 2 27 1.8390 0.1783388
## precip 2056627 1028313 2 27 108.7343 1.209e-13 ***
## landuse:precip 289676 72419 4 27 7.6576 0.0002932 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
k5_means_tp <- lsmeans(k5, ~landuse*precip, adjust="tukey")
k5_pwc_tp <- cld(k5_means_tp, adjust = "none", Letters = letters, reversed = T)
k5_pwc_tp <- as.data.frame(k5_pwc_tp)
#Determining the real SE
real_se_k5 <- nut5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(k),
sd=sd(k)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_k5 <- merge(df, real_se_k5, by=c("precip"))
k5_pwc_tp_5 <- merge(k5_pwc_tp, real_se_k5, by=c("precip", "landuse"))
k5_pwc_tp_5 <- as.data.frame(k5_pwc_tp_5)
k5_pwc_tp_5$location_f =factor(k5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=k5_pwc_tp_5, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,1500)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.85,0.85)) +
ylab(expression(~Extractable ~K ~Content ~(mg ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+50),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3k5.png", height=5, width=4)
y
## [1] "5-10 cm"
nut10$precip <- as.factor(nut10$precip)
k10 <- lmer(k ~ landuse*precip + (1|replication), data=nut10, na.action=na.omit)
anova(k10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 32762 16381 2 15.7489 5.4118 0.0162582 *
## precip 629971 314985 2 8.8449 104.0603 7.147e-07 ***
## landuse:precip 120576 30144 4 14.4615 9.9585 0.0004418 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
k10_means_tp <- lsmeans(k10, ~landuse*precip, adjust="tukey")
k10_pwc <- cld(k10_means_tp, adjust = "none", Letters = letters, reversed = T)
k5_pwc <- as.data.frame(k10_pwc)
#Determining the real SE
real_se_k10 <- nut10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(k),
sd=sd(k)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_k10 <- merge(df, real_se_k10, by=c("precip"))
k10_pwc_tp <- merge(k10_pwc, real_se_k10, by=c("precip", "landuse"))
k10_pwc_tp <- as.data.frame(k10_pwc_tp)
k10_pwc_tp$location_f =factor(k10_pwc_tp$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=k10_pwc_tp, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,1500)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.85,0.85)) +
ylab(expression(~Extractable ~K ~Content ~(mg ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+50),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3k10.png", height=5, width=4)
z
## [1] "10-15 cm"
nut15$precip <- as.factor(nut15$precip)
k15 <- lmer(k ~ landuse*precip + (1|replication), data=nut15, na.action=na.omit)
anova(k15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 53430 26715 2 18.193 4.8484 0.02052 *
## precip 1071859 535929 2 6.321 97.2625 1.789e-05 ***
## landuse:precip 65962 16490 4 18.193 2.9927 0.04637 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
k15_means_tp <- lsmeans(k15, ~landuse*precip, adjust="tukey")
k15_pwc <- cld(k15_means_tp, adjust = "none", Letters = letters, reversed = T)
k15_pwc <- as.data.frame(k15_pwc)
#Determining the real SE
real_se_k15 <- nut15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(k),
sd=sd(k)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_k15 <- merge(df, real_se_k15, by=c("precip"))
k15_pwc_tp <- merge(k15_pwc, real_se_k15, by=c("precip", "landuse"))
k15_pwc_tp <- as.data.frame(k15_pwc_tp)
k15_pwc_tp$location_f =factor(k15_pwc_tp$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=k15_pwc_tp, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,1500)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.85,0.85)) +
ylab(expression(~Extractable ~K ~Content ~(mg ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+50),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3k15.png", height=5, width=4)
x
## [1] "0-5 cm"
nut5$precip <- as.factor(nut5$precip)
zn5 <- lmer(zn ~ landuse*precip + (1|replication), data=nut5, na.action=na.omit)
anova(zn5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 77.176 38.588 2 22.482 32.9865 2.055e-07 ***
## precip 11.203 5.602 2 11.707 4.7884 0.03023 *
## landuse:precip 16.711 4.178 4 22.482 3.5713 0.02130 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
zn5_means_tp <- lsmeans(zn5, ~landuse*precip, adjust="tukey")
zn5_pwc_tp <- cld(zn5_means_tp, adjust = "none", Letters = letters, reversed = T)
zn5_pwc_tp <- as.data.frame(zn5_pwc_tp)
#Determining the real SE
real_se_zn5 <- nut5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(zn),
sd=sd(zn)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_zn5 <- merge(df, real_se_zn5, by=c("precip"))
zn5_pwc_tp_5 <- merge(zn5_pwc_tp, real_se_zn5, by=c("precip", "landuse"))
zn5_pwc_tp_5 <- as.data.frame(zn5_pwc_tp_5)
zn5_pwc_tp_5$location_f =factor(zn5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=zn5_pwc_tp_5, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,8)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.85,0.85)) +
ylab(expression(~Extractable ~Zn ~Content ~(mg ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+.5),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3zn5.png", height=5, width=4)
x
## [1] "0-5 cm"
nut10$precip <- as.factor(nut10$precip)
zn10 <- lmer(zn ~ landuse*precip + (1|replication), data=nut10, na.action=na.omit)
anova(zn10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 3.5473 1.77366 2 23.297 11.6378 0.0003132 ***
## precip 0.5015 0.25077 2 14.874 1.6454 0.2261800
## landuse:precip 4.6864 1.17161 4 20.913 7.6874 0.0005648 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
zn10_means_tp <- lsmeans(zn10, ~landuse*precip, adjust="tukey")
zn10_pwc_tp <- cld(zn10_means_tp, adjust = "none", Letters = letters, reversed = T)
zn10_pwc_tp <- as.data.frame(zn10_pwc_tp)
#Determining the real SE
real_se_zn10 <- nut10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(zn),
sd=sd(zn)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_zn10 <- merge(df, real_se_zn10, by=c("precip"))
zn10_pwc_tp_10 <- merge(zn10_pwc_tp, real_se_zn10, by=c("precip", "landuse"))
zn10_pwc_tp_10 <- as.data.frame(zn10_pwc_tp_10)
zn10_pwc_tp_10$location_f =factor(zn10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=zn10_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,8)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.85,0.85)) +
ylab(expression(~Extractable ~Zn ~Content ~(mg ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+.5),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3zn10.png", height=5, width=4)
z
## [1] "10-15 cm"
nut15$precip <- as.factor(nut15$precip)
zn15 <- lmer(zn ~ landuse*precip + (1|replication), data=nut15, na.action=na.omit)
anova(zn15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 0.34667 0.17333 2 20.0654 2.5728 0.1012
## precip 0.32207 0.16104 2 8.8917 2.3903 0.1477
## landuse:precip 0.51667 0.12917 4 20.0654 1.9172 0.1467
zn15_means_tp <- lsmeans(zn15, ~landuse*precip, adjust="tukey")
zn15_pwc_tp <- cld(zn15_means_tp, adjust = "none", Letters = letters, reversed = T)
zn15_pwc_tp <- as.data.frame(zn15_pwc_tp)
#Determining the real SE
real_se_zn15 <- nut15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(zn),
sd=sd(zn)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_zn15 <- merge(df, real_se_zn15, by=c("precip"))
zn15_pwc_tp_15 <- merge(zn15_pwc_tp, real_se_zn15, by=c("precip", "landuse"))
zn15_pwc_tp_15 <- as.data.frame(zn15_pwc_tp_15)
zn15_pwc_tp_15$location_f =factor(zn15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=zn15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,8)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.85,0.85)) +
ylab(expression(~Extractable ~Zn ~Content ~(mg ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+.5),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3zn15.png", height=5, width=4)
x
## [1] "0-5 cm"
nut5$precip <- as.factor(nut5$precip)
fe5 <- lmer(fe ~ landuse*precip + (1|replication), data=nut5, na.action=na.omit)
anova(fe5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 4841.8 2420.9 2 27 16.6676 1.931e-05 ***
## precip 53.0 26.5 2 27 0.1824 0.8342736
## landuse:precip 4415.3 1103.8 4 27 7.5997 0.0003086 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fe5_means_tp <- lsmeans(fe5, ~landuse*precip, adjust="tukey")
fe5_pwc_tp <- cld(fe5_means_tp, adjust = "none", Letters = letters, reversed = T)
fe5_pwc_tp <- as.data.frame(fe5_pwc_tp)
#Determining the real SE
real_se_fe5 <- nut5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(fe),
sd=sd(fe)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_fe5 <- merge(df, real_se_fe5, by=c("precip"))
fe5_pwc_tp_5 <- merge(fe5_pwc_tp, real_se_fe5, by=c("precip", "landuse"))
fe5_pwc_tp_5 <- as.data.frame(fe5_pwc_tp_5)
fe5_pwc_tp_5$location_f =factor(fe5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=fe5_pwc_tp_5, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,120)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.86)) +
ylab(expression(~Extractable ~Fe ~Content ~(mg ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+5),
label.padding = unit(.3,"lines"), show.legend=NA, label.size = NA, fill=NA, font="bold" ) +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3fe5.png", height=5, width=4)
y
## [1] "5-10 cm"
nut10$precip <- as.factor(nut10$precip)
fe10 <- lmer(fe ~ landuse*precip + (1|replication), data=nut10, na.action=na.omit)
anova(fe10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 3358.8 1679.4 2 23.559 10.2025 0.0006433 ***
