library(MASS)
library(ISLR)
## Warning: package 'ISLR' was built under R version 4.0.5
library(boot)
attach(Wage)
str(Wage)
## 'data.frame': 3000 obs. of 11 variables:
## $ year : int 2006 2004 2003 2003 2005 2008 2009 2008 2006 2004 ...
## $ age : int 18 24 45 43 50 54 44 30 41 52 ...
## $ maritl : Factor w/ 5 levels "1. Never Married",..: 1 1 2 2 4 2 2 1 1 2 ...
## $ race : Factor w/ 4 levels "1. White","2. Black",..: 1 1 1 3 1 1 4 3 2 1 ...
## $ education : Factor w/ 5 levels "1. < HS Grad",..: 1 4 3 4 2 4 3 3 3 2 ...
## $ region : Factor w/ 9 levels "1. New England",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ jobclass : Factor w/ 2 levels "1. Industrial",..: 1 2 1 2 2 2 1 2 2 2 ...
## $ health : Factor w/ 2 levels "1. <=Good","2. >=Very Good": 1 2 1 2 1 2 2 1 2 2 ...
## $ health_ins: Factor w/ 2 levels "1. Yes","2. No": 2 2 1 1 1 1 1 1 1 1 ...
## $ logwage : num 4.32 4.26 4.88 5.04 4.32 ...
## $ wage : num 75 70.5 131 154.7 75 ...
set.seed(1)
delta <- rep(NA,10)
for (i in 1:10){
fit <- glm(wage ~ poly(age, i), data = Wage)
delta[i] <- cv.glm(Wage, fit, K=10)$delta[1]
}
plot(1:10, delta, xlab = "Degree", ylab = "Test MSE", type = "l")
d.min <- which.min(delta)
points(d.min, delta[d.min], col = "red", cex = 2, pch = 20)
set.seed(1)
fit.1 = lm(wage~poly(age,1), data = Wage)
fit.2 = lm(wage~poly(age,2), data = Wage)
fit.3 = lm(wage~poly(age,3), data = Wage)
fit.4 = lm(wage~poly(age,4), data = Wage)
fit.5 = lm(wage~poly(age,5), data = Wage)
fit.6 = lm(wage~poly(age,6), data = Wage)
fit.7 = lm(wage~poly(age,7), data = Wage)
fit.8 = lm(wage~poly(age,8), data = Wage)
fit.9 = lm(wage~poly(age,9), data = Wage)
fit.10 = lm(wage~poly(age,10), data = Wage)
anova(fit.1,fit.2,fit.3,fit.4,fit.5,fit.6,fit.7,fit.8,fit.9,fit.10)
