A Highway Safety Manual Section 9-35 Empirical Bayes California Modern Roundabout Safety Effectiveness Evaluation (M.R.S.E.E.) is an observational paired study with three (3) or more years of before and after crash and traffic volume data. The markdown compares the EB method with the naive method to demonstrate the difference between the two approaches. A few tables have a subscript “.1”, which means crashes in the “after” periods.

The package that was used to perform HSM Section 9-35 EB analysis is available on github. The data for this study is also available under “SWITRS.RData”1.

Data, Analysis, and Results2

Meta Analysis3

Total Crash Meta Analysis Summary
Author State Date No. of Sites Total Years in the Before Period Total Years in the After Period Total Observed Crashes in the Before Period Total Expected/Observed Crashes in the After Period RTM MCF Safety Effect Standard Deviation CMF Lower CL Upper CL
Angshuman, G. Georgia 2019 23 102.0 111.0 145 95 0.25 1.2 34.482759 0.0204813 0.6551724 0.6346911 0.6756538
MDOT Maine NA 13 23.0 32.0 44 30 0.25 1.2 31.818182 0.0364373 0.6818182 0.6453809 0.7182555
Derek, L. Minnesota 2017 104 279.0 622.0 225 127 0.25 2.2 43.555556 0.0187143 0.5644444 0.5457302 0.5831587
Khan, G. Wisconsin 2011 24 3.0 3.0 229 292 0.25 1.2 -27.510917 0.0638083 1.2751092 1.2113008 1.3389175
Mamlouk, M. Arizona 2016 5 1.0 1.0 27 16 0.75 5.0 40.740741 1.0767668 0.5925926 -0.4841742 1.6693593
Isebrands, H. Iowa 2011 18 98.2 98.2 97 98 0.10 1.2 -1.030928 0.0225203 1.0103093 0.9877889 1.0328296
Fatal and Injury Crash Meta Analysis Summary
Author State Date No. of Sites Total Years in the Before Period Total Years in the After Period Total Observed Crashes in the Before Period Total Expected/Observed Crashes in the After Period RTM MCF Safety Effect Standard Deviation CMF Lower CL Upper CL
Derek, L. Minnesota 2017 104 279.0 622.0 114 52 0.25 2.2 54.385965 0.0188324 0.4561404 0.4373079 0.4749728
Khan, G. Wisconsin 2011 24 3.0 3.0 80 80 0.25 1.2 0.000000 0.0565625 1.0000000 0.9434375 1.0565625
Mamlouk, M. Arizona 2016 5 1.0 1.0 71 66 0.75 5.0 7.042254 0.9953403 0.9295775 -0.0657629 1.9249178
Isebrands, H. Iowa 2011 18 98.2 98.2 60 50 0.10 1.2 16.666667 0.0245556 0.8333333 0.8087778 0.8578889
Summary Effect for Total Crashes
Total Crash Summary Effect Standard Error Lower Confidence Level Upper Confidence Level
0.7298881 0.011036 0.7188521 0.7409241
Summary Effect for Fatal and Injury Crashes
FI Summary Effect Standard Error Lower Confidence Level Upper Confidence Level
0.6222684 0.0144464 0.6078221 0.6367148

Forest Plot of Crash Modification Factors4 Data Section5

Geographic Locations of traditional Stop (ST) or Signalized (SG) controlled intersections converted to Modern Roundabouts (RA).6 Minor Traffic

Average Annual Daily Minor Approach Traffic
ID Date Minor_08 Minor_09 Minor_10 Minor_11 Minor_12 Minor_13 Minor_14 Minor_15 Minor_16 Minor_17 Minor_18
1 2012 1,025 1,025 1,025 2,188 2,188 2,188 2,188 6,900 6,120 1,025 NA
2 2012 4,465 4,465 4,465 4,373 4,373 4,373 4,373 4,373 4,376 4,465 NA
3 2012 11,765 11,765 11,765 1,840 1,840 1,840 1,840 1,840 11,530 11,765 NA
4 2012 11,765 11,765 11,765 11,765 11,765 2,320 1,750 1,750 794 11,765 NA
5 2012 4,403 4,403 4,403 11,765 11,765 11,765 4,889 2,188 4,315 4,403 NA
6 2013 5,492 5,492 5,492 4,891 4,891 4,891 4,891 4,891 4,891 5,492 NA
7 2013 1,035 1,035 1,035 8,200 8,200 8,200 8,200 8,300 1,014 1,035 NA
8 2014 7,376 7,376 7,376 1,035 1,035 6,999 6,999 1,609 7,228 7,376 7,376
9 2014 9,981 9,981 9,981 7,376 7,376 7,376 9,690 9,690 9,738 9,981 9,981
10 2014 17,400 17,400 17,400 13,200 13,200 13,200 13,200 17,400 17,400 17,400 17,400
11 2014 17,400 17,400 17,400 13,200 12,500 12,500 13,100 17,100 19,200 17,400 17,400
12 2014 5,994 5,994 5,994 17,400 17,400 3,440 6,113 6,113 1,593 5,994 5,994

Major Traffic

Average Annual Daily Major Approach Traffic
ID Date Major_08 Major_09 Major_10 Major_11 Major_12 Major_13 Major_14 Major_15 Major_16 Major_17 Major_18
1 2012 12,170 12,170 12,170 6,330 6,330 6,330 6,330 41,962 74,000 12,170 NA
2 2012 10,723 10,723 10,723 10,001 10,001 10,001 10,001 10,001 10,509 10,723 NA
3 2012 16,323 16,323 16,323 13,400 13,400 13,400 13,400 13,400 15,997 16,323 NA
4 2012 16,323 16,323 16,323 16,323 16,323 11,637 22,800 22,800 15,997 16,323 NA
5 2012 11,752 11,752 11,752 16,323 16,323 16,323 27,613 27,613 11,517 11,752 NA
6 2013 5,767 5,767 5,767 7,390 7,390 5,350 5,350 5,350 5,767 5,767 NA
7 2013 6,800 6,800 6,800 11,700 10,250 11,700 11,700 12,000 6,664 6,800 NA
8 2014 17,575 17,575 17,575 6,800 6,800 14,874 14,874 6,900 17,349 17,575 17,575
9 2014 10,500 10,500 10,500 17,575 17,575 17,575 10,500 10,500 9,781 10,500 10,500
10 2014 19,200 19,200 19,200 16,300 17,600 17,600 19,800 18,800 19,200 19,200 19,200
11 2014 19,200 19,200 19,200 16,300 17,600 17,600 19,800 18,800 24,500 19,200 19,200
12 2014 6,656 6,656 6,656 19,200 19,200 5,600 9,802 9,802 4,943 6,656 6,656