## precip 3249.6 1624.8 2 17.795 9.8709 0.0013055 **
## landuse:precip 9292.7 2323.2 4 22.012 14.1134 7.495e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fe10_means_tp <- lsmeans(fe10, ~landuse*precip, adjust="tukey")
fe10_pwc_tp <- cld(fe10_means_tp, adjust = "none", Letters = letters, reversed = T)
fe10_pwc_tp <- as.data.frame(fe10_pwc_tp)
#Determining the real SE
real_se_fe10 <- nut10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(fe),
sd=sd(fe)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_fe10 <- merge(df, real_se_fe10, by=c("precip"))
fe10_pwc_tp_10 <- merge(fe10_pwc_tp, real_se_fe10, by=c("precip", "landuse"))
fe10_pwc_tp_10 <- as.data.frame(fe10_pwc_tp_10)
fe10_pwc_tp_10$location_f =factor(fe10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=fe10_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,120)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
ylab(expression(~Extractable ~Fe ~Content ~(mg ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+5),
label.padding = unit(.3,"lines"), show.legend=NA, label.size = NA, fill=NA, font="bold" ) +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3fe10.png", height=5, width=4)
z
## [1] "10-15 cm"
nut15$precip <- as.factor(nut15$precip)
fe15 <- lmer(fe ~ landuse*precip + (1|replication), data=nut15, na.action=na.omit)
anova(fe15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 2495.1 1247.5 2 21.984 7.6293 0.003045 **
## precip 9160.5 4580.2 2 11.360 28.0105 4.059e-05 ***
## landuse:precip 6773.5 1693.4 4 21.984 10.3558 7.180e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fe15_means_tp <- lsmeans(fe15, ~landuse*precip, adjust="tukey")
fe15_pwc_tp <- cld(fe15_means_tp, adjust = "none", Letters = letters, reversed = T)
fe15_pwc_tp <- as.data.frame(fe15_pwc_tp)
#Determining the real SE
real_se_fe15 <- nut15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(fe),
sd=sd(fe)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_fe15 <- merge(df, real_se_fe15, by=c("precip"))
fe15_pwc_tp_15 <- merge(fe15_pwc_tp, real_se_fe15, by=c("precip", "landuse"))
fe15_pwc_tp_15 <- as.data.frame(fe15_pwc_tp_15)
fe15_pwc_tp_15$location_f =factor(fe15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=fe15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,120)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
ylab(expression(~Extractable ~Fe ~Content ~(mg ~kg^{-1} ~soil))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+5),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3fe15.png", height=5, width=4)
x
## [1] "0-5 cm"
nut5$precip <- as.factor(nut5$precip)
ph5 <- lmer(p_h ~ landuse*precip + (1|replication), data=nut5, na.action=na.omit)
anova(ph5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 2.4267 1.2133 2 27 13.537 8.473e-05 ***
## precip 11.7950 5.8975 2 27 65.799 4.163e-11 ***
## landuse:precip 6.3683 1.5921 4 27 17.763 2.961e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ph5_means_tp <- lsmeans(ph5, ~landuse*precip, adjust="tukey")
ph5_pwc_tp <- cld(ph5_means_tp, adjust = "none", Letters = letters, reversed = T)
ph5_pwc_tp <- as.data.frame(ph5_pwc_tp)
#Determining the real SE
real_se_ph5 <- nut5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(p_h),
sd=sd(p_h)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_ph5 <- merge(df, real_se_ph5, by=c("precip"))
ph5_pwc_tp_5 <- merge(ph5_pwc_tp, real_se_ph5, by=c("precip", "landuse"))
ph5_pwc_tp_5 <- as.data.frame(ph5_pwc_tp_5)
ph5_pwc_tp_5$location_f =factor(ph5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=ph5_pwc_tp_5, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,10)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
labs( y="pH") +
geom_label(aes(label=trimws(.group), y = lsmean+se+.5),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3ph5.png", height=5, width=4)
y
## [1] "5-10 cm"
nut10$precip <- as.factor(nut10$precip)
ph10 <- lmer(p_h ~ landuse*precip + (1|replication), data=nut10, na.action=na.omit)
anova(ph10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 1.2084 0.60418 2 20.755 4.7937 0.019430 *
## precip 2.5870 1.29348 2 10.673 10.2627 0.003266 **
## landuse:precip 9.8712 2.46781 4 17.537 19.5801 2.778e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ph10_means_tp <- lsmeans(ph10, ~landuse*precip, adjust="tukey")
ph10_pwc_tp <- cld(ph10_means_tp, adjust = "none", Letters = letters, reversed = T)
ph10_pwc_tp <- as.data.frame(ph10_pwc_tp)
#Determining the real SE
real_se_ph10 <- nut10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(p_h),
sd=sd(p_h)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_ph10 <- merge(df, real_se_ph10, by=c("precip"))
ph10_pwc_tp_10 <- merge(ph10_pwc_tp, real_se_ph10, by=c("precip", "landuse"))
ph10_pwc_tp_10 <- as.data.frame(ph10_pwc_tp_10)
ph10_pwc_tp_10$location_f =factor(ph10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=ph10_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,10)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
labs( y="pH") +
geom_label(aes(label=trimws(.group), y = lsmean+se+.5),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3ph10.png", height=5, width=4)
z
## [1] "10-15 cm"
nut15$precip <- as.factor(nut15$precip)
ph15 <- lmer(p_h ~ landuse*precip + (1|replication), data=nut15, na.action=na.omit)
anova(ph15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 0.6350 0.31750 2 17.6191 1.7504 0.2025847
## precip 0.3108 0.15539 2 5.3252 0.8567 0.4758018
## landuse:precip 7.2183 1.80458 4 17.6191 9.9490 0.0002148 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ph15_means_tp <- lsmeans(ph15, ~landuse*precip, adjust="tukey")
ph15_pwc_tp <- cld(ph15_means_tp, adjust = "none", Letters = letters, reversed = T)
ph15_pwc_tp <- as.data.frame(ph15_pwc_tp)
#Determining the real SE
real_se_ph15 <- nut15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(p_h),
sd=sd(p_h)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_ph15 <- merge(df, real_se_ph15, by=c("precip"))
ph15_pwc_tp_15 <- merge(ph15_pwc_tp, real_se_ph15, by=c("precip", "landuse"))
ph15_pwc_tp_15 <- as.data.frame(ph15_pwc_tp_15)
ph15_pwc_tp_15$location_f =factor(ph15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=ph15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,10)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.85,0.25)) +
labs( y="pH") +
geom_label(aes(label=trimws(.group), y = lsmean+se+.5),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3ph15.png", height=5, width=4)
x
## [1] "0-5 cm"
agg5$precip <- as.factor(agg5$precip)
clay5 <- lmer(clay ~ landuse*precip + (1|replication), data=agg5, na.action=na.omit)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.67865 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
## - Rescale variables?
anova(clay5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 32.889 16.444 2 4.87e-17 1.6471e+30 1
## precip 68.837 34.419 2 4.87e-17 3.4473e+30 1
## landuse:precip 28.444 7.111 4 4.87e-17 7.1225e+29 1
clay5_means_tp <- lsmeans(clay5, ~landuse*precip, adjust="tukey")
clay5_pwc_tp <- cld(clay5_means_tp, adjust = "none", Letters = letters, reversed = T)
clay5_pwc_tp <- as.data.frame(clay5_pwc_tp)
#Determining the real SE
real_se_clay5 <- nut5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(clay),
sd=sd(clay)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_clay5 <- merge(df, real_se_clay5, by=c("precip"))
clay5_pwc_tp_5 <- merge(clay5_pwc_tp, real_se_clay5, by=c("precip", "landuse"))
clay5_pwc_tp_5 <- as.data.frame(clay5_pwc_tp_5)
clay5_pwc_tp_5$location_f =factor(clay5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=clay5_pwc_tp_5, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,40)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
ylab(expression(Clay ~("%"))) +
geom_label(aes(label=trimws(.group), y = lsmean+5),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3clay5.png", height=5, width=4)
y
## [1] "5-10 cm"
agg10$precip <- as.factor(agg10$precip)
clay10 <- lmer(clay ~ landuse*precip + (1|replication), data=agg10, na.action=na.omit)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 4.50873 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
## - Rescale variables?
## Warning: Model failed to converge with 1 negative eigenvalue: -3.3e+10
anova(clay10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 32.889 16.444 2 1.0011e-16 7.9833e+29 1
## precip 123.548 61.774 2 1.0011e-16 2.9990e+30 1
## landuse:precip 28.444 7.111 4 1.0011e-16 3.4522e+29 1
clay10_means_tp <- lsmeans(clay10, ~landuse*precip, adjust="tukey")
clay10_pwc_tp <- cld(clay10_means_tp, adjust = "none", Letters = letters, reversed = T)
clay10_pwc_tp <- as.data.frame(clay10_pwc_tp)
#Determining the real SE
real_se_clay10 <- agg10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(clay),
sd=sd(clay)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_clay10 <- merge(df, real_se_clay10, by=c("precip"))
clay10_pwc_tp_10 <- merge(clay10_pwc_tp, real_se_clay10, by=c("precip", "landuse"))
clay10_pwc_tp_10 <- as.data.frame(clay10_pwc_tp_10)
clay10_pwc_tp_10$location_f =factor(clay10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=clay10_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,40)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
ylab(expression(Clay ~("%"))) +
geom_label(aes(label=trimws(.group), y = lsmean+5),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3clay10.png", height=5, width=4)
z
## [1] "10-15 cm"
agg15$precip <- as.factor(agg15$precip)
clay15 <- lmer(clay ~ landuse*precip + (1|replication), data=agg15, na.action=na.omit)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.697761 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