## Analysis of Variance Table
##
## Model 1: wage ~ poly(age, 1)
## Model 2: wage ~ poly(age, 2)
## Model 3: wage ~ poly(age, 3)
## Model 4: wage ~ poly(age, 4)
## Model 5: wage ~ poly(age, 5)
## Model 6: wage ~ poly(age, 6)
## Model 7: wage ~ poly(age, 7)
## Model 8: wage ~ poly(age, 8)
## Model 9: wage ~ poly(age, 9)
## Model 10: wage ~ poly(age, 10)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 2998 5022216
## 2 2997 4793430 1 228786 143.7638 < 2.2e-16 ***
## 3 2996 4777674 1 15756 9.9005 0.001669 **
## 4 2995 4771604 1 6070 3.8143 0.050909 .
## 5 2994 4770322 1 1283 0.8059 0.369398
## 6 2993 4766389 1 3932 2.4709 0.116074
## 7 2992 4763834 1 2555 1.6057 0.205199
## 8 2991 4763707 1 127 0.0796 0.777865
## 9 2990 4756703 1 7004 4.4014 0.035994 *
## 10 2989 4756701 1 3 0.0017 0.967529
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(wage ~ age, data = Wage, col = "darkgrey")
agelims <- range(Wage$age)
age.grid <- seq(from = agelims[1], to = agelims[2])
fit <- lm(wage ~ poly(age, 3), data = Wage)
preds <- predict(fit, newdata = list(age = age.grid))
lines(age.grid, preds, col = "red", lwd = 2)
plot(wage ~ age, data = Wage, col = "darkgrey")
agelims <- range(Wage$age)
age.grid <- seq(from = agelims[1], to = agelims[2])
fit <- lm(wage ~ poly(age, 9), data = Wage)
preds <- predict(fit, newdata = list(age = age.grid))
lines(age.grid, preds, col = "red", lwd = 2)
set.seed(1)
cvs <- rep(0, 10)
for (i in 2:10) {
Wage$age.cut <- cut(Wage$age, i)
fit <- glm(wage ~ age.cut, data = Wage)
cvs[i] <- cv.glm(Wage, fit, K = 10)$delta[1]
}
plot(2:10, cvs[-1], xlab = "Cuts", ylab = "CV Error", type = "l")
d.min <- which.min(cvs)
points(d.min, delta[d.min], col = "red", cex = 2, pch = 20)
plot(wage ~ age, data = Wage, col = "darkgrey")
agelims <- range(Wage$age)
age.grid <- seq(from = agelims[1], to = agelims[2])
fit <- lm(wage ~ cut(age, 8), data = Wage)
preds <- predict(fit, newdata = list(age = age.grid))
lines(age.grid, preds, col = "red", lwd = 2)
#### Understand the cut() function:
res <- cut(c(1,5,2,3,8), 2)
res
## [1] (0.993,4.5] (4.5,8.01] (0.993,4.5] (0.993,4.5] (4.5,8.01]
## Levels: (0.993,4.5] (4.5,8.01]
length(res)
## [1] 5
class(res[1])
## [1] "factor"
detach(Wage)
attach(College)
library(ISLR)
library(leaps)
## Warning: package 'leaps' was built under R version 4.0.5
str(College)
## 'data.frame': 777 obs. of 18 variables:
## $ Private : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 2 2 2 2 2 ...
## $ Apps : num 1660 2186 1428 417 193 ...
## $ Accept : num 1232 1924 1097 349 146 ...
## $ Enroll : num 721 512 336 137 55 158 103 489 227 172 ...
## $ Top10perc : num 23 16 22 60 16 38 17 37 30 21 ...
## $ Top25perc : num 52 29 50 89 44 62 45 68 63 44 ...
## $ F.Undergrad: num 2885 2683 1036 510 249 ...
## $ P.Undergrad: num 537 1227 99 63 869 ...
## $ Outstate : num 7440 12280 11250 12960 7560 ...
## $ Room.Board : num 3300 6450 3750 5450 4120 ...
## $ Books : num 450 750 400 450 800 500 500 450 300 660 ...
## $ Personal : num 2200 1500 1165 875 1500 ...
## $ PhD : num 70 29 53 92 76 67 90 89 79 40 ...
## $ Terminal : num 78 30 66 97 72 73 93 100 84 41 ...
## $ S.F.Ratio : num 18.1 12.2 12.9 7.7 11.9 9.4 11.5 13.7 11.3 11.5 ...
## $ perc.alumni: num 12 16 30 37 2 11 26 37 23 15 ...
## $ Expend : num 7041 10527 8735 19016 10922 ...
## $ Grad.Rate : num 60 56 54 59 15 55 63 73 80 52 ...
train <- sample(1: nrow(College), nrow(College)/2)
test <- -train
fit <- regsubsets(Outstate ~ ., data = College, subset = train, method = 'forward')
fit.summary <- summary(fit)
fit.summary