Crash Severity Levels by Site7

Abbreviations for Traditional and Roundabout Intersection Types
Highway Safety Manual and NCHRP 888 Base Conditions Acronym
State Highway System SHS
Four All Way Stop U4STAW
Four Way Approach One to Two Way Stops U4ST
Three Approach Stop U3ST
Signalized USG
Four Approach Dual Lane Roundabout 4SDRA
Four Approach Single Lane Roundabout 4SRA
California Highway Patrol Acronyms for Crash and Severity Types
Definition Acronym
Fatal Injury K
Serious Injury A
Visible Injury B
Compliant of Pain C
Property Damage O
Head On A
Sideswipe B
Rear End C
Broadside D
Hit Object E
Overturned F
Vehicle/Pedestrian G
Other H
Not Defined O
Severity Levels
ID Roundabout Type Traditional Intersection Type K A B C O K.1 A.1 B.1 C.1 O.1
1 U3SRA U3ST 0 0 1 1 2 0 0 1 3 4
2 U4SRA U4STAW 0 0 1 0 0 0 0 0 1 15
3 U4SRA U4STAW 0 0 1 0 1 0 0 2 0 3
4 U4SRA U4ST 0 0 2 0 4 0 0 1 1 7
5 SHS_U4DRA SHS_U4SG 0 0 5 11 27 1 0 1 8 26
6 SHS_U4SRA SHS_U4ST 0 0 1 1 3 0 0 0 0 5
7 SHS_U4SRA SHS_U4ST 0 0 0 1 4 0 0 0 1 4
8 U4SRA U4STAW 0 0 0 1 0 0 0 0 1 5
9 U4SRA U4SG 0 0 2 0 4 0 1 0 0 1
10 U4SRA U4SG 0 0 0 1 10 0 1 1 1 13
11 U4DRA U4SG 0 0 1 3 2 0 1 2 11 103
12 SHS_U4SRA SHS_U4ST 0 0 1 3 4 0 0 0 0 6

Total Severity Crash_Types by Site8

Total Crash Types
ID Roundabout Type Traditional Intersection Type A B C D E F G H A.1 B.1 C.1 D.1 E.1 F.1 G.1 H.1
1 U3SRA U3ST 0 0 0 3 1 0 0 0 1 0 2 0 5 0 0 0
2 U4SRA U4STAW 0 0 0 0 1 0 0 0 0 0 3 0 12 0 0 1
3 U4SRA U4STAW 0 0 1 1 0 0 0 0 0 0 1 3 1 0 0 0
4 U4SRA U4ST 1 0 4 0 1 0 0 0 0 0 1 1 6 1 0 0
5 SHS_U4DRA SHS_U4SG 2 8 21 8 3 1 0 0 2 6 15 3 6 3 0 1
6 SHS_U4SRA SHS_U4ST 0 2 1 2 0 0 0 0 0 1 2 0 2 0 0 0
7 SHS_U4SRA SHS_U4ST 0 1 2 1 1 0 0 0 0 0 3 0 2 0 0 0
8 U4SRA U4STAW 0 0 1 0 0 0 0 0 0 1 0 5 0 0 0 0
9 U4SRA U4SG 0 2 2 1 0 0 1 0 0 0 1 0 0 0 1 0
10 U4SRA U4SG 0 1 4 5 0 0 0 1 2 2 0 3 9 0 0 0
11 U4DRA U4SG 1 0 2 2 0 0 0 1 1 83 11 10 12 0 0 0
12 SHS_U4SRA SHS_U4ST 0 0 3 4 1 0 0 0 0 0 2 0 4 0 0 0

Fatal and Injury Crash Types by Base Condition9

Fatal and Injury Crash Types
ID Roundabout Type Traditional Intersection Type A B C D E F G H A.1 B.1 C.1 D.1 E.1 F.1 G.1 H.1
1 U3SRA U3ST 0 0 0 1 1 0 0 0 0 0 2 0 2 0 0 0
2 U4SRA U4STAW 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
3 U4SRA U4STAW 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0
4 U4SRA U4ST 0 0 2 0 0 0 0 0 0 0 0 1 0 1 0 0
5 SHS_U4DRA SHS_U4SG 1 1 9 4 1 0 0 0 1 1 4 1 1 2 0 0
6 SHS_U4SRA SHS_U4ST 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
7 SHS_U4SRA SHS_U4ST 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
8 U4SRA U4STAW 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
9 U4SRA U4SG 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0
10 U4SRA U4SG 0 0 0 1 0 0 0 0 1 0 0 0 2 0 0 0
11 U4DRA U4SG 1 0 1 2 0 0 0 0 1 7 2 3 1 0 0 0
12 SHS_U4SRA SHS_U4ST 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0

Total Crash Time Series by Site

Total Crash Severity Time Series Crash Data
ID Intersection Type Date 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
1 U3ST 2014 0 0 0 1 1 2 0 5 2 0 1
2 U4STAW 2012 1 0 0 0 0 5 5 6 0 0 0
3 U4STAW 2012 0 1 0 1 0 3 1 1 0 0 0
4 U4ST 2013 0 0 2 3 1 0 4 3 2 0 0
5 SHS_U4SG 2014 0 0 0 13 10 20 0 11 17 6 2
6 SHS_U4ST 2014 0 0 0 2 2 1 0 0 3 0 2
7 SHS_U4ST 2014 0 0 0 3 2 0 0 0 2 0 3
8 U4STAW 2014 0 0 0 1 0 0 0 1 2 1 2
9 U4SG 2012 2 0 4 0 0 1 1 0 0 0 0
10 U4SG 2012 6 3 1 1 0 5 4 7 0 0 0
11 U4SG 2012 0 1 4 1 0 9 24 54 30 0 0
12 SHS_U4ST 2013 0 3 2 3 0 0 1 1 3 1 0

FI Crash Time Series by Site

Fatal and Injury Crash Severity Time Series Crash Data
ID Intersection Type Date 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
1 U3ST 2014 0 0 0 1 0 1 0 2 2 0 0
2 U4STAW 2012 1 0 0 0 0 0 1 0 0 0 0
3 U4STAW 2012 0 1 0 0 0 2 0 0 0 0 0
4 U4ST 2013 0 0 0 2 0 0 2 0 0 0 0
5 SHS_U4SG 2014 0 0 0 5 6 5 0 3 6 1 0
6 SHS_U4ST 2014 0 0 0 1 0 1 0 0 0 0 0
7 SHS_U4ST 2014 0 0 0 1 0 0 0 0 1 0 0
8 U4STAW 2014 0 0 0 1 0 0 0 0 1 0 0
9 U4SG 2012 1 0 1 0 0 1 0 0 0 0 0
10 U4SG 2012 0 0 1 0 0 0 1 2 0 0 0
11 U4SG 2012 0 1 2 1 0 0 4 6 4 0 0
12 SHS_U4ST 2013 0 3 1 0 0 0 0 0 0 0 0

Simple Before and After Analysis and Results10

Crash Severity Trends11

#> Analysis of Deviance Table
#> 
#> Model 1: Freq ~ Condition * Treatment
#> Model 2: Freq ~ Condition + Treatment
#>   Resid. Df Resid. Dev Df Deviance  Pr(>Chi)    
#> 1         0      0.000                          
#> 2         8     34.925 -8  -34.925 2.759e-05 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Crash Severity Trends : three conditions (no change, decrease, and increase) and the response variable is a five level categorical variable
K A B C O
No Change 11 9 3 5 1
Decrease 0 0 6 3 2
Increase 1 3 3 4 9

Crash Type Trends12

#> Analysis of Deviance Table
#> 
#> Model 1: Freq ~ Condition * Treatment
#> Model 2: Freq ~ Condition + Treatment
#>   Resid. Df Resid. Dev  Df Deviance  Pr(>Chi)    
#> 1         0      0.000                           
#> 2        14     69.315 -14  -69.315 2.568e-09 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Crash Type Trends: three conditions (no change, decrease, and increase) and the response variable is a nine level categorical variable
A B C D E F G H
No Change 9 5 1 1 2 10 12 8
Decrease 1 4 6 7 0 0 0 2
Increase 2 3 5 4 10 2 0 2