## - Rescale variables?
anova(clay15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 16.889 8.444 2 1.8773e-16 2.1379e+29 1
## precip 109.447 54.724 2 1.8773e-16 1.3854e+30 1
## landuse:precip 313.778 78.444 4 1.8773e-16 1.9860e+30 1
clay15_means_tp <- lsmeans(clay15, ~landuse*precip, adjust="tukey")
clay15_pwc_tp <- cld(clay15_means_tp, adjust = "none", Letters = letters, reversed = T)
clay15_pwc_tp <- as.data.frame(clay15_pwc_tp)
#Determining the real SE
real_se_clay15 <- agg15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(clay),
sd=sd(clay)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_clay15 <- merge(df, real_se_clay15, by=c("precip"))
clay15_pwc_tp_15 <- merge(clay15_pwc_tp, real_se_clay15, by=c("precip", "landuse"))
clay15_pwc_tp_15 <- as.data.frame(clay15_pwc_tp_15)
clay15_pwc_tp_15$location_f =factor(clay15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=clay15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,60)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
ylab(expression(Clay ~("%"))) +
geom_label(aes(label=trimws(.group), y = lsmean+5),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3clay15.png", height=5, width=4)
###0-5 cm
x
## [1] "0-5 cm"
agg5$precip <- as.factor(agg5$precip)
x20mwd5 <- lmer(x20mwd ~ landuse*precip + (1|replication), data=agg5, na.action=na.omit)
anova(x20mwd5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 10.6851 5.3426 2 27 46.2074 1.919e-09 ***
## precip 0.0037 0.0018 2 27 0.0160 0.9842
## landuse:precip 0.5627 0.1407 4 27 1.2166 0.3269
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
x20mwd5_means_tp <- lsmeans(x20mwd5, ~landuse*precip, adjust="tukey")
x20mwd5_pwc_tp <- cld(x20mwd5_means_tp, adjust = "none", Letters = letters, reversed = T)
x20mwd5_pwc_tp <- as.data.frame(x20mwd5_pwc_tp)
#Determining the real SE
real_se_x20mwd5 <- agg5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(x20mwd),
sd=sd(x20mwd)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_x20mwd5 <- merge(df, real_se_x20mwd5, by=c("precip"))
x20mwd5_pwc_tp_5 <- merge(x20mwd5_pwc_tp, real_se_x20mwd5, by=c("precip", "landuse"))
x20mwd5_pwc_tp_5 <- as.data.frame(x20mwd5_pwc_tp_5)
x20mwd5_pwc_tp_5$location_f =factor(x20mwd5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=x20mwd5_pwc_tp_5, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,3)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
labs(y=" Mean Weight Diameter (mm)") +
geom_label(aes(label=trimws(.group), y = lsmean+se+.2),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3x20mwd5.png", height=5, width=4)
y
## [1] "5-10 cm"
agg10$precip <- as.factor(agg10$precip)
x20mwd10 <- lmer(x20mwd ~ landuse*precip + (1|replication), data=agg10, na.action=na.omit)
anova(x20mwd10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 7.1641 3.5821 2 27 75.8257 8.343e-12 ***
## precip 0.0123 0.0062 2 27 0.1303 0.878362
## landuse:precip 1.0749 0.2687 4 27 5.6882 0.001871 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
x20mwd10_means_tp <- lsmeans(x20mwd10, ~landuse*precip, adjust="tukey")
x20mwd10_pwc_tp <- cld(x20mwd10_means_tp, adjust = "none", Letters = letters, reversed = T)
x20mwd10_pwc_tp <- as.data.frame(x20mwd10_pwc_tp)
#Determining the real SE
real_se_x20mwd10 <- agg10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(x20mwd),
sd=sd(x20mwd)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_x20mwd10 <- merge(df, real_se_x20mwd10, by=c("precip"))
x20mwd10_pwc_tp_10 <- merge(x20mwd10_pwc_tp, real_se_x20mwd10, by=c("precip", "landuse"))
x20mwd10_pwc_tp_10 <- as.data.frame(x20mwd10_pwc_tp_10)
x20mwd10_pwc_tp_10$location_f =factor(x20mwd10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=x20mwd10_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,3)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
labs(y=" Mean Weight Diameter (mm)") +
geom_label(aes(label=trimws(.group), y = lsmean+se+.2),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3x20mwd10.png", height=5, width=4)
x
## [1] "0-5 cm"
agg15$precip <- as.factor(agg15$precip)
x20mwd15 <- lmer(x20mwd ~ landuse*precip + (1|replication), data=agg15, na.action=na.omit)
anova(x20mwd15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 9.7626 4.8813 2 27 103.8567 2.095e-13 ***
## precip 0.1300 0.0650 2 27 1.3833 0.2680
## landuse:precip 0.1675 0.0419 4 27 0.8908 0.4828
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
x20mwd15_means_tp <- lsmeans(x20mwd15, ~landuse*precip, adjust="tukey")
x20mwd15_pwc_tp <- cld(x20mwd15_means_tp, adjust = "none", Letters = letters, reversed = T)
x20mwd15_pwc_tp <- as.data.frame(x20mwd15_pwc_tp)
#Determining the real SE
real_se_x20mwd15 <- agg15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(x20mwd),
sd=sd(x20mwd)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_x20mwd15 <- merge(df, real_se_x20mwd15, by=c("precip"))
x20mwd15_pwc_tp_15 <- merge(x20mwd15_pwc_tp, real_se_x20mwd15, by=c("precip", "landuse"))
x20mwd15_pwc_tp_15 <- as.data.frame(x20mwd15_pwc_tp_15)
x20mwd15_pwc_tp_15$location_f =factor(x20mwd15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=x20mwd15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,3)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
labs(y=" Mean Weight Diameter (mm)") +
geom_label(aes(label=trimws(.group), y = lsmean+se+.2),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3x20mwd15.png", height=5, width=4)
x
## [1] "0-5 cm"
agg5$precip <- as.factor(agg5$precip)
x20wsa20005 <- lmer(x20wsa2000 ~ landuse*precip + (1|replication), data=agg5, na.action=na.omit)
anova(x20wsa20005, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 3614.3 1807.14 2 27 36.3110 2.216e-08 ***
## precip 17.6 8.80 2 27 0.1769 0.8388
## landuse:precip 210.9 52.71 4 27 1.0592 0.3957
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
x20wsa20005_means_tp <- lsmeans(x20wsa20005, ~landuse*precip, adjust="tukey")
x20wsa20005_pwc_tp <- cld(x20wsa20005_means_tp, adjust = "none", Letters = letters, reversed = T)
x20wsa20005_pwc_tp <- as.data.frame(x20wsa20005_pwc_tp)
#Determining the real SE
real_se_x20wsa20005 <- agg5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(x20wsa2000),
sd=sd(x20wsa2000)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_x20wsa20005 <- merge(df, real_se_x20wsa20005, by=c("precip"))
x20wsa20005_pwc_tp_5 <- merge(x20wsa20005_pwc_tp, real_se_x20wsa20005, by=c("precip", "landuse"))
x20wsa20005_pwc_tp_5 <- as.data.frame(x20wsa20005_pwc_tp_5)
x20wsa20005_pwc_tp_5$location_f =factor(x20wsa20005_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=x20wsa20005_pwc_tp_5, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2,
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,40)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
ylab(" 8-2 mm WSA (%)") +
geom_label(aes(label=trimws(.group), y = lsmean+se+2),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3x20wsa20005.png", height=5, width=4)
y
## [1] "5-10 cm"
agg10$precip <- as.factor(agg10$precip)
x20wsa200010 <- lmer(x20wsa2000 ~ landuse*precip + (1|replication), data=agg10, na.action=na.omit)
anova(x20wsa200010, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 2616.00 1308.00 2 27 75.5924 8.643e-12 ***
## precip 12.68 6.34 2 27 0.3665 0.696579
## landuse:precip 311.07 77.77 4 27 4.4944 0.006514 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
x20wsa200010_means_tp <- lsmeans(x20wsa200010, ~landuse*precip, adjust="tukey")
x20wsa200010_pwc_tp <- cld(x20wsa200010_means_tp, adjust = "none", Letters = letters, reversed = T)
x20wsa200010_pwc_tp <- as.data.frame(x20wsa200010_pwc_tp)
#Determining the real SE
real_se_x20wsa200010 <- agg10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(x20wsa2000),
sd=sd(x20wsa2000)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_x20wsa200010 <- merge(df, real_se_x20wsa200010, by=c("precip"))
x20wsa200010_pwc_tp_10 <- merge(x20wsa200010_pwc_tp, real_se_x20wsa200010, by=c("precip", "landuse"))
x20wsa200010_pwc_tp_10 <- as.data.frame(x20wsa200010_pwc_tp_10)
x20wsa200010_pwc_tp_10$location_f =factor(x20wsa200010_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=x20wsa200010_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2,
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,40)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
ylab(" 8-2 mm WSA (%)") +
geom_label(aes(label=trimws(.group), y = lsmean+se+2),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3x20wsa200010.png", height=5, width=4)
x
## [1] "0-5 cm"
agg15$precip <- as.factor(agg15$precip)
x20wsa200015 <- lmer(x20wsa2000 ~ landuse*precip + (1|replication), data=agg15, na.action=na.omit)
anova(x20wsa200015, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 3708.8 1854.41 2 27 128.1703 1.649e-14 ***
## precip 46.3 23.17 2 27 1.6012 0.2202
## landuse:precip 41.8 10.45 4 27 0.7222 0.5844
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
x20wsa200015_means_tp <- lsmeans(x20wsa200015, ~landuse*precip, adjust="tukey")
x20wsa200015_pwc_tp <- cld(x20wsa200015_means_tp, adjust = "none", Letters = letters, reversed = T)
x20wsa200015_pwc_tp <- as.data.frame(x20wsa200015_pwc_tp)
#Determining the real SE
real_se_x20wsa200015 <- agg15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(x20wsa2000),
sd=sd(x20wsa2000)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_x20wsa200015 <- merge(df, real_se_x20wsa200015, by=c("precip"))
x20wsa200015_pwc_tp_15 <- merge(x20wsa200015_pwc_tp, real_se_x20wsa200015, by=c("precip", "landuse"))
x20wsa200015_pwc_tp_15 <- as.data.frame(x20wsa200015_pwc_tp_15)
x20wsa200015_pwc_tp_15$location_f =factor(x20wsa200015_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=x20wsa200015_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2,
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,40)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
ylab(" 8-2 mm WSA (%)") +
geom_label(aes(label=trimws(.group), y = lsmean+se+2),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3x20wsa200015.png", height=5, width=4)
x
## [1] "0-5 cm"
agg5$precip <- as.factor(agg5$precip)
x20wsa2505 <- lmer(x20wsa250 ~ landuse*precip + (1|replication), data=agg5, na.action=na.omit)
anova(x20wsa2505, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 1511.80 755.90 2 20.3129 30.6394 7.358e-07 ***
## precip 330.72 165.36 2 8.5003 6.7026 0.01789 *
## landuse:precip 117.76 29.44 4 20.3129 1.1933 0.34379
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
x20wsa2505_means_tp <- lsmeans(x20wsa2505, ~landuse*precip, adjust="tukey")
x20wsa2505_pwc_tp <- cld(x20wsa2505_means_tp, adjust = "none", Letters = letters, reversed = T)
x20wsa2505_pwc_tp <- as.data.frame(x20wsa2505_pwc_tp)
#Determining the real SE
real_se_x20wsa2505 <- agg5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(x20wsa250),
sd=sd(x20wsa250)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_x20wsa2505 <- merge(df, real_se_x20wsa2505, by=c("precip"))
x20wsa2505_pwc_tp_5 <- merge(x20wsa2505_pwc_tp, real_se_x20wsa2505, by=c("precip", "landuse"))
x20wsa2505_pwc_tp_5 <- as.data.frame(x20wsa2505_pwc_tp_5)
x20wsa2505_pwc_tp_5$location_f =factor(x20wsa2505_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=x20wsa2505_pwc_tp_5, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2,
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,50)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
ylab("2-0.25 mm WSA (%)") +
geom_label(aes(label=trimws(.group), y = lsmean+se+2),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3x20wsa2505.png", height=5, width=4)
y
## [1] "5-10 cm"
agg10$precip <- as.factor(agg10$precip)
x20wsa25010 <- lmer(x20wsa250 ~ landuse*precip + (1|replication), data=agg10, na.action=na.omit)
anova(x20wsa25010, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 665.80 332.90 2 22.995 8.9628 0.0013246 **
## precip 766.37 383.18 2 22.062 10.3166 0.0006871 ***
## landuse:precip 869.98 217.49 4 22.514 5.8557 0.0021993 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
x20wsa25010_means_tp <- lsmeans(x20wsa25010, ~landuse*precip, adjust="tukey")
x20wsa25010_pwc_tp <- cld(x20wsa25010_means_tp, adjust = "none", Letters = letters, reversed = T)
x20wsa25010_pwc_tp <- as.data.frame(x20wsa25010_pwc_tp)
#Determining the real SE
real_se_x20wsa25010 <- agg10 %>%
na.omit()%>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(x20wsa250),
sd=sd(x20wsa250)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_x20wsa25010 <- merge(df, real_se_x20wsa25010, by=c("precip"))
x20wsa25010_pwc_tp_10 <- merge(x20wsa25010_pwc_tp, real_se_x20wsa25010, by=c("precip", "landuse"))
x20wsa25010_pwc_tp_10 <- as.data.frame(x20wsa25010_pwc_tp_10)