## Subset selection object
## Call: regsubsets.formula(Outstate ~ ., data = College, subset = train,
## method = "forward")
## 17 Variables (and intercept)
## Forced in Forced out
## PrivateYes FALSE FALSE
## Apps FALSE FALSE
## Accept FALSE FALSE
## Enroll FALSE FALSE
## Top10perc FALSE FALSE
## Top25perc FALSE FALSE
## F.Undergrad FALSE FALSE
## P.Undergrad FALSE FALSE
## Room.Board FALSE FALSE
## Books FALSE FALSE
## Personal FALSE FALSE
## PhD FALSE FALSE
## Terminal FALSE FALSE
## S.F.Ratio FALSE FALSE
## perc.alumni FALSE FALSE
## Expend FALSE FALSE
## Grad.Rate FALSE FALSE
## 1 subsets of each size up to 8
## Selection Algorithm: forward
## PrivateYes Apps Accept Enroll Top10perc Top25perc F.Undergrad
## 1 ( 1 ) " " " " " " " " " " " " " "
## 2 ( 1 ) "*" " " " " " " " " " " " "
## 3 ( 1 ) "*" " " " " " " " " " " " "
## 4 ( 1 ) "*" " " " " " " " " " " " "
## 5 ( 1 ) "*" " " " " " " " " " " " "
## 6 ( 1 ) "*" " " " " " " " " " " " "
## 7 ( 1 ) "*" " " " " " " " " " " " "
## 8 ( 1 ) "*" " " "*" " " " " " " " "
## P.Undergrad Room.Board Books Personal PhD Terminal S.F.Ratio
## 1 ( 1 ) " " " " " " " " " " " " " "
## 2 ( 1 ) " " " " " " " " " " " " " "
## 3 ( 1 ) " " "*" " " " " " " " " " "
## 4 ( 1 ) " " "*" " " " " " " " " " "
## 5 ( 1 ) " " "*" " " " " "*" " " " "
## 6 ( 1 ) " " "*" " " " " "*" " " " "
## 7 ( 1 ) " " "*" " " "*" "*" " " " "
## 8 ( 1 ) " " "*" " " "*" "*" " " " "
## perc.alumni Expend Grad.Rate
## 1 ( 1 ) " " "*" " "
## 2 ( 1 ) " " "*" " "
## 3 ( 1 ) " " "*" " "
## 4 ( 1 ) "*" "*" " "
## 5 ( 1 ) "*" "*" " "
## 6 ( 1 ) "*" "*" "*"
## 7 ( 1 ) "*" "*" "*"
## 8 ( 1 ) "*" "*" "*"
coef(fit, id = 6)
## (Intercept) PrivateYes Room.Board PhD perc.alumni
## -3191.6057181 2950.2717035 0.8732379 37.0498937 51.0144153
## Expend Grad.Rate
## 0.1848395 29.9264164
library(foreach)
## Warning: package 'foreach' was built under R version 4.0.5
library(splines)
library(gam)
## Warning: package 'gam' was built under R version 4.0.5
## Loaded gam 1.20
gam.model <- gam(Outstate ~ Private + s(Room.Board, 5) + s(Terminal, 5) + s(perc.alumni, 5) + s(Expend, 5) + s(Grad.Rate, 5), data = College, subset = train)
par(mfrow = c(2,3))
plot(gam.model, se = TRUE, col = 'blue')
preds <- predict(gam.model, College[test, ])
RSS <- sum((College[test, ]$Outstate - preds)^2) # based on equation (3.16)
TSS <- sum((College[test, ]$Outstate - mean(College[test, ]$Outstate)) ^ 2)
1 - (RSS / TSS) # based on equation
## [1] 0.7834314
summary(gam.model)
##
## Call: gam(formula = Outstate ~ Private + s(Room.Board, 5) + s(Terminal,
## 5) + s(perc.alumni, 5) + s(Expend, 5) + s(Grad.Rate, 5),
## data = College, subset = train)
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -7159.85 -1162.81 47.96 1095.18 7648.37
##
## (Dispersion Parameter for gaussian family taken to be 3334500)
##
## Null Deviance: 5860806972 on 387 degrees of freedom
## Residual Deviance: 1203754008 on 360.9998 degrees of freedom
## AIC: 6956.806
##
## Number of Local Scoring Iterations: NA
##
## Anova for Parametric Effects
## Df Sum Sq Mean Sq F value Pr(>F)
## Private 1 1624052654 1624052654 487.045 < 2.2e-16 ***
## s(Room.Board, 5) 1 1068282762 1068282762 320.373 < 2.2e-16 ***
## s(Terminal, 5) 1 345093780 345093780 103.492 < 2.2e-16 ***
## s(perc.alumni, 5) 1 280343396 280343396 84.074 < 2.2e-16 ***
## s(Expend, 5) 1 507867707 507867707 152.307 < 2.2e-16 ***
## s(Grad.Rate, 5) 1 69135717 69135717 20.733 7.227e-06 ***
## Residuals 361 1203754008 3334500
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Anova for Nonparametric Effects
## Npar Df Npar F Pr(F)
## (Intercept)
## Private
## s(Room.Board, 5) 4 1.5341 0.1917
## s(Terminal, 5) 4 1.0288 0.3922
## s(perc.alumni, 5) 4 1.8927 0.1111
## s(Expend, 5) 4 16.7207 1.387e-12 ***
## s(Grad.Rate, 5) 4 0.7858 0.5350
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1