Single Vs. Multi-Vehicle Crash Trends13

#> Analysis of Deviance Table
#> 
#> Model 1: Freq ~ Condition * Treatment
#> Model 2: Freq ~ Condition + Treatment
#>   Resid. Df Resid. Dev Df Deviance Pr(>Chi)   
#> 1         0        0.0                        
#> 2         2       12.7 -2    -12.7 0.001746 **
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Crash Type Trends: three conditions (no change, decrease, and increase) and the response variable is a two level categorical variable
MV SV
No Change 1 2
Decrease 7 0
Increase 4 10

Primary Collision Factor Crash Trends

#> Analysis of Deviance Table
#> 
#> Model 1: Freq ~ Condition * Treatment
#> Model 2: Freq ~ Condition + Treatment
#>   Resid. Df Resid. Dev  Df Deviance  Pr(>Chi)    
#> 1         0      0.000                           
#> 2        36     82.496 -36  -82.496 1.647e-05 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Primary Collision Factor Index Variables
Primary Collision Factor Index Variable
BRAKES A
Breaks B
DRVR ALC|DRG C
IMPROP PASS D
IMPROP TURN E
LANE CHANGE F
NOT DRIVER G
NOT STATED H
OTHER EQPMNT I
OTHER HAZ J
OTHER IMPROP DRV K
PED VIOL L
R-O-W AUTO M
STOP SGN|SIG N
STRTNG|BCKNG O
TOO CLOSE P
UNKNOWN Q
UNSAFE SPEED R
WRONG SIDE S
Primary Collision Factor Trends : three conditions (no change, decrease, and increase) and the response variable is a 18 level categorical variable
A B C D E F G H I J K L M N O P Q R S
No Change 11 11 5 11 3 9 10 11 10 9 10 11 4 9 6 10 6 3 10
Decrease 0 1 2 0 1 1 0 0 1 2 1 0 3 3 1 1 4 4 0
Increase 1 0 5 1 8 2 2 1 1 1 1 1 5 0 5 1 2 5 2

Mosaic Plots14

Mosaic Plots under mutual independence.15 Mosaic Plots showing interactions.16 Severity Level Percent Changes (by site)

Severity Level Percent Changes (by site)
K A B C O Sum K A B C O Sum K A B C O Sum
1 0 0 1 1 2 4 0 0 1 3 4 8 0 0 0 -200 -100 -100
2 0 0 1 0 0 1 0 0 0 1 15 16 0 0 100 -100 -100 -1500
3 0 0 1 0 1 2 0 0 2 0 3 5 0 0 -100 0 -200 -150
4 0 0 2 0 4 6 0 0 1 1 7 9 0 0 50 -100 -75 -50
5 0 0 5 11 27 43 1 0 1 8 26 36 -100 0 80 27 4 16
6 0 0 1 1 3 5 0 0 0 0 5 5 0 0 100 100 -67 0
7 0 0 0 1 4 5 0 0 0 1 4 5 0 0 0 0 0 0
8 0 0 0 1 0 1 0 0 0 1 5 6 0 0 0 0 -100 -500
9 0 0 2 0 4 6 0 1 0 0 1 2 0 -100 100 0 75 67
10 0 0 0 1 10 11 0 1 1 1 13 16 0 -100 -100 0 -30 -45
11 0 0 1 3 2 6 0 1 2 11 103 117 0 -100 -100 -267 -5050 -1850
12 0 0 1 3 4 8 0 0 0 0 6 6 0 0 100 100 -50 25
Sum 0 0 15 22 61 98 1 3 8 27 192 231 -100 -100 47 -23 -215 -136

Severity Level Percent Changes (Traditional Intersection Type)

Severity Level Percent Changes (Traditional Intersection Type)
K A B C O Sum K A B C O Sum K A B C O Sum
SHS_U4SG 0 0 5 11 27 43 1 0 1 8 26 36 -100 0 80 27 4 16
SHS_U4ST 0 0 2 5 11 18 0 0 0 1 15 16 0 0 100 80 -36 11
U3ST 0 0 2 1 2 5 0 0 1 4 19 24 0 0 50 -300 -850 -380
U4SG 0 0 3 4 16 23 0 3 3 12 117 135 0 -100 0 -200 -631 -487
U4ST 0 0 2 0 4 6 0 0 1 1 7 9 0 0 50 -100 -75 -50
U4STAW 0 0 1 1 1 3 0 0 2 1 8 11 0 0 -100 0 -700 -267
Sum 0 0 15 22 61 98 1 3 8 27 192 231 -100 -100 47 -23 -215 -136

Severity Level Percent Changes (Roundabout Type)

Severity Level Percent Changes (Roundabout Type)
K A B C O Sum K A B C O Sum K A B C O Sum
SHS_U4DRA 0 0 5 11 27 43 1 0 1 8 26 36 -100 0 80 27 4 16
SHS_U4SRA 0 0 2 5 11 18 0 0 0 1 15 16 0 0 100 80 -36 11
U3SRA 0 0 2 1 2 5 0 0 1 4 19 24 0 0 50 -300 -850 -380
U4DRA 0 0 1 3 2 6 0 1 2 11 103 117 0 -100 -100 -267 -5050 -1850
U4SRA 0 0 5 2 19 26 0 2 4 3 29 38 0 -100 20 -50 -53 -46
Sum 0 0 15 22 61 98 1 3 8 27 192 231 -100 -100 47 -23 -215 -136

Severity Vs. Crash Type (Distribution of Crash Types and Severities) Crash Types by Time Period

Severity Level and Crash Types
K.Before A.Before B.Before C.Before O.Before Sum.Before K.After A.After B.After C.After O.After Sum.After
A 0 0 0 2 2 4 0 0 1 2 3 6
B 0 0 1 1 12 14 0 0 2 6 85 93
C 0 0 3 12 26 41 0 1 0 7 33 41
D 0 0 7 7 13 27 0 0 2 5 18 25
E 0 0 3 0 5 8 1 1 2 5 50 59
F 0 0 0 0 1 1 0 0 1 2 1 4
G 0 0 1 0 0 1 0 1 0 0 0 1
H 0 0 0 0 2 2 0 0 0 0 2 2
Sum 0 0 15 22 61 98 1 3 8 27 192 231
Severity Level Percent Changes
K A B C O Sum
A 0 0 -100 0 -50 -50
B 0 0 -100 -500 -608 -564
C 0 -100 100 42 -27 0
D 0 0 71 29 -38 7
E -100 -100 33 -100 -900 -638
F 0 0 -100 -100 0 -300
G 0 -100 100 0 0 0
H 0 0 0 0 0 0
Sum -100 -100 47 -23 -215 -136
Severity Level, Crash Types and Percent Changes
K.Before A.Before B.Before C.Before O.Before Sum.Before K.After A.After B.After C.After O.After Sum.After K.Dif A.Dif B.Dif C.Dif O.Dif Sum.Dif
A 0 0 0 2 2 4 0 0 1 2 3 6 0 0 -100 0 -50 -50
B 0 0 1 1 12 14 0 0 2 6 85 93 0 0 -100 -500 -608 -564
C 0 0 3 12 26 41 0 1 0 7 33 41 0 -100 100 42 -27 0
D 0 0 7 7 13 27 0 0 2 5 18 25 0 0 71 29 -38 7
E 0 0 3 0 5 8 1 1 2 5 50 59 -100 -100 33 -100 -900 -638
F 0 0 0 0 1 1 0 0 1 2 1 4 0 0 -100 -100 0 -300
G 0 0 1 0 0 1 0 1 0 0 0 1 0 -100 100 0 0 0
H 0 0 0 0 2 2 0 0 0 0 2 2 0 0 0 0 0 0
Sum 0 0 15 22 61 98 1 3 8 27 192 231 -100 -100 47 -23 -215 -136

