Ver https://rstudio.github.io/reticulate/.

library(reticulate)
py_install("openpyxl") # para instalar pacote
import pandas as pd
# precisei instalar openpyxl (para xlsx) e xlrd (para xls)
df = pd.read_excel (r'D:\Documentos\disciplinas\econometria\laboratorio_Python\primeiro_projeto\gujarati 5ed p236 frangos tabela7_9.xlsx', sheet_name='dados')
print (df[["lny" , "lnx2" , "lnx3" , "lnx4" , "lnx5"]])
##          lny      lnx2      lnx3      lnx4      lnx5
## 0   3.325036  5.985195  3.742420  3.925926  4.360548
## 1   3.397858  6.024174  3.640214  3.951244  4.371976
## 2   3.394508  6.084955  3.696351  3.988984  4.371976
## 3   3.427515  6.130574  3.676301  4.012773  4.371976
## 4   3.440418  6.200306  3.618993  4.001864  4.348987
## 5   3.505557  6.270232  3.640214  4.154185  4.384524
## 6   3.572346  6.328472  3.671225  4.245634  4.387014
## 7   3.594569  6.437111  3.632309  4.188138  4.429626
## 8   3.602777  6.501890  3.648057  4.166665  4.448516
## 9   3.648057  6.576191  3.691376  4.248495  4.540098
## 10  3.698830  6.644050  3.653252  4.293195  4.664382
## 11  3.696351  6.737323  3.683867  4.216562  4.652054
## 12  3.732896  6.815201  3.681351  4.370713  4.736198
## 13  3.698830  6.836367  3.953165  4.558079  4.821088
## 14  3.706228  6.929027  3.889777  4.545420  4.848900
## 15  3.691376  7.061249  4.065602  4.816241  4.962145
## 16  3.754199  7.207564  4.058717  4.866765  4.967032
## 17  3.786460  7.278905  4.034241  4.767289  4.935912
## 18  3.843744  7.362328  4.154185  4.874434  5.108971
## 19  3.923952  7.472558  4.120662  4.865995  5.314683
## 20  3.914021  7.597998  4.075841  4.852030  5.391808
## 21  3.945458  7.722279  4.195697  4.948760  5.400874
## 22  3.968403  7.815490  4.254193  5.125154  5.449320
import numpy as np
from sklearn.linear_model import LinearRegression
import statsmodels.formula.api as sm
import statsmodels.formula.api as sm
result = sm.ols(formula="lny ~ lnx2 + lnx3 + lnx4 + lnx5", data=df).fit()
print(result.summary())
# comparar com https://rpubs.com/amrofi/exercicio_gujarati_7_19
##                             OLS Regression Results                            
## ==============================================================================
## Dep. Variable:                    lny   R-squared:                       0.982
## Model:                            OLS   Adj. R-squared:                  0.978
## Method:                 Least Squares   F-statistic:                     249.9
## Date:                Wed, 04 Aug 2021   Prob (F-statistic):           1.67e-15
## Time:                        21:02:54   Log-Likelihood:                 52.759
## No. Observations:                  23   AIC:                            -95.52
## Df Residuals:                      18   BIC:                            -89.84
## Df Model:                           4                                         
## Covariance Type:            nonrobust                                         
## ==============================================================================
##                  coef    std err          t      P>|t|      [0.025      0.975]
## ------------------------------------------------------------------------------
## Intercept      2.1898      0.156     14.063      0.000       1.863       2.517
## lnx2           0.3426      0.083      4.114      0.001       0.168       0.517
## lnx3          -0.5046      0.111     -4.550      0.000      -0.738      -0.272
## lnx4           0.1485      0.100      1.490      0.153      -0.061       0.358
## lnx5           0.0911      0.101      0.905      0.378      -0.120       0.303
## ==============================================================================
## Omnibus:                        1.145   Durbin-Watson:                   1.826
## Prob(Omnibus):                  0.564   Jarque-Bera (JB):                1.078
## Skew:                           0.427   Prob(JB):                        0.583
## Kurtosis:                       2.370   Cond. No.                         388.
## ==============================================================================
## 
## Notes:
## [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.