Item 2

An article in Optical Engineering[“Operating Curve Extraction of a Correlator’s Filter” (2004, Vol.43, pp. 2775-2779)] reported on the use of an optical correlator to perform experimnent by varying brightness and contrast. The resulting modulation is charachterized by the useful range of gray levels.

##   Useful.Range Contrast Brightness
## 1           96       56         54
## 2           50       80         61
## 3           50       70         65
## 4          112       50        100
## 5           96       65        100
## 6           80       80        100
## 7          155       25         50
## 8          144       35         57
## 9          255       26         54
## 
## Call:
## lm(formula = Data$Useful.Range ~ Data$Contrast + Data$Brightness)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -32.334 -20.090  -8.451   8.413  69.047 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)   
## (Intercept)     238.5569    45.2285   5.274  0.00188 **
## Data$Contrast    -2.7167     0.6887  -3.945  0.00759 **
## Data$Brightness   0.3339     0.6763   0.494  0.63904   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 36.35 on 6 degrees of freedom
## Multiple R-squared:  0.7557, Adjusted R-squared:  0.6742 
## F-statistic: 9.278 on 2 and 6 DF,  p-value: 0.01459
## Analysis of Variance Table
## 
## Response: Data$Useful.Range
##                 Df  Sum Sq Mean Sq F value   Pr(>F)   
## Data$Contrast    1 24196.3 24196.3 18.3128 0.005209 **
## Data$Brightness  1   322.1   322.1  0.2438 0.639043   
## Residuals        6  7927.6  1321.3                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

A.) Find the multiple linear regression model to these data

\[y = Xβ+ε\] \[β = (X'X)^{-1} (X'y)\]

Intercept \(β_0 = 238.5569\)

Contrast \(β_1 = -2.7167\)

Brightness \(β_2 = 0.3339\)

\[y = 238.5569 - 2.7167X_1 + 0.3339X_2\]

B.) Estimate variance

\(SS_E = SS_T - SS_R\)

\(SS_E = 7927.6\)

\[σ^2 = MS_E = \frac{SS_E}{(n-p)}\]

\(σ^2 = 1321.3\)

C.) compute the standard error of the regression coefficient

\[S_{β1} = \sqrt{\frac{S_{y12}^2}{Σ(X_1^2*(1-r_{12}^2))}}\]

\[S_{β2} = \sqrt{\frac{S_{y12}^2}{Σ(X_2^2*(1-r_{12}^2))}}\]

\(S_{β1} = 0.6887\)

\(S_{β2} = 0.6763\)

D.) Find the useful range when brightness = 80 and contrast = 75

\[y = 238.5569 - 2.7167X_1 + 0.3339X_2\]

\(y = 61.5164\)

E.) Test for significance of regression using α = 0.05. What is the P-value for this test

\(H_0: β_1 = β_2 = 0\)

\(H_1: β_1 or β_2 \neq 0\) \[f_0 = \frac{SS_R/k}{SS_E/(n-p)} = \frac{MS_R}{MS_E}\]

\(f_0 = 9.278135\)

\(f_0 > f_{0.05,2,6} = 5.1433\)

\(P(f_0) = 0.014587\)

We reject \(H_0\) which does not necesarily mean that both contrast and brightness will be a good indicator of the useful range.

F.) Construct a t-test on each regression coefficient. What conclusion can you draw about the variables in this model? use α = 0.05

\[H_0: \beta_j = \beta_{j0}\] \[H_1: \beta_j \neq \beta_{j0}\]

\[ T_0 = \frac{\hat{\beta_j}-\beta_{j0}}{\sqrt{\sigma^{2}C_{jj}}}\]

C =

##                                         
## [1,]  1.54821553 -0.00676718 -0.01503639
## [2,] -0.00676718  0.00035901 -0.00017775
## [3,] -0.01503639 -0.00017775  0.00034616

For \(\beta_1\) when \(\beta_2 = 0\), \(T_0 = -3.944461\)

\(|t_0| = 3.944461 > t_{0.025,6} = 2.447\)

\(P(t_0) = 0.00759 < \alpha = 0.05\)

We reject \(H_0\) for contrast # # For \(\beta_2\) \(\beta_1 = 0\), \(T_0 = 0.4937161\)

\(|t_0| = 0.4937161 < t_{0.025,6} = 2.447\)

\(P(t_0) = 0..639068 > \alpha = 0.05\)

We fail to reject \(H_0\) for brightness

Conclusion:

With this hypothesis we can say that the contrast greatly contributes to the useful range of the optical correlator over the brightness.