HSM EMPERICAL BAYES BEFORE AND AFTER ANALYSIS, AND RESULTS17

Column Abbreviations for E.B. Tables
Definition Abbreviations Highway Safety Manual Equations
Calibration Factor C 9A.1-1
Past Base Condition Base_Past 9A.1-1
Current Base Condition Base_Current 9A.1-12
Years in the Before Period Y_b 9A.1-5
Average Minor AADT in the Before Period Avg_AADTmin_b 9A.1-2
Average Major AADT in the Before Period Avg_AADTmaj_b 9A.1-2
Predicted Crashes in the Before Period P_b 9A.1-2
Observed Crashes in the Before Period O_b 9A.1-5
Overdispersion Factor (Calibrated) k 9A.1-5
Weight w 9A.1-5
Expected Crashes in the Before Period Nexp_b 9A.1-5
Average Minor AADT in the After Period Avg_AADTmin_a 9A.1-3
Average Major AADT in the After Period Avg_AADTmaj_a 9A.1-3
Predicted Crashes in the After Period P_a 9A.1-3
Years in the After Period Y_a 9A.1-3
Adjustment Factor adj 9A.1-3
Expected Crashes in the After Period Nexp_a 9A.1-4
Observed Crashes in the After Period O_a 9A.1-3
Safety Effect (or Precent Reduction) SE 9A.1-10
Odds Ratio OR 9A.1-8
Variance Var 9A.1-9
Variance of Odds Ratio VarOR 9A.1-11
Standard Error Std.Err 9A.1-12
Standard Error of the Safety Effect Std.Err.SE 9A.1-12
Standard Error of the Odds Ratio Std.Err_OR 9A.1-13
Test for Significance Significance.test 9A.1-13
Crash Modification Factor (see Odds Ratio) CMF C-6
Confidence Level (65-70%) CI C-7, Table C-2
#>      California Highway Safety Information System AASHTO Safety Analyst SPF Total Crash Coefficients
#> Index Base Condition k    a      b    c   
#>     A U4ST           0.29  -3.12 0.27 0.16
#>     B U4STAW         1.24 -12.37 1.22 0.27
#>     C U3ST           3.18  -5.35 0.34 0.28
#>     D U4SG           0.38  -3.47 0.42 0.14
#>     E SHS U4SG       0.38  -3.47 0.42 0.14
#>     F SHS U4ST       0.29  -3.12 0.27 0.16
#>      California Highway Safety Information System AASHTO Safety Analyst SPF Fatal and Injury Crash Coefficients
#> Index Base Condition k    a      b    c    
#>     A U4ST           0.34  -4.35 0.29  0.19
#>     B U4STAW         1.95 -10.02 1.27 -0.22
#>     C U3ST           1.49  -8.45 0.49  0.39
#>     D U4SG           0.31  -5.11 0.49  0.16
#>     E SHS U4SG       0.31  -5.11 0.49  0.16
#>     F SHS U4ST       0.34  -4.35 0.29  0.19
EB Site Specific Results for Total Crashes
ID. Base_Past Base_Current Y_b Avg_AADTmin_b Avg_AADTmaj_b P_b O_b k w Nexp_b Avg_AADTmin_a Avg_AADTmaj_a P_a Y_a adj Nexp_a O_a Var. VarOR Std.Err_OR SE Std.Err.SE test_statistic Significance
2 U4STAW U4SRA 3 2,188.00 6,330.00 5.880 1 1.24 0.012 1.060 3,684.200 28,158.40 64.707 3 11.005 11.666 16 126.804 0.968 0.984 29.001 98.393 0.295 N.S.
3 U4STAW U4SRA 3 4,373.00 10,001.00 12.385 2 1.24 0.048 2.499 4,391.940 10,246.91 15.969 3 1.289 3.222 5 3.955 1.013 1.006 -12.366 100.637 0.123 N.S.
9 U4SG U4SRA 3 1,840.00 13,400.00 19.298 6 0.38 0.086 7.143 5,762.940 14,503.91 27.989 3 1.450 10.360 2 13.734 0.021 0.144 82.885 14.405 5.754 95%
10 U4SG U4SRA 3 2,320.00 11,637.00 18.788 11 0.38 0.086 11.667 3,675.800 17,911.31 28.091 3 1.495 17.444 16 23.848 0.110 0.332 14.945 33.150 0.451 N.S.
11 U4SG U4DRA 3 4,889.00 27,613.00 29.979 6 0.38 0.076 7.825 4,136.788 21,221.59 31.946 3 1.066 8.338 117 8.209 22.296 4.722 -1,154.961 472.185 2.446 95%
4 U4ST U4SRA 3 4,891.00 7,390.00 9.524 6 0.29 0.327 7.153 5,041.250 5,558.50 7.087 3 0.744 5.323 9 2.665 0.536 0.732 -54.533 73.211 0.745 N.S.
12 SHS_U4ST SHS_U4SRA 3 8,200.00 11,410.00 11.629 8 0.29 0.312 9.133 4,637.325 9,291.00 7.598 3 0.653 5.967 6 2.682 0.228 0.477 6.490 47.700 0.136 N.S.
1 U3ST U3SRA 3 6,999.00 14,874.00 8.911 4 3.18 0.054 4.264 5,897.370 14,849.75 5.527 3 0.620 2.645 8 1.552 2.597 1.611 -147.529 161.149 0.915 N.S.
5 SHS_U4SG SHS_U4DRA 3 9,690.00 10,500.00 32.971 43 0.38 0.107 41.923 9,847.500 10,320.34 21.869 3 0.663 27.806 36 16.462 0.081 0.284 -26.768 28.378 0.943 N.S.
6 SHS_U4ST SHS_U4SRA 3 13,200.00 16,733.33 16.701 5 0.29 0.222 7.601 17,400.000 19,100.00 12.062 3 0.722 5.490 5 3.083 0.227 0.477 17.377 47.695 0.364 N.S.
7 SHS_U4ST SHS_U4SRA 3 12,966.67 16,733.33 16.652 5 0.29 0.219 7.550 17,775.000 20,425.00 12.310 3 0.739 5.581 5 3.223 0.221 0.470 18.814 46.981 0.400 N.S.
8 U4STAW U4SRA 3 3,440.00 5,600.00 8.582 1 1.24 0.088 1.664 4,923.500 7,014.25 8.408 3 0.980 1.630 6 1.457 6.259 2.502 -137.730 250.177 0.551 N.S.
Naive Site Specific Results for Total Crashes
ID. Base_Past Base_Current Y_b Avg_AADTmin_b Avg_AADTmaj_b O_b Avg_AADTmin_a Avg_AADTmaj_a O_a Y_a naive_ORi naive_SEi naive_Var. naive_OR naive_VarOR naive_Std.Err_OR naive_Std.Err.SE naive_Statistic naive_Significance
2 U4STAW U4SRA 3 2,188.00 6,330.00 1 3,684.200 28,158.40 16 3 16.000 -1,500.000 1 8.000 136.000 11.662 1,166.190 0.600 N.S.
3 U4STAW U4SRA 3 4,373.00 10,001.00 2 4,391.940 10,246.91 5 3 2.500 -150.000 2 1.667 2.917 1.708 170.783 0.390 N.S.
9 U4SG U4SRA 3 1,840.00 13,400.00 6 5,762.940 14,503.91 2 3 0.333 66.667 6 0.286 0.063 0.252 25.198 2.835 95%
10 U4SG U4SRA 3 2,320.00 11,637.00 11 3,675.800 17,911.31 16 3 1.455 -45.455 11 1.333 0.298 0.545 54.545 0.611 N.S.
11 U4SG U4DRA 3 4,889.00 27,613.00 6 4,136.788 21,221.59 117 3 19.500 -1,850.000 6 16.714 57.107 7.557 755.693 2.079 95%
4 U4ST U4SRA 3 4,891.00 7,390.00 6 5,041.250 5,558.50 9 3 1.500 -50.000 6 1.286 0.536 0.732 73.193 0.390 N.S.
12 SHS_U4ST SHS_U4SRA 3 8,200.00 11,410.00 8 4,637.325 9,291.00 6 3 0.750 25.000 8 0.667 0.146 0.382 38.188 0.873 N.S.
1 U3ST U3SRA 3 6,999.00 14,874.00 4 5,897.370 14,849.75 8 3 2.000 -100.000 4 1.600 1.200 1.095 109.545 0.548 N.S.
5 SHS_U4SG SHS_U4DRA 3 9,690.00 10,500.00 43 9,847.500 10,320.34 36 3 0.837 16.279 43 0.818 0.035 0.187 18.697 0.972 N.S.
6 SHS_U4ST SHS_U4SRA 3 13,200.00 16,733.33 5 17,400.000 19,100.00 5 3 1.000 0.000 5 0.833 0.333 0.577 57.735 0.289 N.S.
7 SHS_U4ST SHS_U4SRA 3 12,966.67 16,733.33 5 17,775.000 20,425.00 5 3 1.000 0.000 5 0.833 0.333 0.577 57.735 0.289 N.S.
