A Simple Linear Regression model is reasonable to use in this situation because the data lies on a straight line.
##
## Call:
## lm(formula = BP_data$bpr ~ BP_data$ne, data = BP_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8120 -0.9040 -0.1333 0.5023 2.9310
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -10.13154 1.99490 -5.079 7.83e-05 ***
## BP_data$ne 0.17429 0.02383 7.314 8.57e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.318 on 18 degrees of freedom
## Multiple R-squared: 0.7483, Adjusted R-squared: 0.7343
## F-statistic: 53.5 on 1 and 18 DF, p-value: 8.567e-07
| Predictor | Coefficient | SE | T | P |
|---|---|---|---|---|
| Noise Exposure | 0.17429 | 0.02383 | 7.314 | 9e-07 |
| Residual Standard Error: | 1.318 on 18 degrees of freedom |
|---|---|
| Multiple R-Squared: | 0.7483 |
| Adjusted R-Squared: | 0.7343 |
| F-statistic: | 53.5 on 1 and 18 DF, p-value: 8.567e-07 |
\[\LARGE \hat{\beta}_1 = 0.174\] \[\LARGE \hat{\beta}_0 = -10.131\]
\[\LARGE \hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x = -10.131 + 0.174x\]
\[\hat{\sigma^2}=\frac {SS_E}{n-2}=(1.318)^2=1.737\]
\[\LARGE \hat{y} = -10.107 + 0.174(85) = 4.683\]
##
## Call:
## lm(formula = range ~ bright + contrast, data = optic_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -32.334 -20.090 -8.451 8.413 69.047
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 238.5569 45.2285 5.274 0.00188 **
## bright 0.3339 0.6763 0.494 0.63904
## contrast -2.7167 0.6887 -3.945 0.00759 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 36.35 on 6 degrees of freedom
## Multiple R-squared: 0.7557, Adjusted R-squared: 0.6742
## F-statistic: 9.278 on 2 and 6 DF, p-value: 0.01459
| Predictor | Coefficient | SE | T | P |
|---|---|---|---|---|
| (Intercept) | 238.5569 | 45.2285 | 5.274 | 0.00188 |
| Brightness | 0.3339 | 0.6763 | 0.494 | 0.63904 |
| Contrast | -2.7167 | 0.6887 | -3.945 | 0.00759 |
\[\large Y = \beta_0 +\beta_1 x_1+ \beta_2 x_2 + \epsilon \] \[\large =238.6+0.3339x_1-2.717x_2\]
| Residual Standard Error: | 36.35 on 6 degrees of freedom |
|---|---|
| Multiple R-Squared: | 0.7557 |
| Adjusted R-Squared: | 0.6742 |
| F-statistic: | 9.278 on 2 and 6 DF, p-value: 0.01459 |
\[\large \hat{\sigma^2}= RSE^2=(36.35)^2=1321\]
Based from table 2.2 standard errors of the regression coefficients are
\[SE_{B_0}=45.23\] \[SE_{B_1}=0.6763\] \[SE_{B_2}=0.6887\]
Based from table 2.2
Hypotheses:
\(\large H_0:B_0=0,\: H_1:B_0\neq0\)Reject \(H_0:B=0\) if: the P-value is less than 0.05.
Test statistic:
Based from table 2.1
\[\large t_0=5.27\] \[\large t_1=0.494\] \[\large t_2=-3.95\]Test statistic:
Conclusion: We can see from table 2.2 that the p-values for \(B_0,\:B_1,\:B_2\) are \(0.00188,\:0.639 and\: 0.00759\) respectively. Therefore, \(H_0:B_0=0\:and\: H_0:B_2=0\) are rejected while \(H_0:B_1=0\) is not.
Practical Interpretation: The intercept and contrast is significant to the linear regression model while the brightness is not.