x20wsa25010_pwc_tp_10$location_f =factor(x20wsa25010_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=x20wsa25010_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2,
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,50)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.47,0.83)) +
ylab("2-0.25 mm WSA (%)") +
geom_label(aes(label=trimws(.group), y = lsmean+se+2),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3x20wsa25010.png", height=5, width=4)
z
## [1] "10-15 cm"
agg15$precip <- as.factor(agg15$precip)
x20wsa25015 <- lmer(x20wsa250 ~ landuse*precip + (1|replication), data=agg15, na.action=na.omit)
anova(x20wsa25015, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 832.09 416.05 2 22.322 4.4308 0.02396 *
## precip 253.13 126.56 2 11.356 1.3479 0.29837
## landuse:precip 396.69 99.17 4 22.322 1.0562 0.40112
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
x20wsa25015_means_tp <- lsmeans(x20wsa25015, ~landuse*precip, adjust="tukey")
x20wsa25015_pwc_tp <- cld(x20wsa25015_means_tp, adjust = "none", Letters = letters, reversed = T)
x20wsa25015_pwc_tp <- as.data.frame(x20wsa25015_pwc_tp)
#Determining the real SE
real_se_x20wsa25015 <- agg15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(x20wsa250),
sd=sd(x20wsa250)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_x20wsa25015 <- merge(df, real_se_x20wsa25015, by=c("precip"))
x20wsa25015_pwc_tp_15 <- merge(x20wsa25015_pwc_tp, real_se_x20wsa25015, by=c("precip", "landuse"))
x20wsa25015_pwc_tp_15 <- as.data.frame(x20wsa25015_pwc_tp_15)
x20wsa25015_pwc_tp_15$location_f =factor(x20wsa25015_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=x20wsa25015_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2,
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,50)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.84)) +
ylab("2-0.25 mm WSA (%)") +
geom_label(aes(label=trimws(.group), y = lsmean+se+2),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3x20wsa25015.png", height=5, width=4)
x
## [1] "0-5 cm"
agg5$precip <- as.factor(agg5$precip)
x20wsa535 <- lmer(x20wsa53 ~ landuse*precip + (1|replication), data=agg5, na.action=na.omit)
anova(x20wsa535, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 11892.9 5946.5 2 20.8198 136.2712 1.096e-12 ***
## precip 45.9 22.9 2 8.7658 0.5255 0.60879
## landuse:precip 631.3 157.8 4 20.8198 3.6170 0.02169 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
x20wsa535_means_tp <- lsmeans(x20wsa535, ~landuse*precip, adjust="tukey")
x20wsa535_pwc_tp <- cld(x20wsa535_means_tp, adjust = "none", Letters = letters, reversed = T)
x20wsa535_pwc_tp <- as.data.frame(x20wsa535_pwc_tp)
#Determining the real SE
real_se_x20wsa535 <- agg5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(x20wsa53),
sd=sd(x20wsa53)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_x20wsa535 <- merge(df, real_se_x20wsa535, by=c("precip"))
x20wsa535_pwc_tp_5 <- merge(x20wsa535_pwc_tp, real_se_x20wsa535, by=c("precip", "landuse"))
x20wsa535_pwc_tp_5 <- as.data.frame(x20wsa535_pwc_tp_5)
x20wsa535_pwc_tp_5$location_f =factor(x20wsa535_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=x20wsa535_pwc_tp_5, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2,
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,80)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.88,0.85)) +
ylab("0.25-0.053 mm WSA (%)") +
geom_label(aes(label=trimws(.group), y = lsmean+se+5),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3x20wsa535.png", height=5, width=4)
y
## [1] "5-10 cm"
agg10$precip <- as.factor(agg10$precip)
x20wsa5310 <- lmer(x20wsa53 ~ landuse*precip + (1|replication), data=agg10, na.action=na.omit)
anova(x20wsa5310, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 5648.5 2824.26 2 24.246 39.1889 2.533e-08 ***
## precip 75.7 37.83 2 16.940 0.5250 0.600891
## landuse:precip 1338.3 334.58 4 22.291 4.6426 0.007072 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
x20wsa5310_means_tp <- lsmeans(x20wsa5310, ~landuse*precip, adjust="tukey")
x20wsa5310_pwc_tp <- cld(x20wsa5310_means_tp, adjust = "none", Letters = letters, reversed = T)
x20wsa5310_pwc_tp <- as.data.frame(x20wsa5310_pwc_tp)
#Determining the real SE
real_se_x20wsa5310 <- agg10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(x20wsa53),
sd=sd(x20wsa53)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_x20wsa5310 <- merge(df, real_se_x20wsa5310, by=c("precip"))
x20wsa5310_pwc_tp_10 <- merge(x20wsa5310_pwc_tp, real_se_x20wsa5310, by=c("precip", "landuse"))
x20wsa5310_pwc_tp_10 <- as.data.frame(x20wsa5310_pwc_tp_10)
x20wsa5310_pwc_tp_10$location_f =factor(x20wsa5310_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=x20wsa5310_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2,
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,80)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.88,0.83)) +
ylab("0.25-0.053 mm WSA (%)") +
geom_label(aes(label=trimws(.group), y = lsmean+se+5),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3x20wsa5310.png", height=5, width=4)
z
## [1] "10-15 cm"
agg15$precip <- as.factor(agg15$precip)
x20wsa5315 <- lmer(x20wsa53 ~ landuse*precip + (1|replication), data=agg15, na.action=na.omit)
anova(x20wsa5315, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 5954.3 2977.14 2 22.126 25.8975 1.601e-06 ***
## precip 236.0 117.98 2 11.493 1.0263 0.3890
## landuse:precip 588.3 147.08 4 22.126 1.2794 0.3081
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
x20wsa5315_means_tp <- lsmeans(x20wsa5315, ~landuse*precip, adjust="tukey")
x20wsa5315_pwc_tp <- cld(x20wsa5315_means_tp, adjust = "none", Letters = letters, reversed = T)
x20wsa5315_pwc_tp <- as.data.frame(x20wsa5315_pwc_tp)
#Determining the real SE
real_se_x20wsa5315 <- agg15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(x20wsa53),
sd=sd(x20wsa53)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_x20wsa5315 <- merge(df, real_se_x20wsa5315, by=c("precip"))
x20wsa5315_pwc_tp_15 <- merge(x20wsa5315_pwc_tp, real_se_x20wsa5315, by=c("precip", "landuse"))
x20wsa5315_pwc_tp_15 <- as.data.frame(x20wsa5315_pwc_tp_15)
x20wsa5315_pwc_tp_15$location_f =factor(x20wsa5315_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=x20wsa5315_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2,
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,80)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.88,0.83)) +
ylab("0.25-0.053 mm WSA (%)") +
geom_label(aes(label=trimws(.group), y = lsmean+se+5),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3x20wsa5315.png", height=5, width=4)
x
## [1] "0-5 cm"
agg5$precip <- as.factor(agg5$precip)
x20wsa205 <- lmer(x20wsa20 ~ landuse*precip + (1|replication), data=agg5, na.action=na.omit)
anova(x20wsa205, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 126.572 63.286 2 27 26.3225 4.548e-07 ***
## precip 14.220 7.110 2 27 2.9573 0.06897 .
## landuse:precip 2.103 0.526 4 27 0.2187 0.92567
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
x20wsa205_means_tp <- lsmeans(x20wsa205, ~landuse*precip, adjust="tukey")
x20wsa205_pwc_tp <- cld(x20wsa205_means_tp, adjust = "none", Letters = letters, reversed = T)
x20wsa205_pwc_tp <- as.data.frame(x20wsa205_pwc_tp)
#Determining the real SE
real_se_x20wsa205 <- agg5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(x20wsa20),
sd=sd(x20wsa20)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_x20wsa205 <- merge(df, real_se_x20wsa205, by=c("precip"))
x20wsa205_pwc_tp_5 <- merge(x20wsa205_pwc_tp, real_se_x20wsa205, by=c("precip", "landuse"))
x20wsa205_pwc_tp_5 <- as.data.frame(x20wsa205_pwc_tp_5)
x20wsa205_pwc_tp_5$location_f =factor(x20wsa205_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=x20wsa205_pwc_tp_5, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2,
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,15)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
ylab("0.053-0.02 mm WSA (%)") +
geom_label(aes(label=trimws(.group), y = lsmean+se+1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3x20wsa205.png", height=5, width=4)
y
## [1] "5-10 cm"
agg10$precip <- as.factor(agg10$precip)
x20wsa2010 <- lmer(x20wsa20 ~ landuse*precip + (1|replication), data=agg10, na.action=na.omit)
anova(x20wsa2010, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 79.773 39.886 2 27 22.0949 2.069e-06 ***
## precip 4.560 2.280 2 27 1.2630 0.2989752
## landuse:precip 55.436 13.859 4 27 7.6771 0.0002882 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
x20wsa2010_means_tp <- lsmeans(x20wsa2010, ~landuse*precip, adjust="tukey")
x20wsa2010_pwc_tp <- cld(x20wsa2010_means_tp, adjust = "none", Letters = letters, reversed = T)
x20wsa2010_pwc_tp <- as.data.frame(x20wsa2010_pwc_tp)
#Determining the real SE
real_se_x20wsa2010 <- agg10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(x20wsa20),
sd=sd(x20wsa20)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_x20wsa2010 <- merge(df, real_se_x20wsa2010, by=c("precip"))
x20wsa2010_pwc_tp_10 <- merge(x20wsa2010_pwc_tp, real_se_x20wsa2010, by=c("precip", "landuse"))
x20wsa2010_pwc_tp_10 <- as.data.frame(x20wsa2010_pwc_tp_10)
x20wsa2010_pwc_tp_10$location_f =factor(x20wsa2010_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=x20wsa2010_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2,
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,15)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab("0.053-0.02 mm WSA (%)") +
geom_label(aes(label=trimws(.group), y = lsmean+se+1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3x20wsa2010.png", height=5, width=4)
z
## [1] "10-15 cm"
agg15$precip <- as.factor(agg15$precip)
x20wsa2015 <- lmer(x20wsa20 ~ landuse*precip + (1|replication), data=agg15, na.action=na.omit)
anova(x20wsa2015, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 157.687 78.844 2 18.9916 21.2369 1.434e-05 ***
## precip 9.154 4.577 2 6.5278 1.2328 0.35141
## landuse:precip 50.755 12.689 4 18.9916 3.4178 0.02888 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
x20wsa2015_means_tp <- lsmeans(x20wsa2015, ~landuse*precip, adjust="tukey")
x20wsa2015_pwc_tp <- cld(x20wsa2015_means_tp, adjust = "none", Letters = letters, reversed = T)
x20wsa2015_pwc_tp <- as.data.frame(x20wsa2015_pwc_tp)
#Determining the real SE
real_se_x20wsa2015 <- agg15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(x20wsa20),
sd=sd(x20wsa20)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_x20wsa2015 <- merge(df, real_se_x20wsa2015, by=c("precip"))
x20wsa2015_pwc_tp_15 <- merge(x20wsa2015_pwc_tp, real_se_x20wsa2015, by=c("precip", "landuse"))
x20wsa2015_pwc_tp_15 <- as.data.frame(x20wsa2015_pwc_tp_15)
x20wsa2015_pwc_tp_15$location_f =factor(x20wsa2015_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=x20wsa2015_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2,
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,15)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab("0.053-0.02 mm WSA (%)") +
geom_label(aes(label=trimws(.group), y = lsmean+se+1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3x20wsa2015.png", height=5, width=4)
x
## [1] "0-5 cm"
agg5$precip <- as.factor(agg5$precip)
bd5 <- lmer(bd ~ landuse*precip + (1|replication), data=agg5, na.action=na.omit)
anova(bd5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 0.44728 0.223640 2 21.053 15.2062 8.195e-05 ***
## precip 0.09899 0.049496 2 8.869 3.3654 0.08174 .
## landuse:precip 0.14835 0.037088 4 21.053 2.5218 0.07159 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
bd5_means_tp <- lsmeans(bd5, ~landuse*precip, adjust="tukey")
bd5_pwc_tp <- cld(bd5_means_tp, adjust = "none", Letters = letters, reversed = T)
bd5_pwc_tp <- as.data.frame(bd5_pwc_tp)
#Determining the real SE
real_se_bd5 <- agg5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(bd),
sd=sd(bd)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_bd5 <- merge(df, real_se_bd5, by=c("precip"))
bd5_pwc_tp_5 <- merge(bd5_pwc_tp, real_se_bd5, by=c("precip", "landuse"))
bd5_pwc_tp_5 <- as.data.frame(bd5_pwc_tp_5)
bd5_pwc_tp_5$location_f =factor(bd5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=bd5_pwc_tp_5, aes(x=landuse, y=mean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=mean-se, ymax=mean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,2)) +
xlab("")+
ggtitle("A) 0-5 cm")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.20,0.85)) +
ylab(expression(Bulk ~Density ~(g ~cm^{-3} ))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+.1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3bd5.png", height=5, width=4)
x
## [1] "0-5 cm"
agg10$precip <- as.factor(agg10$precip)
bd10 <- lmer(bd ~ landuse*precip + (1|replication), data=agg10, na.action=na.omit)
anova(bd10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 0.11373 0.056865 2 27 2.6146 0.09163 .