8 U4STAW U4SRA 3 3,440.00 5,600.00 1 4,923.500 7,014.25 6 3 6.000 -500.000 1 3.000 21.000 4.583 458.258 0.436 N.S.
EB Fatal and Injury Site Specific Results
ID. Base_Past Base_Current Y_b Avg_AADTmin_b Avg_AADTmaj_b P_b O_b k w Nexp_b Avg_AADTmin_a Avg_AADTmaj_a P_a Y_a adj Nexp_a O_a Var. VarOR Std.Err_OR SE Std.Err.SE test_statistic Significance
2 U4STAW U4SRA 3 2,188.00 6,330.00 2.205 1 1.95 0.029 1.035 3,684.200 28,158.40 17.308 3 7.850 8.122 1 61.918 0.015 0.123 93.649 12.313 7.606 95%
3 U4STAW U4SRA 3 4,373.00 10,001.00 3.385 1 1.95 0.105 1.251 4,391.940 10,246.91 4.360 3 1.288 1.611 2 1.857 1.091 1.045 27.638 104.474 0.265 N.S.
9 U4SG U4SRA 3 1,840.00 13,400.00 8.462 2 0.31 0.204 3.319 5,762.940 14,503.91 12.577 3 1.486 4.933 1 5.835 0.041 0.203 83.649 20.271 4.126 95%
10 U4SG U4SRA 3 2,320.00 11,637.00 8.195 1 0.31 0.203 2.462 3,675.800 17,911.31 12.647 3 1.543 3.800 3 4.672 0.309 0.556 40.352 55.621 0.725 N.S.
11 U4SG U4DRA 3 4,889.00 27,613.00 14.101 4 0.31 0.180 5.819 4,136.788 21,221.59 14.682 3 1.041 6.059 14 5.173 0.993 0.997 -102.514 99.670 1.029 N.S.
4 U4ST U4SRA 3 4,891.00 7,390.00 4.292 2 0.34 0.481 3.102 5,041.250 5,558.50 3.179 3 0.741 2.297 2 0.884 0.433 0.658 25.423 65.833 0.386 N.S.
12 SHS_U4ST SHS_U4SRA 3 8,200.00 11,410.00 5.369 4 0.34 0.463 4.633 4,637.325 9,291.00 3.416 3 0.636 2.948 0 1.008 NaN NaN 100.000 NaN NaN NA
1 U3ST U3SRA 3 6,999.00 14,874.00 4.492 2 1.49 0.195 2.487 5,897.370 14,849.75 2.766 3 0.616 1.531 4 0.759 2.958 1.720 -97.393 171.998 0.566 N.S.
5 SHS_U4SG SHS_U4DRA 3 9,690.00 10,500.00 14.693 16 0.31 0.249 15.675 9,847.500 10,320.34 9.737 3 0.663 10.387 10 5.171 0.131 0.362 8.132 36.170 0.225 N.S.
6 SHS_U4ST SHS_U4SRA 3 13,200.00 16,733.33 7.882 2 0.34 0.338 3.989 17,400.000 19,100.00 5.755 3 0.730 2.913 0 1.408 NaN NaN 100.000 NaN NaN NA
7 SHS_U4ST SHS_U4SRA 3 12,966.67 16,733.33 7.855 1 0.34 0.333 3.284 17,775.000 20,425.00 5.885 3 0.749 2.461 1 1.229 0.165 0.406 66.220 40.638 1.629 N.S.
8 U4STAW U4SRA 3 3,440.00 5,600.00 2.563 1 1.95 0.193 1.302 4,923.500 7,014.25 2.139 3 0.835 1.087 1 0.732 0.846 0.920 43.200 91.987 0.470 N.S.
Naive Fatal and Injury Site Specific Results
ID. Base_Past Base_Current Y_b Avg_AADTmin_b Avg_AADTmaj_b O_b Avg_AADTmin_a Avg_AADTmaj_a O_a Y_a naive_ORi naive_SEi naive_Var. naive_OR naive_VarOR naive_Std.Err_OR naive_Std.Err.SE naive_Statistic naive_Significance
2 U4STAW U4SRA 3 2,188.00 6,330.00 1 3,684.200 28,158.40 1 3 1.000 0.0 1 0.500 1.000 1.000 100.000 0.500 N.S.
3 U4STAW U4SRA 3 4,373.00 10,001.00 1 4,391.940 10,246.91 2 3 2.000 -100.0 1 1.000 3.000 1.732 173.205 0.000 N.S.
9 U4SG U4SRA 3 1,840.00 13,400.00 2 5,762.940 14,503.91 1 3 0.500 50.0 2 0.333 0.250 0.500 50.000 1.333 N.S.
10 U4SG U4SRA 3 2,320.00 11,637.00 1 3,675.800 17,911.31 3 3 3.000 -200.0 1 1.500 6.000 2.449 244.949 0.204 N.S.
11 U4SG U4DRA 3 4,889.00 27,613.00 4 4,136.788 21,221.59 14 3 3.500 -250.0 4 2.800 3.150 1.775 177.482 1.014 N.S.
4 U4ST U4SRA 3 4,891.00 7,390.00 2 5,041.250 5,558.50 2 3 1.000 0.0 2 0.667 0.667 0.816 81.650 0.408 N.S.
12 SHS_U4ST SHS_U4SRA 3 8,200.00 11,410.00 4 4,637.325 9,291.00 0 3 0.000 100.0 4 0.000 NaN NaN NaN NaN NA
1 U3ST U3SRA 3 6,999.00 14,874.00 2 5,897.370 14,849.75 4 3 2.000 -100.0 2 1.333 2.000 1.414 141.421 0.236 N.S.
5 SHS_U4SG SHS_U4DRA 3 9,690.00 10,500.00 16 9,847.500 10,320.34 10 3 0.625 37.5 16 0.588 0.060 0.244 24.442 1.685 N.S.
6 SHS_U4ST SHS_U4SRA 3 13,200.00 16,733.33 2 17,400.000 19,100.00 0 3 0.000 100.0 2 0.000 NaN NaN NaN NaN NA
7 SHS_U4ST SHS_U4SRA 3 12,966.67 16,733.33 1 17,775.000 20,425.00 1 3 1.000 0.0 1 0.500 1.000 1.000 100.000 0.500 N.S.
8 U4STAW U4SRA 3 3,440.00 5,600.00 1 4,923.500 7,014.25 1 3 1.000 0.0 1 0.500 1.000 1.000 100.000 0.500 N.S.
Emperical Bayes Total Crash Grouped Results for Traditional Intersections
Base_Past No.Sites O_b.grp. O_a.grp. Nexp_b.grp. Nexp_a.grp. Avg_AADTmin_b Avg_AADTmaj_b Avg_AADTmin_a Avg_AADTmaj_a Y_b Y_a OR.grp.i. VAR.grp. OR.grp. VarOR.grp. SE.grp. Std.Err.OR.grp. Std.Err.SE.grp. test_statistic.grp. Significance.test.grp.
SHS_U4SG 1 43 36 41.923 27.806 9,690.000 10,500.000 9,847.500 10,320.34 3 3 1.295 16.456 1.268 0.081 -26.770 0.285 28.547 0.938 N.S.
SHS_U4ST 3 18 16 24.284 17.038 11,455.556 14,958.889 13,270.775 16,272.00 9 9 0.939 8.982 0.859 0.082 14.059 0.286 28.563 0.492 N.S.
U3ST 1 4 8 4.264 2.645 6,999.000 14,874.000 5,897.370 14,849.75 3 3 3.025 1.551 2.476 2.803 -147.584 1.674 167.428 0.881 N.S.
U4SG 3 23 135 26.635 36.142 3,016.333 17,550.000 4,525.176 17,878.94 9 9 3.735 45.776 3.411 0.576 -241.077 0.759 75.878 3.177 95%
U4ST 1 6 9 7.153 5.323 4,891.000 7,390.000 5,041.250 5,558.50 3 3 1.691 2.665 1.545 0.563 -54.544 0.751 75.058 0.727 N.S.
U4STAW 3 4 27 5.223 16.518 3,333.667 7,310.333 4,333.213 15,139.85 9 9 1.635 132.246 0.866 0.971 13.366 0.986 98.550 0.136 N.S.
Naive Total Crash Grouped Results for Traditional Intersections
Base_Past No.Sites O_b.grp. O_a.grp. Avg_AADTmin_b Avg_AADTmaj_b Avg_AADTmin_a Avg_AADTmaj_a Y_b Y_a naive_ORi.grp. naive_VAR.grp naive_OR.grp naive_SE.grp naive_VarOR.grp naive_Std.Err.OR.grp naive_Std.Err.SE.grp naive_test_statistic.grp naive_Significance.test.grp
SHS_U4SG 1 43 36 9,690.000 10,500.000 9,847.500 10,320.34 3 3 0.837 16.879 0.830 17.036 0.026 0.161 16.066 106.042 95%
SHS_U4ST 3 18 16 11,455.556 14,958.889 13,270.775 16,272.00 9 9 0.889 6.507 0.841 15.911 0.065 0.255 25.483 62.437 95%
U3ST 1 4 8 6,999.000 14,874.000 5,897.370 14,849.75 3 3 2.000 1.455 1.833 -83.333 0.833 0.913 91.287 91.287 95%
U4SG 3 23 135 3,016.333 17,550.000 4,525.176 17,878.94 9 9 5.870 40.301 4.856 -385.564 2.694 1.641 164.136 234.906 95%
U4ST 1 6 9 4,891.000 7,390.000 5,041.250 5,558.50 3 3 1.500 2.235 1.412 -41.231 0.382 0.618 61.768 66.751 95%
U4STAW 3 4 27 3,333.667 7,310.333 4,333.213 15,139.85 9 9 6.750 123.696 0.312 68.773 42.032 6.483 648.317 10.608 95%
