🐟 Introduction
🐟 Methodology
- For temperature vs. pH Level: \(H_0:\beta_{TempVspH}=0\), \(H_A:\beta_{TempVspH}\neq0\)
- For turbidity vs. pH Level: \(H_0:\beta_{TurbVspH}=0\), \(H_A:\beta_{TurbVspH}\neq0\)
- For temperature vs. pH Level: \(H_0:\beta_{TempVsTurb}=0\), \(H_A:\beta_{TempVsTurb}\neq0\)
🐟 Results and Discussion
rawdata = read.delim("Sensor-data-for-30-cm.txt", header=T)
Turb = rawdata$Turbidity..NTU.
Temp = rawdata$Temperature..Â.C.
pHLevel = rawdata$pHplot(Temp, pHLevel,
main = "Scatter Diagram of Temperature vs. pH Level",
xlab = "Temperature",
ylab = "pH Level", las = 1)plot(Turb, pHLevel,
main = "Scatter Diagram of Turbidity vs. pH Level",
xlab = "Turbidity",
ylab = "pH Level", las = 1)plot(Temp, Turb,
main = "Scatter Diagram of Temperature vs. Turbidity",
xlab = "Temperature",
ylab = "Turbidity", las = 1)plot(Temp[5156:5885], pHLevel[5156:5885],
main = "Scatter Diagram of Temperature vs. pH Level (Day 5: Daytime",
xlab = "Temperature",
ylab = "pH Level", las = 1)plot(Temp[6554:7189], pHLevel[6554:7189],
main = "Scatter Diagram of Temperature vs. pH Level (Day 6: Daytime",
xlab = "Temperature",
ylab = "pH Level", las = 1)plot(Turb[6554:7189], pHLevel[6554:7189],
main = "Scatter Diagram of Turbidity vs. pH Level (Day 6: Daytime",
xlab = "Turbidity",
ylab = "pH Level", las = 1)plot(Turb[7833:8476], pHLevel[7833:8476],
main = "Scatter Diagram of Turbidity vs. pH Level (Day 7: Daytime",
xlab = "Turbidity",
ylab = "pH Level", las = 1)plot(Temp[811:1445], Turb[811:1445],
main = "Scatter Diagram of Temperature vs. Turbidity (Day 2: Daytime",
xlab = "Temperature",
ylab = "Turbidity", las = 1)plot(Temp[7833:8476], Turb[7833:8476],
main = "Scatter Diagram of Temperature vs. Turbidity (Day 7: Daytime",
xlab = "Temperature",
ylab = "Turbidity", las = 1)Testing the significance of regression for temperature vs. pH level:
TempvpH = lm(pHLevel ~ Temp)
summary(TempvpH)##
## Call:
## lm(formula = pHLevel ~ Temp)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.85876 -0.37672 0.00436 0.43688 0.67226
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.308087 0.044005 188.80 <2e-16 ***
## Temp -0.027503 0.002188 -12.57 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.44 on 9621 degrees of freedom
## Multiple R-squared: 0.01615, Adjusted R-squared: 0.01605
## F-statistic: 158 on 1 and 9621 DF, p-value: < 2.2e-16
Testing the significance of regression for turbidity vs. pH level:
TurbvpH = lm(pHLevel ~ Turb)
summary(TurbvpH)##
## Call:
## lm(formula = pHLevel ~ Turb)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.79342 -0.39126 -0.00422 0.45999 0.66840
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.4395716 0.0603153 123.345 < 2e-16 ***
## Turb 0.0014772 0.0002791 5.292 1.23e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.443 on 9621 degrees of freedom
## Multiple R-squared: 0.002903, Adjusted R-squared: 0.002799
## F-statistic: 28.01 on 1 and 9621 DF, p-value: 1.234e-07
Testing the significance of regression for turbidity vs. temperature:
TurbvTemp = lm(Temp ~ Turb)
summary(TurbvTemp)##
## Call:
## lm(formula = Temp ~ Turb)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4326 -1.6668 -0.0747 1.5594 4.0650
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 21.726667 0.278581 77.990 < 2e-16 ***
## Turb -0.007991 0.001289 -6.198 5.94e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.046 on 9621 degrees of freedom
## Multiple R-squared: 0.003977, Adjusted R-squared: 0.003874
## F-statistic: 38.42 on 1 and 9621 DF, p-value: 5.942e-10
🐟 Conclusion
🐟 References
[1] M. Williams, What percent of Earth is water?. Universe Today, 2014 https://phys.org/news/2014-12-percent-earth.html
[2] McKinsey & Company and Ocean Conservancy, Stemming the Tide: Land-based Strategies for a Plastic-Free Ocean. 2015. https://www.mckinsey.com/business-functions/sustainability/our-insights/stemming-the-tide-land-based-strategies-for-a-plastic-free-ocean
[3] Arif Istiaq Arafat, Tasmima Akter, Md. Ferdous Ahammed, Md. Younus Ali, Abdullah-Al Nahid, A dataset for internet of things based fish farm monitoring and notification system. 2020. https://doi.org/10.1016/j.dib.2020.106457
[4] United States Geological Survey, pH and Water. 2019. https://www.usgs.gov/special-topic/water-science-school/science/ph-and-water?qt-science_center_objects=0#qt-science_center_objects
[5] Andrew Zimmerman Jones, Temperature Definition in ScienceTemperature Definition in Science. 2019. https://www.thoughtco.com/temperature-definition-in-science-2699014
[6] United States Geological Survey. Turbidity and Water. 2019. https://www.usgs.gov/special-topic/water-science-school/science/turbidity-and-water?qt-science_center_objects=0#qt-science_center_objects
[7] Arif Istiaq Arafat, Tasmima Akter, Md. Ferdous Ahammed, Md. Younus Ali, Abdullah-Al Nahid, KU-MWQ: A Dataset for Monitoring Water Quality Using Digital Sensors. 2020. https://data.mendeley.com/datasets/34rczh25kc/4