## precip 0.33462 0.167312 2 27 7.6928 0.00227 **
## landuse:precip 0.02260 0.005651 4 27 0.2598 0.90108
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
bd10_means_tp <- lsmeans(bd10, ~landuse*precip, adjust="tukey")
bd10_pwc_tp <- cld(bd10_means_tp, adjust = "none", Letters = letters, reversed = T)
bd10_pwc_tp <- as.data.frame(bd10_pwc_tp)
#Determining the real SE
real_se_bd10 <- agg10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(bd),
sd=sd(bd)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_bd10 <- merge(df, real_se_bd10, by=c("precip"))
bd10_pwc_tp_10 <- merge(bd10_pwc_tp, real_se_bd10, by=c("precip", "landuse"))
bd10_pwc_tp_10 <- as.data.frame(bd10_pwc_tp_10)
bd10_pwc_tp_10$location_f =factor(bd10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=bd10_pwc_tp_10, aes(x=landuse, y=mean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=mean-se, ymax=mean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,2)) +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.20,0.85)) +
ylab(expression(Bulk ~Density ~(g ~cm^{-3} ))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+.1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3bd10.png", height=5, width=4)
x
## [1] "0-5 cm"
agg15$precip <- as.factor(agg15$precip)
bd15 <- lmer(bd ~ landuse*precip + (1|replication), data=agg15, na.action=na.omit)
anova(bd15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 0.262522 0.131261 2 20.198 11.7410 0.0004141 ***
## precip 0.056662 0.028331 2 7.889 2.5342 0.1412492
## landuse:precip 0.046748 0.011687 4 20.198 1.0454 0.4085546
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
bd15_means_tp <- lsmeans(bd15, ~landuse*precip, adjust="tukey")
bd15_pwc_tp <- cld(bd15_means_tp, adjust = "none", Letters = letters, reversed = T)
bd15_pwc_tp <- as.data.frame(bd15_pwc_tp)
#Determining the real SE
real_se_bd15 <- agg15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(bd),
sd=sd(bd)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_bd15 <- merge(df, real_se_bd15, by=c("precip"))
bd15_pwc_tp_15 <- merge(bd15_pwc_tp, real_se_bd15, by=c("precip", "landuse"))
bd15_pwc_tp_15 <- as.data.frame(bd15_pwc_tp_15)
bd15_pwc_tp_15$location_f =factor(bd15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=bd15_pwc_tp_15, aes(x=landuse, y=mean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=mean-se, ymax=mean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,2)) +
xlab("")+
ggtitle("C) 10-15 cm") +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(.2,0.85)) +
ylab(expression(Bulk ~Density ~(g ~cm^{-3} ))) +
geom_label(aes(label=trimws(.group), y = lsmean+se+.1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3bd15.png", height=5, width=4)
x
## [1] "0-5 cm"
nut5$precip <- as.factor(nut5$precip)
cn5 <- lmer(cn ~ landuse*precip + (1|replication), data=nut5, na.action=na.omit)
anova(cn5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 44.964 22.4819 2 27 26.3061 4.573e-07 ***
## precip 16.800 8.3998 2 27 9.8286 0.0006209 ***
## landuse:precip 23.213 5.8032 4 27 6.7903 0.0006442 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
cn5_means_tp <- lsmeans(cn5, ~landuse*precip, adjust="tukey")
cn5_pwc_tp <- cld(cn5_means_tp, adjust = "none", Letters = letters, reversed = T)
cn5_pwc_tp <- as.data.frame(cn5_pwc_tp)
#Determining the real SE
real_se_cn5 <- nut5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(cn),
sd=sd(cn)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_cn5 <- merge(df, real_se_cn5, by=c("precip"))
cn5_pwc_tp_5 <- merge(cn5_pwc_tp, real_se_cn5, by=c("precip", "landuse"))
cn5_pwc_tp_5 <- as.data.frame(cn5_pwc_tp_5)
cn5_pwc_tp_5$location_f =factor(cn5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=cn5_pwc_tp_5, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,20)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
labs( y="C to N ratio") +
geom_label(aes(label=trimws(.group), y = lsmean+se+1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3soctn5.png", height=5, width=4)
y
## [1] "5-10 cm"
nut10$precip <- as.factor(nut10$precip)
cn10 <- lmer(cn ~ landuse*precip + (1|replication), data=nut10, na.action=na.omit)
anova(cn10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 20.486 10.2430 2 27 14.4440 5.428e-05 ***
## precip 31.759 15.8793 2 27 22.3919 1.849e-06 ***
## landuse:precip 15.782 3.9456 4 27 5.5638 0.002121 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
cn10_means_tp <- lsmeans(cn10 , ~landuse*precip, adjust="tukey")
cn10_pwc_tp <- cld(cn10_means_tp, adjust = "none", Letters = letters, reversed = T)
cn10_pwc_tp <- as.data.frame(cn10_pwc_tp)
#Determining the real SE
real_se_cn10 <- nut10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(cn),
sd=sd(cn)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_cn10 <- merge(df, real_se_cn10, by=c("precip"))
cn10_pwc_tp_10 <- merge(cn10_pwc_tp, real_se_cn10, by=c("precip", "landuse"))
cn10_pwc_tp_10 <- as.data.frame(cn10_pwc_tp_10)
cn10_pwc_tp_10$location_f =factor(cn10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=cn10_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,20)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
labs( y="C to N ratio") +
geom_label(aes(label=trimws(.group), y = lsmean+se+1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3soctn10.png", height=5, width=4)
z
## [1] "10-15 cm"
nut15$precip <- as.factor(nut15$precip)
cn15 <- lmer(cn ~ landuse*precip + (1|replication), data=nut15, na.action=na.omit)
anova(cn15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 13.546 6.773 2 22.366 8.9978 0.001358 **
## precip 69.479 34.740 2 11.905 46.1500 2.465e-06 ***
## landuse:precip 4.047 1.012 4 22.366 1.3442 0.284713
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
cn15_means_tp <- lsmeans(cn15, ~landuse*precip, adjust="tukey")
cn15_pwc_tp <- cld(cn15_means_tp, adjust = "none", Letters = letters, reversed = T)
cn15_pwc_tp <- as.data.frame(cn15_pwc_tp)
#Determining the real SE
real_se_cn15 <- nut15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(cn),
sd=sd(cn)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_cn15 <- merge(df, real_se_cn15, by=c("precip"))
cn15_pwc_tp_15 <- merge(cn15_pwc_tp, real_se_cn15, by=c("precip", "landuse"))
cn15_pwc_tp_15 <- as.data.frame(cn15_pwc_tp_15)
cn15_pwc_tp_15$location_f =factor(cn15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=cn15_pwc_tp_15, aes(x=landuse, y=mean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=mean-se, ymax=mean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,20)) +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
ylab("C to N ratio")+
geom_label(aes(label=trimws(.group), y = lsmean+se+1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3soctn15.png", height=5, width=4)
x
## [1] "0-5 cm"
ratio5$precip <- as.factor(ratio5$precip)
ptn5 <- lmer(ptn ~ landuse*precip + (1|replication), data=ratio5, na.action=na.omit)
anova(ptn5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 58633 29316 2 21.762 8.1896 0.0022303 **
## precip 96921 48461 2 11.712 13.5374 0.0009008 ***
## landuse:precip 142519 35630 4 21.762 9.9531 9.773e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ptn5_means_tp <- lsmeans(ptn5 , ~landuse*precip, adjust="tukey")
ptn5_pwc_tp <- cld(ptn5_means_tp, adjust = "none", Letters = letters, reversed = T)
ptn5_pwc_tp <- as.data.frame(ptn5_pwc_tp)
#Determining the real SE
real_se_ptn5 <- ratio5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(ptn),
sd=sd(ptn)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_ptn5 <- merge(df, real_se_ptn5, by=c("precip"))
ptn5_pwc_tp_5 <- merge(ptn5_pwc_tp, real_se_ptn5, by=c("precip", "landuse"))
ptn5_pwc_tp_5 <- as.data.frame(ptn5_pwc_tp_5)
ptn5_pwc_tp_5$location_f =factor(ptn5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=ptn5_pwc_tp_5, aes(x=landuse, y=mean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=mean-se, ymax=mean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0, 500)) +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab("Protein to Nitrogen ratio") +
geom_label(aes(label=trimws(.group), y = lsmean+se+20),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3ptn5.png", height=5, width=4)
y
## [1] "5-10 cm"
ratio10$precip <- as.factor(ratio10$precip)
ptn10 <- lmer(ptn ~ landuse*precip + (1|replication), data=ratio10, na.action=na.omit)
anova(ptn10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 1495 747.4 2 20.5823 0.8026 0.4617059
## precip 25650 12825.2 2 9.8214 13.7729 0.0014133 **
## landuse:precip 41700 10425.0 4 17.0349 11.1954 0.0001224 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ptn10_means_tp <- lsmeans(ptn10 , ~landuse*precip, adjust="tukey")
ptn10_pwc_tp <- cld(ptn10_means_tp, adjust = "none", Letters = letters, reversed = T)
ptn10_pwc_tp <- as.data.frame(ptn10_pwc_tp)
#Determining the real SE
real_se_ptn10 <- ratio10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(ptn),
sd=sd(ptn)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_ptn10 <- merge(df, real_se_ptn10, by=c("precip"))
ptn10_pwc_tp_10 <- merge(ptn10_pwc_tp, real_se_ptn10, by=c("precip", "landuse"))
ptn10_pwc_tp_10 <- as.data.frame(ptn10_pwc_tp_10)
ptn10_pwc_tp_10$location_f =factor(ptn10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=ptn10_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,500)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.5,0.85)) +
labs( y="Protein to Nitrogen ratio") +
geom_label(aes(label=trimws(.group), y = lsmean+se+20),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3ptn10.png", height=5, width=4)
z
## [1] "10-15 cm"
ratio15$precip <- as.factor(ratio15$precip)
ptn15 <- lmer(ptn ~ landuse*precip + (1|replication), data=ratio15, na.action=na.omit)
anova(ptn15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 23736.5 11868.3 2 17.2239 9.5046 0.001654 **
## precip 2351.2 1175.6 2 5.2703 0.9415 0.447093
## landuse:precip 17312.7 4328.2 4 17.2239 3.4662 0.029937 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ptn15_means_tp <- lsmeans(ptn15 , ~landuse*precip, adjust="tukey")
ptn15_pwc_tp <- cld(ptn15_means_tp, adjust = "none", Letters = letters, reversed = T)
ptn15_pwc_tp <- as.data.frame(ptn15_pwc_tp)
#Determining the real SE
real_se_ptn15 <- ratio15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(ptn),
sd=sd(ptn)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_ptn15 <- merge(df, real_se_ptn15, by=c("precip"))
ptn15_pwc_tp_15 <- merge(ptn15_pwc_tp, real_se_ptn15, by=c("precip", "landuse"))
ptn15_pwc_tp_15 <- as.data.frame(ptn15_pwc_tp_15)
ptn15_pwc_tp_15$location_f =factor(ptn15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=ptn15_pwc_tp_15, aes(x=landuse, y=mean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=mean-se, ymax=mean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0, 500)) +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab("Protein to Nitrogen ratio")+
geom_label(aes(label=trimws(.group), y = lsmean+se+20),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3ptn15.png", height=5, width=4)
x
## [1] "0-5 cm"
ratio5$precip <- as.factor(ratio5$precip)
rec5 <- lmer(rec ~ landuse*precip + (1|replication), data=ratio5, na.action=na.omit)
anova(rec5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 0.0011400 0.0005700 2 22.511 1.2587 0.3033
## precip 0.0312701 0.0156350 2 11.831 34.5258 1.152e-05 ***
## landuse:precip 0.0021471 0.0005368 4 22.511 1.1853 0.3441
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
rec5_means_tp <- lsmeans(rec5 , ~landuse*precip, adjust="tukey")
rec5_pwc_tp <- cld(rec5_means_tp, adjust = "none", Letters = letters, reversed = T)
rec5_pwc_tp <- as.data.frame(rec5_pwc_tp)
#Determining the real SE
real_se_rec5 <- ratio5 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(rec),
sd=sd(rec)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_rec5 <- merge(df, real_se_rec5, by=c("precip"))
rec5_pwc_tp_5 <- merge(rec5_pwc_tp, real_se_rec5, by=c("precip", "landuse"))
rec5_pwc_tp_5 <- as.data.frame(rec5_pwc_tp_5)
rec5_pwc_tp_5$location_f =factor(rec5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=rec5_pwc_tp_5, aes(x=landuse, y=mean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=mean-se, ymax=mean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0, 0.20)) +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
ylab("Respiration to Carbon ratio") +
geom_label(aes(label=trimws(.group), y = lsmean+se+.01),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3rec5.png", height=5, width=4)
y
## [1] "5-10 cm"
ratio10$precip <- as.factor(ratio10$precip)
rec10 <- lmer(rec ~ landuse*precip + (1|replication), data=ratio10, na.action=na.omit)
anova(rec10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 0.002591 0.0012956 2 27 2.6602 0.08820 .