Emperical Bayes Total Crash Grouped Results for Roundabouts
Base_Current No.Sites O_b.grp. O_a.grp. Nexp_b.grp. Nexp_a.grp. Avg_AADTmin_b Avg_AADTmaj_b Avg_AADTmin_a Avg_AADTmaj_a Y_b Y_a OR.grp.i. VAR.grp. OR.grp. VarOR.grp. SE.grp. Std.Err.OR.grp. Std.Err.SE.grp. test_statistic.grp. Significance.test.grp.
SHS_U4DRA 1 43 36 41.923 27.806 9,690.000 10,500.000 9,847.500 10,320.34 3 3 1.295 16.456 1.268 0.081 -26.770 0.285 28.547 0.938 N.S.
SHS_U4SRA 3 18 16 24.284 17.038 11,455.556 14,958.889 13,270.775 16,272.00 9 9 0.939 8.982 0.859 0.082 14.059 0.286 28.563 0.492 N.S.
U3SRA 1 4 8 4.264 2.645 6,999.000 14,874.000 5,897.370 14,849.75 3 3 3.025 1.551 2.476 2.803 -147.584 1.674 167.428 0.881 N.S.
U4DRA 1 6 117 7.825 8.338 4,889.000 27,613.000 4,136.788 21,221.59 3 3 14.032 8.216 12.549 22.493 -1,154.908 4.743 474.272 2.435 95%
U4SRA 6 27 54 31.186 49.645 3,175.333 9,059.667 4,579.938 13,898.88 18 18 1.088 172.471 0.841 0.099 15.861 0.315 31.510 0.503 N.S.
Naive Total Crash Grouped Results for Roundabouts
Base_Current No.Sites O_b.grp. O_a.grp. Avg_AADTmin_b Avg_AADTmaj_b Avg_AADTmin_a Avg_AADTmaj_a Y_b Y_a naive_ORi.grp. naive_VAR.grp naive_OR.grp naive_SE.grp naive_VarOR.grp naive_Std.Err.OR.grp naive_Std.Err.SE.grp naive_test_statistic.grp naive_Significance.test.grp
SHS_U4DRA 1 43 36 9,690.000 10,500.000 9,847.500 10,320.34 3 3 0.837 16.879 0.830 17.036 0.026 0.161 16.066 106.042 95%
SHS_U4SRA 3 18 16 11,455.556 14,958.889 13,270.775 16,272.00 9 9 0.889 6.507 0.841 15.911 0.065 0.255 25.483 62.437 95%
U3SRA 1 4 8 6,999.000 14,874.000 5,897.370 14,849.75 3 3 2.000 1.455 1.833 -83.333 0.833 0.913 91.287 91.287 95%
U4DRA 1 6 117 4,889.000 27,613.000 4,136.788 21,221.59 3 3 19.500 6.300 16.596 -1,559.576 59.883 7.738 773.839 201.538 95%
U4SRA 6 27 54 3,175.333 9,059.667 4,579.938 13,898.88 18 18 2.000 159.932 1.109 -10.884 0.794 0.891 89.092 12.217 95%
Emperical Bayes Fatal and Injury Grouped Results
Base_Past No.Sites O_b.grp. O_a.grp. Nexp_b.grp. Nexp_a.grp. Avg_AADTmin_b Avg_AADTmaj_b Avg_AADTmin_a Avg_AADTmaj_a Y_b Y_a OR.grp.i. VAR.grp. OR.grp. VarOR.grp. SE.grp. Std.Err.OR.grp. Std.Err.SE.grp. test_statistic.grp. Significance.test.grp.
SHS_U4SG 1 16 10 15.675 10.387 9,690.000 10,500.000 9,847.500 10,320.34 3 3 0.963 5.175 0.919 0.135 8.132 0.368 36.757 0.221 N.S.
SHS_U4ST 3 7 1 11.906 8.322 11,455.556 14,958.889 13,270.775 16,272.00 9 9 0.120 3.642 0.104 0.015 89.612 0.123 12.313 7.278 95%
U3ST 1 2 4 2.487 1.531 6,999.000 14,874.000 5,897.370 14,849.75 3 3 2.613 0.760 1.973 3.377 -97.316 1.838 183.775 0.530 N.S.
U4SG 3 7 18 11.600 14.792 3,016.333 17,550.000 4,525.176 17,878.94 9 9 1.217 15.676 1.008 0.181 -0.762 0.426 42.575 0.018 N.S.
U4ST 1 2 2 3.102 2.297 4,891.000 7,390.000 5,041.250 5,558.50 3 3 0.871 0.884 0.746 0.488 25.424 0.698 69.846 0.364 N.S.
U4STAW 3 3 4 3.588 10.820 3,333.667 7,310.333 4,333.213 15,139.85 9 9 0.370 64.520 0.192 0.083 80.797 0.288 28.762 2.809 95%
Naive Fatal and Injury Grouped Results
Base_Past No.Sites O_b.grp. O_a.grp. Avg_AADTmin_b Avg_AADTmaj_b Avg_AADTmin_a Avg_AADTmaj_a Y_b Y_a naive_ORi.grp. naive_VAR.grp naive_OR.grp naive_SE.grp naive_VarOR.grp naive_Std.Err.OR.grp naive_Std.Err.SE.grp naive_test_statistic.grp naive_Significance.test.grp
SHS_U4SG 1 16 10 9,690.000 10,500.000 9,847.500 10,320.34 3 3 0.625 5.282 0.612 38.763 0.047 0.217 21.670 178.880 95%
SHS_U4ST 3 7 1 11,455.556 14,958.889 13,270.775 16,272.00 9 9 0.143 1.949 0.131 86.927 0.021 0.146 14.556 597.178 95%
U3ST 1 2 4 6,999.000 14,874.000 5,897.370 14,849.75 3 3 2.000 0.611 1.735 -73.501 1.530 1.237 123.692 59.422 95%
U4SG 3 7 18 3,016.333 17,550.000 4,525.176 17,878.94 9 9 2.571 8.967 1.802 -80.195 1.390 1.179 117.909 68.015 95%
U4ST 1 2 2 4,891.000 7,390.000 5,041.250 5,558.50 3 3 1.000 0.570 0.875 12.472 0.625 0.790 79.039 15.779 95%
U4STAW 3 3 4 3,333.667 7,310.333 4,333.213 15,139.85 9 9 1.333 61.883 0.062 93.835 1.996 1.413 141.297 66.410 95%
Emperical Bayes Fatal and Injury Crash Grouped Results for Roundabouts
Base_Current No.Sites O_b.grp. O_a.grp. Nexp_b.grp. Nexp_a.grp. Avg_AADTmin_b Avg_AADTmaj_b Avg_AADTmin_a Avg_AADTmaj_a Y_b Y_a OR.grp.i. VAR.grp. OR.grp. VarOR.grp. SE.grp. Std.Err.OR.grp. Std.Err.SE.grp. test_statistic.grp. Significance.test.grp.
SHS_U4DRA 1 16 10 15.675 10.387 9,690.000 10,500.000 9,847.500 10,320.34 3 3 0.963 5.175 0.919 0.135 8.132 0.368 36.757 0.221 N.S.
SHS_U4SRA 3 7 1 11.906 8.322 11,455.556 14,958.889 13,270.775 16,272.00 9 9 0.120 3.642 0.104 0.015 89.612 0.123 12.313 7.278 95%
U3SRA 1 2 4 2.487 1.531 6,999.000 14,874.000 5,897.370 14,849.75 3 3 2.613 0.760 1.973 3.377 -97.316 1.838 183.775 0.530 N.S.
U4DRA 1 4 14 5.819 6.059 4,889.000 27,613.000 4,136.788 21,221.59 3 3 2.311 5.171 2.025 1.041 -102.534 1.020 102.005 1.005 N.S.
U4SRA 6 8 10 12.471 21.850 3,175.333 9,059.667 4,579.938 13,898.88 18 18 0.458 75.909 0.275 0.050 72.547 0.223 22.289 3.255 95%
Naive Fatal and Injury Crash Grouped Results for Roundabouts
Base_Current No.Sites O_b.grp. O_a.grp. Avg_AADTmin_b Avg_AADTmaj_b Avg_AADTmin_a Avg_AADTmaj_a Y_b Y_a naive_ORi.grp. naive_VAR.grp naive_OR.grp naive_SE.grp naive_VarOR.grp naive_Std.Err.OR.grp naive_Std.Err.SE.grp naive_test_statistic.grp naive_Significance.test.grp
SHS_U4DRA 1 16 10 9,690.000 10,500.000 9,847.500 10,320.34 3 3 0.625 5.282 0.612 38.763 0.047 0.217 21.670 178.880 95%
SHS_U4SRA 3 7 1 11,455.556 14,958.889 13,270.775 16,272.00 9 9 0.143 1.949 0.131 86.927 0.021 0.146 14.556 597.178 95%
U3SRA 1 2 4 6,999.000 14,874.000 5,897.370 14,849.75 3 3 2.000 0.611 1.735 -73.501 1.530 1.237 123.692 59.422 95%
U4DRA 1 4 14 4,889.000 27,613.000 4,136.788 21,221.59 3 3 3.500 3.554 2.864 -186.379 3.102 1.761 176.117 105.827 95%
U4SRA 6 8 10 3,175.333 9,059.667 4,579.938 13,898.88 18 18 1.250 67.866 0.188 81.218 0.960 0.980 98.000 82.876 95%