## precip 0.036120 0.0180599 2 27 37.0822 1.801e-08 ***
## landuse:precip 0.004779 0.0011946 4 27 2.4529 0.07001 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
rec10_means_tp <- lsmeans(rec10 , ~landuse*precip, adjust="tukey")
rec10_pwc_tp <- cld(rec10_means_tp, adjust = "none", Letters = letters, reversed = T)
rec10_pwc_tp <- as.data.frame(rec10_pwc_tp)
#Determining the real SE
real_se_rec10 <- ratio10 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(rec),
sd=sd(rec)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_rec10 <- merge(df, real_se_rec10, by=c("precip"))
rec10_pwc_tp_10 <- merge(rec10_pwc_tp, real_se_rec10, by=c("precip", "landuse"))
rec10_pwc_tp_10 <- as.data.frame(rec10_pwc_tp_10)
rec10_pwc_tp_10$location_f =factor(rec10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=rec10_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,.2)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
labs( y="Respiration to Carbon ratio") +
geom_label(aes(label=trimws(.group), y = lsmean+se+.01),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3rec10.png", height=5, width=4)
z
## [1] "10-15 cm"
ratio15$precip <- as.factor(ratio15$precip)
rec15 <- lmer(rec ~ landuse*precip + (1|replication), data=ratio15, na.action=na.omit)
anova(rec15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 0.0080775 0.0040387 2 22.574 42.497 2.221e-08 ***
## precip 0.0147424 0.0073712 2 12.049 77.561 1.314e-07 ***
## landuse:precip 0.0127194 0.0031798 4 22.574 33.459 3.460e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
rec15_means_tp <- lsmeans(rec15 , ~landuse*precip, adjust="tukey")
rec15_pwc_tp <- cld(rec15_means_tp, adjust = "none", Letters = letters, reversed = T)
rec15_pwc_tp <- as.data.frame(rec15_pwc_tp)
#Determining the real SE
real_se_rec15 <- ratio15 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(rec),
sd=sd(rec)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_rec15 <- merge(df, real_se_rec15, by=c("precip"))
rec15_pwc_tp_15 <- merge(rec15_pwc_tp, real_se_rec15, by=c("precip", "landuse"))
rec15_pwc_tp_15 <- as.data.frame(rec15_pwc_tp_15)
rec15_pwc_tp_15$location_f =factor(rec15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=rec15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,.2)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
labs( y="Respiration to Carbon ratio") +
geom_label(aes(label=trimws(.group), y = lsmean+se+.01),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3rec15.png", height=5, width=4)
x
## [1] "0-5 cm"
epra25$precip <- as.factor(epra25$precip)
lngluc_glucosam5 <- lmer(lngluc_glucosam ~ landuse*precip + (1|replication), data=epra25, na.action=na.omit)
anova(lngluc_glucosam5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 0.078563 0.039282 2 27 15.088 3.990e-05 ***
## precip 0.133757 0.066878 2 27 25.688 5.648e-07 ***
## landuse:precip 0.172844 0.043211 4 27 16.598 5.618e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
lngluc_glucosam5_means_tp <- lsmeans(lngluc_glucosam5 , ~landuse*precip)
lngluc_glucosam5_pwc_tp <- cld(lngluc_glucosam5_means_tp, adjust = "none", Letters = letters, reversed = T)
lngluc_glucosam5_pwc_tp <- as.data.frame(lngluc_glucosam5_pwc_tp)
#Determining the real SE
real_se_lngluc_glucosam5 <- epra25 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(lngluc_glucosam),
sd=sd(lngluc_glucosam)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_lngluc_glucosam5 <- merge(df, real_se_lngluc_glucosam5, by=c("precip"))
lngluc_glucosam5_pwc_tp_5 <- merge(lngluc_glucosam5_pwc_tp, real_se_lngluc_glucosam5, by=c("precip", "landuse"))
lngluc_glucosam5_pwc_tp_5 <- as.data.frame(lngluc_glucosam5_pwc_tp_5)
lngluc_glucosam5_pwc_tp_5$location_f =factor(lngluc_glucosam5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=lngluc_glucosam5_pwc_tp_5, aes(x=landuse, y=mean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=mean-se, ymax=mean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0, 2)) +
xlab("")+
ggtitle("A) 0-5 cm")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
labs( y="ln(bG) to ln(NAG) ratio") +
geom_label(aes(label=trimws(.group), y = lsmean+se+.1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3bgnag5.png", height=5, width=4)
y
## [1] "5-10 cm"
epra210$precip <- as.factor(epra210$precip)
lngluc_glucosam10 <- lmer(lngluc_glucosam ~ landuse*precip + (1|replication), data=epra210, na.action=na.omit)
anova(lngluc_glucosam10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 0.110065 0.055032 2 19.926 7.1520 0.004558 **
## precip 0.002239 0.001119 2 8.189 0.1455 0.866792
## landuse:precip 0.153454 0.038364 4 15.734 4.9857 0.008612 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
lngluc_glucosam10_means_tp <- lsmeans(lngluc_glucosam10 , ~landuse*precip)
lngluc_glucosam10_pwc_tp <- cld(lngluc_glucosam10_means_tp, adjust = "none", Letters = letters, reversed = T)
lngluc_glucosam10_pwc_tp <- as.data.frame(lngluc_glucosam10_pwc_tp)
#Determining the real SE
real_se_lngluc_glucosam10 <- epra210 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(lngluc_glucosam),
sd=sd(lngluc_glucosam)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_lngluc_glucosam10 <- merge(df, real_se_lngluc_glucosam10, by=c("precip"))
lngluc_glucosam10_pwc_tp_10 <- merge(lngluc_glucosam10_pwc_tp, real_se_lngluc_glucosam10, by=c("precip", "landuse"))
lngluc_glucosam10_pwc_tp_10 <- as.data.frame(lngluc_glucosam10_pwc_tp_10)
lngluc_glucosam10_pwc_tp_10$location_f =factor(lngluc_glucosam10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=lngluc_glucosam10_pwc_tp_10, aes(x=landuse, y=mean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=mean-se, ymax=mean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0, 2)) +
xlab("")+
ggtitle("B) 5-10 cm")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.83)) +
labs( y="ln(bG) to ln(NAG) ratio") +
geom_label(aes(label=trimws(.group), y = lsmean+se+.1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3bgnag10.png", height=5, width=4)
z
## [1] "10-15 cm"
epra215$precip <- as.factor(epra215$precip)
lngluc_glucosam15 <- lmer(lngluc_glucosam ~ landuse*precip + (1|replication), data=epra215, na.action=na.omit)
anova(lngluc_glucosam15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 0.109683 0.054841 2 27 25.7118 5.602e-07 ***
## precip 0.018770 0.009385 2 27 4.4001 0.0221805 *
## landuse:precip 0.064712 0.016178 4 27 7.5849 0.0003126 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
lngluc_glucosam15_means_tp <- lsmeans(lngluc_glucosam15 , ~landuse*precip)
lngluc_glucosam15_pwc_tp <- cld(lngluc_glucosam15_means_tp, adjust = "none", Letters = letters, reversed = T)
lngluc_glucosam15_pwc_tp <- as.data.frame(lngluc_glucosam15_pwc_tp)
#Determining the real SE
real_se_lngluc_glucosam15 <- epra215 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(lngluc_glucosam),
sd=sd(lngluc_glucosam)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_lngluc_glucosam15 <- merge(df, real_se_lngluc_glucosam15, by=c("precip"))
lngluc_glucosam15_pwc_tp_15 <- merge(lngluc_glucosam15_pwc_tp, real_se_lngluc_glucosam15, by=c("precip", "landuse"))
lngluc_glucosam15_pwc_tp_15 <- as.data.frame(lngluc_glucosam15_pwc_tp_15)
lngluc_glucosam15_pwc_tp_15$location_f =factor(lngluc_glucosam15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=lngluc_glucosam15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,2)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
labs( y="ln(bG) to ln(NAG) ratio") +
geom_label(aes(label=trimws(.group), y = lsmean+se+.1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3bgnag15.png", height=5, width=4)
x
## [1] "0-5 cm"
epra25$precip <- as.factor(epra25$precip)
lngluc_acidp5 <- lmer(lngluc_acidp ~ landuse*precip + (1|replication), data=epra25, na.action=na.omit)
anova(lngluc_acidp5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 0.076561 0.038281 2 27 35.079 3.108e-08 ***
## precip 0.074473 0.037236 2 27 34.122 4.066e-08 ***
## landuse:precip 0.168886 0.042221 4 27 38.690 8.259e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
lngluc_acidp5_means_tp <- lsmeans(lngluc_acidp5 , ~landuse*precip, adjust="tukey")
lngluc_acidp5_pwc_tp <- cld(lngluc_acidp5_means_tp, adjust = "none", Letters = letters, reversed = T)
lngluc_acidp5_pwc_tp <- as.data.frame(lngluc_acidp5_pwc_tp)
#Determining the real SE
real_se_lngluc_acidp5 <- epra25 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(lngluc_acidp),
sd=sd(lngluc_acidp)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_lngluc_acidp5 <- merge(df, real_se_lngluc_acidp5, by=c("precip"))
lngluc_acidp5_pwc_tp_5 <- merge(lngluc_acidp5_pwc_tp, real_se_lngluc_acidp5, by=c("precip", "landuse"))
lngluc_acidp5_pwc_tp_5 <- as.data.frame(lngluc_acidp5_pwc_tp_5)
lngluc_acidp5_pwc_tp_5$location_f =factor(lngluc_acidp5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=lngluc_acidp5_pwc_tp_5, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,2)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
labs( y="ln(bG) to ln(AP) ratio") +
geom_label(aes(label=trimws(.group), y = lsmean+se+.1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3bgap5.png", height=5, width=4)
y
## [1] "5-10 cm"
epra210$precip <- as.factor(epra210$precip)
lngluc_acidp10 <- lmer(lngluc_acidp ~ landuse*precip + (1|replication), data=epra210, na.action=na.omit)
anova(lngluc_acidp10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 0.07266 0.03633 2 27 11.9736 0.0001894 ***
## precip 0.02972 0.01486 2 27 4.8976 0.0153194 *
## landuse:precip 0.12284 0.03071 4 27 10.1214 3.873e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
lngluc_acidp10_means_tp <- lsmeans(lngluc_acidp10 , ~landuse*precip, adjust="tukey")
lngluc_acidp10_pwc_tp <- cld(lngluc_acidp10_means_tp, adjust = "none", Letters = letters, reversed = T)
lngluc_acidp10_pwc_tp <- as.data.frame(lngluc_acidp10_pwc_tp)
#Determining the real SE
real_se_lngluc_acidp10 <- epra210 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(lngluc_glucosam),
sd=sd(lngluc_glucosam)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_lngluc_acidp10 <- merge(df, real_se_lngluc_acidp10, by=c("precip"))
lngluc_acidp10_pwc_tp_10 <- merge(lngluc_acidp10_pwc_tp, real_se_lngluc_acidp10, by=c("precip", "landuse"))
lngluc_acidp10_pwc_tp_10 <- as.data.frame(lngluc_acidp10_pwc_tp_10)
lngluc_acidp10_pwc_tp_10$location_f =factor(lngluc_acidp10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=lngluc_acidp10_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,2)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
labs( y="ln(bG) to ln(AP) ratio") +
geom_label(aes(label=trimws(.group), y = lsmean+se+.1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3bgap10.png", height=5, width=4)
z
## [1] "10-15 cm"
epra215$precip <- as.factor(epra215$precip)
lngluc_acidp15 <- lmer(lngluc_acidp ~ landuse*precip + (1|replication), data=epra215, na.action=na.omit)
anova(lngluc_acidp15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 0.029770 0.014885 2 27 12.1211 0.0001752 ***
## precip 0.050201 0.025101 2 27 20.4398 3.935e-06 ***
## landuse:precip 0.042072 0.010518 4 27 8.5649 0.0001344 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
lngluc_acidp15_means_tp <- lsmeans(lngluc_acidp15 , ~landuse*precip, adjust="tukey")
lngluc_acidp15_pwc_tp <- cld(lngluc_acidp15_means_tp, adjust = "none", Letters = letters, reversed = T)
lngluc_acidp15_pwc_tp <- as.data.frame(lngluc_acidp15_pwc_tp)
#Determining the real SE
real_se_lngluc_acidp15 <- epra215 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(lngluc_glucosam),
sd=sd(lngluc_glucosam)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_lngluc_acidp15 <- merge(df, real_se_lngluc_acidp15, by=c("precip"))
lngluc_acidp15_pwc_tp_15 <- merge(lngluc_acidp15_pwc_tp, real_se_lngluc_acidp15, by=c("precip", "landuse"))
lngluc_acidp15_pwc_tp_15 <- as.data.frame(lngluc_acidp15_pwc_tp_15)
lngluc_acidp15_pwc_tp_15$location_f =factor(lngluc_acidp15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=lngluc_acidp15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,2)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
labs( y="ln(bG) to ln(AP) ratio") +
geom_label(aes(label=trimws(.group), y = lsmean+se+.1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3bgap15.png", height=5, width=4)
x
## [1] "0-5 cm"
epra25$precip <- as.factor(epra25$precip)
lngluc_alkp5 <- lmer(lngluc_alkp ~ landuse*precip + (1|replication), data=epra25, na.action=na.omit)
anova(lngluc_alkp5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 0.051416 0.0257081 2 27 24.5570 8.388e-07 ***
## precip 0.031808 0.0159040 2 27 15.1919 3.800e-05 ***
## landuse:precip 0.024029 0.0060073 4 27 5.7383 0.00178 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
lngluc_alkp5_means_tp <- lsmeans(lngluc_alkp5 , ~landuse*precip, adjust="tukey")
lngluc_alkp5_pwc_tp <- cld(lngluc_alkp5_means_tp, adjust = "none", Letters = letters, reversed = T)
lngluc_alkp5_pwc_tp <- as.data.frame(lngluc_alkp5_pwc_tp)
#Determining the real SE
real_se_lngluc_alkp5 <- epra25 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(lngluc_alkp),
sd=sd(lngluc_alkp)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_lngluc_alkp5 <- merge(df, real_se_lngluc_alkp5, by=c("precip"))
lngluc_alkp5_pwc_tp_5 <- merge(lngluc_alkp5_pwc_tp, real_se_lngluc_alkp5, by=c("precip", "landuse"))
lngluc_alkp5_pwc_tp_5 <- as.data.frame(lngluc_alkp5_pwc_tp_5)
lngluc_alkp5_pwc_tp_5$location_f =factor(lngluc_alkp5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=lngluc_alkp5_pwc_tp_5, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,2)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
labs( y="ln(bG) to ln(ALP) ratio") +
geom_label(aes(label=trimws(.group), y = lsmean+se+.1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3bgalk5.png", height=5, width=4)
y
## [1] "5-10 cm"
epra210$precip <- as.factor(epra210$precip)
lngluc_alkp10 <- lmer(lngluc_alkp ~ landuse*precip + (1|replication), data=epra210, na.action=na.omit)
anova(lngluc_alkp10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 0.098071 0.049036 2 27 21.8345 2.285e-06 ***
## precip 0.035142 0.017571 2 27 7.8240 0.0020882 **
## landuse:precip 0.068340 0.017085 4 27 7.6077 0.0003064 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
lngluc_alkp10_means_tp <- lsmeans(lngluc_alkp10 , ~landuse*precip, adjust="tukey")
lngluc_alkp10_pwc_tp <- cld(lngluc_alkp10_means_tp, adjust = "none", Letters = letters, reversed = T)
lngluc_alkp10_pwc_tp <- as.data.frame(lngluc_alkp10_pwc_tp)
#Determining the real SE
real_se_lngluc_alkp10 <- epra210 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(lngluc_alkp),
sd=sd(lngluc_alkp)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_lngluc_alkp10 <- merge(df, real_se_lngluc_alkp10, by=c("precip"))
lngluc_alkp10_pwc_tp_10 <- merge(lngluc_alkp10_pwc_tp, real_se_lngluc_alkp10, by=c("precip", "landuse"))
lngluc_alkp10_pwc_tp_10 <- as.data.frame(lngluc_alkp10_pwc_tp_10)
lngluc_alkp10_pwc_tp_10$location_f =factor(lngluc_alkp10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=lngluc_alkp10_pwc_tp_10, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,2)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
labs( y="ln(bG) to ln(ALP) ratio") +
geom_label(aes(label=trimws(.group), y = lsmean+se+.1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3bgalk10.png", height=5, width=4)
z
## [1] "10-15 cm"
epra215$precip <- as.factor(epra215$precip)
lngluc_alkp15 <- lmer(lngluc_alkp ~ landuse*precip + (1|replication), data=epra215, na.action=na.omit)
anova(lngluc_alkp15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 0.022719 0.011359 2 27 4.5066 0.0204733 *
## precip 0.060156 0.030078 2 27 11.9328 0.0001935 ***
## landuse:precip 0.090574 0.022644 4 27 8.9833 9.516e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
lngluc_alkp15_means_tp <- lsmeans(lngluc_alkp15 , ~landuse*precip, adjust="tukey")
lngluc_alkp15_pwc_tp <- cld(lngluc_alkp15_means_tp, adjust = "none", Letters = letters, reversed = T)
lngluc_alkp15_pwc_tp <- as.data.frame(lngluc_alkp15_pwc_tp)
#Determining the real SE
real_se_lngluc_alkp15 <- epra215 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(lngluc_alkp),
sd=sd(lngluc_alkp)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_lngluc_alkp15 <- merge(df, real_se_lngluc_alkp15, by=c("precip"))
lngluc_alkp15_pwc_tp_15 <- merge(lngluc_alkp15_pwc_tp, real_se_lngluc_alkp15, by=c("precip", "landuse"))
lngluc_alkp15_pwc_tp_15 <- as.data.frame(lngluc_alkp15_pwc_tp_15)
lngluc_alkp15_pwc_tp_15$location_f =factor(lngluc_alkp15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=lngluc_alkp15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,2)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
labs( y="ln(bG) to ln(ALP) ratio") +
geom_label(aes(label=trimws(.group), y = lsmean+se+.1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3bgalk15.png", height=5, width=4)
x
## [1] "0-5 cm"
epra25$precip <- as.factor(epra25$precip)
lngluc_ary5 <- lmer(lngluc_ary ~ landuse*precip + (1|replication), data=epra25, na.action=na.omit)
anova(lngluc_ary5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 2.2637 1.13186 2 27 9.1510 0.0009243 ***
## precip 1.6792 0.83959 2 27 6.7880 0.0040905 **
## landuse:precip 1.4799 0.36997 4 27 2.9912 0.0363706 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
lngluc_ary5_means_tp <- lsmeans(lngluc_ary5 , ~landuse*precip, adjust="tukey")
lngluc_ary5_pwc_tp <- cld(lngluc_ary5_means_tp, adjust = "none", Letters = letters, reversed = T)
lngluc_ary5_pwc_tp <- as.data.frame(lngluc_ary5_pwc_tp)
#Determining the real SE
real_se_lngluc_ary5 <- epra25 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(lngluc_ary),
sd=sd(lngluc_ary)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_lngluc_ary5 <- merge(df, real_se_lngluc_ary5, by=c("precip"))
lngluc_ary5_pwc_tp_5 <- merge(lngluc_ary5_pwc_tp, real_se_lngluc_ary5, by=c("precip", "landuse"))
lngluc_ary5_pwc_tp_5 <- as.data.frame(lngluc_ary5_pwc_tp_5)
lngluc_ary5_pwc_tp_5$location_f =factor(lngluc_ary5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=lngluc_ary5_pwc_tp_5, aes(x=landuse, y=mean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=mean-se, ymax=mean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0, 3)) +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.2,0.83)) +
ylab("ln(bG) to ln(ARY) ratio")+
geom_label(aes(label=trimws(.group), y = lsmean+se+.1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3bgary5.png", height=5, width=4)
epra210$precip <- as.factor(epra210$precip)
lngluc_ary10 <- lmer(lngluc_ary ~ landuse*precip + (1|replication), data=epra210, na.action=na.omit)
anova(lngluc_ary10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 0.301550 0.150775 2 27 3.0980 0.06148 .