Plots of Expected and Observed Frequencies by Traditional Intersection Groups Pooled Results18

Emperical Bayes Total Crash Pooled Results
group_type No.Sites O_b.grp. O_a.grp. Nexp_b.grp. Nexp_a.grp. Avg_AADTmin_b Avg_AADTmaj_b Avg_AADTmin_a Avg_AADTmaj_a Y_b Y_a OR.grp.i. VAR.grp. OR.grp. VarOR.grp. SE.grp. Std.Err.OR.grp. Std.Err.SE.grp. test_statistic.grp. Significance.test.grp.
control 12 98 231 109.482 105.472 6,249.722 12,685.14 7,264.468 14,883.41 36 36 2.19 207.676 1.929 0.109 -92.925 0.33 32.966 2.819 95%
Emperical Bayes Fatal and Injury Crash Pooled Results
group_type No.Sites O_b.grp. O_a.grp. Nexp_b.grp. Nexp_a.grp. Avg_AADTmin_b Avg_AADTmaj_b Avg_AADTmin_a Avg_AADTmaj_a Y_b Y_a OR.grp.i. VAR.grp. OR.grp. VarOR.grp. SE.grp. Std.Err.OR.grp. Std.Err.SE.grp. test_statistic.grp. Significance.test.grp.
control 12 37 39 48.358 48.149 6,249.722 12,685.14 7,264.468 14,883.41 36 36 0.81 90.657 0.614 0.042 38.602 0.204 20.375 1.895 90%

Meta Analysis Revisited

Total Crash Meta Analysis Summary
Author State Date Safety Effect Standard Error CMF Lower CL Upper CL
TBA CA NA -92.925298 0.3296567 1.9292530 1.5995963 2.2589096
Angshuman, G. Georgia 2019 34.482759 0.0204813 0.6551724 0.6346911 0.6756538
MDOT Maine NA 31.818182 0.0364373 0.6818182 0.6453809 0.7182555
Derek, L. Minnesota 2017 43.555556 0.0187143 0.5644444 0.5457302 0.5831587
Khan, G. Wisconsin 2011 -27.510917 0.0638083 1.2751092 1.2113008 1.3389175
Mamlouk, M. Arizona 2016 40.740741 1.0767668 0.5925926 -0.4841742 1.6693593
Isebrands, H. Iowa 2011 -1.030928 0.0225203 1.0103093 0.9877889 1.0328296
Fatal and Injury Crash Meta Analysis Summary
Author State Date Safety Effect Standard Error CMF Lower CL Upper CL
TBA CA NA 38.602343 0.2037462 0.6139766 0.4102304 0.8177228
Derek, L. Minnesota 2017 54.385965 0.0188324 0.4561404 0.4373079 0.4749728
Khan, G. Wisconsin 2011 0.000000 0.0565625 1.0000000 0.9434375 1.0565625
Mamlouk, M. Arizona 2016 7.042254 0.9953403 0.9295775 -0.0657629 1.9249178
Isebrands, H. Iowa 2011 16.666667 0.0245556 0.8333333 0.8087778 0.8578889
Summary Effect for Fatal and Injury Crashes Revisted
FI Summary Effect Standard Error Lower Confidence Level Upper Confidence Level
0.622227 0.0144102 0.6078168 0.6366372
Summary Effect for Total Crashes Revisted
Total Crash Summary Effect Standard Error Lower Confidence Level Upper Confidence Level
0.7312308 0.0110298 0.7202009 0.7422606

Forest Plots Revisited


  1. https://github.com/cn838/HSM.git↩︎

  2. Performed and created using R Core Team (2020), https://www.R-project.org/↩︎

  3. Meta Analysis performed by using the ‘Simple Before–After and Non-regression Cross-Section Studies performed’ (Bahar, G. 2010, “Transportation Research Circular E-C142” Literature Review Procedure pp.4-12). ↩︎

  4. The dimensions of each point represents the sample size.↩︎

  5. All Before and After tables read from Left (before) to Right (after). The “Date” column represents the estimated year for completed construction. Crashes that occurred during the Learning Curve and Construction periods were collected but were not reported or included in the analysis. Traffic Volumes, Modern Roundabout Locations, Property Damage Only (PDO) and Fatal and Injury (FI) Crash data was obtained from the Highway Performance Management System (HPMS), Kittelson Associates Modern Roundabout, California Highway Patrol (CHP) Statewide Integrated Traffic Records System (SWITRS), and University of California Berkeley’s Transportation Information Management (TIMS) databases, respectively. Property Damage Only (“PDO” or “O”) crashes were limited to the beginning of year 2010 and California Vehicle Code 2002 does not require these crashes to be reported. Fatal and Injury Crash data collected for the year 2018 may be incomplete, because the database was not achieved at the time of inquiry. See the Minimum Uniform Crash Criteria (M.M.U.C.C.) (CHP, 2017), for more details about crash type and severity definitions.↩︎

  6. All locations are paired, which are bold colored diamonds. Each location has some amount of random variation, which was added to each location. Therefore, some points may not plot accurately at the provided scale. The base map were provided by Google® Earth™ .↩︎

  7. Note: A subscript “1” indicates collisions occurring in the after period.↩︎

  8. Note: A subscript “1” indicates collisions occurring in the after period.↩︎

  9. Note: A subscript “1” indicates collisions occurring in the after period.↩︎

  10. This method is also known as the Naive or observed differences method. Pedestrian and Cyclist crashes were collected as recommended by Ferguson, due to their paucity (Ferguson, et. al., 2019 p.54). Percent reductions were calculated using the HSM equation 9A.1-10 (Safety Effect). According to Eq. 9A.1-10 a negative reduction represents a increase and positive reduction (or percent change) represents an decrease in crashes. Eq. 9A.1-10 renders meaningless results when before or before and after periods have zero crashes, therefore, in cases where DIV/0! and b=0; zero change and the inverse (i.e. 100%(1-(a/b)(-1)=100%(1-(a/0)(-1)=-100%) were reported, respectively. These substitutions are debatable, which may effect followup analyzes or render the results useless (from a purely mathematical perspective).↩︎

  11. Spine plots provide the interaction between crash severity and treatment conditions (or roundabouts). P-values greater than 0.05 are not significant and show no casual association. Meaning the roundabouts may have increased or decrease crashes or effects depending on the changes observed. The change in safety method was adopted from G., Khan 2011,p.19, ( or PDF page 27) and the Chi Square Tests and Spine plot methods were adopted from M. J. Crawley, ‘The R Book’ 2014. pp.623-624).↩︎

  12. Spine plots show the Chi square test measures, which provide the interaction between crash severity and conditions. P-values greater than 0.05 are not significant and show no casual association.↩︎

  13. Hit Object and Overturned, and Head On, Sideswipe, Rear End, Broadside, Vehicle/Pedestrian, are Single and Multi-Vehicle crash types respectively (California Highway Patrol, 2020).↩︎

  14. There are two series of Mosaic Plots (three each), which used Before (B) and After (A) periods as well as other categorical variables as ordered factors. Property Damage and Fatal and Injury Crashes were treated as the response and the largest positive residuals appear in blocks that are colored blue. The first series shows the associations among all variables under the the assumption of mutual independence. The second series plots shows the combinations of the predictor factors that are colored blue are more likely to result in PDO or Fatal and Injury Crashes, which are a light blue color (this method was adopted from Bertin 1983 pp. 30-31 in ‘Discrete Data Analysis with R’ by Friendly, 2015 p.218).↩︎

  15. See Friendly, 2015 pp.218↩︎

  16. Mosaic plots of time, AADT and Primary Collision Factor show the interactions most likely to result in a FI or PDO crash(Friendly, 2015 pp.218). Variables on the right vertical axis labeled “A” and “B”, refer to “After” and “Before” periods for Roundabouts and Traditional Intersections, respectively.↩︎

  17. This analysis does not report model fits. It was strictly an implementation of the 2010 Highway Safety Manual (HSM) Empirical Bayes (EB) section 9-35 method. The Safety Analyst (SA) Safety Performance Functions (SPF) were calibrated with a value of 1.00. The HSM overdisperion factors (k) were also calibrated. Those values are reported in the table as ‘k’. All calibrations were performed using FHWA Calibrator with Highway Safety Information System (HSIS) information. Eq. 9A.1-10 and Eq. 9A.1-11 render’s meaningless results when before, and before and after periods have zero crashes (ie !DIV/0=“No-Change” or “0” & -Inf=-100%), respectively.Naive Statistics were computed using the HSM procedure by substituting the Observed crashes in the after period for the Expected crashes in the after Period. Significant confidence levels are reported as 90% or 95% level of confidence levels. Levels that are Not Significant (N.S.) are reported. See HSM 2010 section 9-37 and 9-38 for more details. The validity of “Naive” or “Simple” computations has not been verified. Please refer to FHWA-HRT-10-063 for information about the HSM Safety Analyst and FHWA-HRT-17-084, FHWA-RD-99-128 for more information about intersection safety performance in CA.↩︎

  18. Pooled across the sample. Each group has a different over dispersion factors or weights.↩︎