## precip 0.066458 0.033229 2 27 0.6828 0.51373
## landuse:precip 0.217481 0.054370 4 27 1.1171 0.36898
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
lngluc_ary10_means_tp <- lsmeans(lngluc_ary10 , ~landuse*precip, adjust="tukey")
lngluc_ary10_pwc_tp <- cld(lngluc_ary10_means_tp, adjust = "none", Letters = letters, reversed = T)
lngluc_ary10_pwc_tp <- as.data.frame(lngluc_ary10_pwc_tp)
#Determining the real SE
real_se_lngluc_ary10 <- epra210 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(lngluc_ary),
sd=sd(lngluc_ary)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_lngluc_ary10 <- merge(df, real_se_lngluc_ary10, by=c("precip"))
lngluc_ary10_pwc_tp_10 <- merge(lngluc_ary10_pwc_tp, real_se_lngluc_ary10, by=c("precip", "landuse"))
lngluc_ary10_pwc_tp_10 <- as.data.frame(lngluc_ary10_pwc_tp_10)
lngluc_ary10_pwc_tp_10$location_f =factor(lngluc_ary10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=lngluc_ary10_pwc_tp_10, aes(x=landuse, y=mean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=mean-se, ymax=mean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0, 2)) +
xlab("")+
ggtitle("B) 5-10 cm")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.2,0.83)) +
ylab("ln(bG) to ln(ARY) ratio")+
geom_label(aes(label=trimws(.group), y = lsmean+se+.1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3bgary10.png", height=5, width=4)
z
## [1] "10-15 cm"
epra215$precip <- as.factor(epra215$precip)
lngluc_ary15 <- lmer(lngluc_ary ~ landuse*precip + (1|replication), data=epra215, na.action=na.omit)
anova(lngluc_ary15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 0.173416 0.086708 2 27 30.4426 1.204e-07 ***
## precip 0.079514 0.039757 2 27 13.9585 6.877e-05 ***
## landuse:precip 0.040865 0.010216 4 27 3.5869 0.01803 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
lngluc_ary15_means_tp <- lsmeans(lngluc_ary15 , ~landuse*precip, adjust="tukey")
lngluc_ary15_pwc_tp <- cld(lngluc_ary15_means_tp, adjust = "none", Letters = letters, reversed = T)
lngluc_ary15_pwc_tp <- as.data.frame(lngluc_ary15_pwc_tp)
#Determining the real SE
real_se_lngluc_ary15 <- epra215 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(lngluc_ary),
sd=sd(lngluc_ary)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_lngluc_ary15 <- merge(df, real_se_lngluc_ary15, by=c("precip"))
lngluc_ary15_pwc_tp_15 <- merge(lngluc_ary15_pwc_tp, real_se_lngluc_ary15, by=c("precip", "landuse"))
lngluc_ary15_pwc_tp_15 <- as.data.frame(lngluc_ary15_pwc_tp_15)
lngluc_ary15_pwc_tp_15$location_f =factor(lngluc_ary15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=lngluc_ary15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,2)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
labs( y="ln(bG) to ln(ARY) ratio") +
geom_label(aes(label=trimws(.group), y = lsmean+se+.1),
label.padding = unit(.3,"lines"), show.legend=NA, label.size = NA, fill=NA, font="bold" ) +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3bgary15.png", height=5, width=4)
x
## [1] "0-5 cm"
epra25$precip <- as.factor(epra25$precip)
lngluc_pho5 <- lmer(lngluc_pho ~ landuse*precip + (1|replication), data=epra25, na.action=na.omit)
anova(lngluc_pho5, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 0.096133 0.048066 2 27 8.9888 0.001018 **
## precip 0.065483 0.032742 2 27 6.1230 0.006415 **
## landuse:precip 0.007623 0.001906 4 27 0.3564 0.837285
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
lngluc_pho5_means_tp <- lsmeans(lngluc_pho5 , ~landuse*precip, adjust="tukey")
lngluc_pho5_pwc_tp <- cld(lngluc_pho5_means_tp, adjust = "none", Letters = letters, reversed = T)
lngluc_pho5_pwc_tp <- as.data.frame(lngluc_pho5_pwc_tp)
#Determining the real SE
real_se_lngluc_pho5 <- epra25 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(lngluc_pho),
sd=sd(lngluc_pho)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_lngluc_pho5 <- merge(df, real_se_lngluc_pho5, by=c("precip"))
lngluc_pho5_pwc_tp_5 <- merge(lngluc_pho5_pwc_tp, real_se_lngluc_pho5, by=c("precip", "landuse"))
lngluc_pho5_pwc_tp_5 <- as.data.frame(lngluc_pho5_pwc_tp_5)
lngluc_pho5_pwc_tp_5$location_f =factor(lngluc_pho5_pwc_tp_5$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=lngluc_pho5_pwc_tp_5, aes(x=landuse, y=mean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=mean-se, ymax=mean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0, 2)) +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("A) 0-5 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.2,0.83)) +
ylab("ln(bG) to ln(PHO) ratio") +
geom_label(aes(label=trimws(.group), y = lsmean+se+.1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3bgpho5.png", height=5, width=4)
y
## [1] "5-10 cm"
epra210$precip <- as.factor(epra210$precip)
lngluc_pho10 <- lmer(lngluc_pho ~ landuse*precip + (1|replication), data=epra210, na.action=na.omit)
anova(lngluc_pho10, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 0.066336 0.033168 2 20.918 11.0506 0.0005307 ***
## precip 0.102891 0.051445 2 16.669 17.1400 9.034e-05 ***
## landuse:precip 0.030904 0.007726 4 19.558 2.5741 0.0699051 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
lngluc_pho10_means_tp <- lsmeans(lngluc_pho10 , ~landuse*precip, adjust="tukey")
lngluc_pho10_pwc_tp <- cld(lngluc_pho10_means_tp, adjust = "none", Letters = letters, reversed = T)
lngluc_pho10_pwc_tp <- as.data.frame(lngluc_pho10_pwc_tp)
#Determining the real SE
real_se_lngluc_pho10 <- epra210 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(lngluc_pho),
sd=sd(lngluc_pho)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_lngluc_pho10 <- merge(df, real_se_lngluc_pho10, by=c("precip"))
lngluc_pho10_pwc_tp_10 <- merge(lngluc_pho10_pwc_tp, real_se_lngluc_pho10, by=c("precip", "landuse"))
lngluc_pho10_pwc_tp_10 <- as.data.frame(lngluc_pho10_pwc_tp_10)
lngluc_pho10_pwc_tp_10$location_f =factor(lngluc_pho10_pwc_tp_10$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=lngluc_pho10_pwc_tp_10, aes(x=landuse, y=mean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=mean-se, ymax=mean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0, 2)) +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("B) 5-10 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.2,0.83)) +
ylab("ln(bG) to ln(PHO) ratio") +
geom_label(aes(label=trimws(.group), y = lsmean+se+.1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3bgpho10.png", height=5, width=4)
z
## [1] "10-15 cm"
epra215$precip <- as.factor(epra215$precip)
lngluc_pho15 <- lmer(lngluc_pho ~ landuse*precip + (1|replication), data=epra215, na.action=na.omit)
anova(lngluc_pho15, type=3)
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## landuse 0.009655 0.0048277 2 27 2.0485 0.1485011
## precip 0.045578 0.0227891 2 27 9.6697 0.0006809 ***
## landuse:precip 0.051612 0.0129030 4 27 5.4749 0.0023213 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
lngluc_pho15_means_tp <- lsmeans(lngluc_pho15 , ~landuse*precip, adjust="tukey")
lngluc_pho15_pwc_tp <- cld(lngluc_pho15_means_tp, adjust = "none", Letters = letters, reversed = T)
lngluc_pho15_pwc_tp <- as.data.frame(lngluc_pho15_pwc_tp)
#Determining the real SE
real_se_lngluc_pho15 <- epra215 %>%
dplyr::group_by(precip, landuse) %>%
dplyr::summarise(
n=n(),
mean=mean(lngluc_pho),
sd=sd(lngluc_pho)
) %>%
dplyr::mutate( se=sd/sqrt(n))
real_se_lngluc_pho15 <- merge(df, real_se_lngluc_pho15, by=c("precip"))
lngluc_pho15_pwc_tp_15 <- merge(lngluc_pho15_pwc_tp, real_se_lngluc_pho15, by=c("precip", "landuse"))
lngluc_pho15_pwc_tp_15 <- as.data.frame(lngluc_pho15_pwc_tp_15)
lngluc_pho15_pwc_tp_15$location_f =factor(lngluc_pho15_pwc_tp_15$location, levels=c('Tribune', 'Hays', 'Manhattan'))
ggplot(data=lngluc_pho15_pwc_tp_15, aes(x=landuse, y=lsmean, fill = landuse)) +
geom_bar(position=position_dodge(), stat="identity", colour = "black") +
geom_errorbar(aes(ymin=lsmean-se, ymax=lsmean+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +
scale_y_continuous(limits=c(0,2)) +
facet_wrap(facets=vars(location_f), strip.position="bottom") +
xlab("")+
facet_wrap(facets=vars(location_f), strip.position="bottom") +
scale_fill_manual(values = colbio) +
ggtitle("C) 10-15 cm")+
theme_James() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
strip.background=element_rect(size=0.5, colour = "black"),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
legend.position= c(0.12,0.85)) +
labs( y="ln(bG) to ln(PHO) ratio") +
geom_label(aes(label=trimws(.group), y = lsmean+se+.1),
label.padding = unit(.3,"lines"), show.legend=NA , label.size = NA, fill=NA, font="bold") +
guides(fill = guide_legend(override.aes = aes(label="")))
## Warning: Ignoring unknown parameters: font
ggsave("3bgpho15.png", height=5, width=4)
1.6 Comments