## 'data.frame': 1000 obs. of 21 variables:
## $ status_chkaccnt : chr "A11" "A12" "A14" "A11" ...
## $ duration : int 6 48 12 42 24 36 24 36 12 30 ...
## $ credit_hist : chr "A34" "A32" "A34" "A32" ...
## $ purpose : chr "A43" "A43" "A46" "A42" ...
## $ credit_amt : int 1169 5951 2096 7882 4870 9055 2835 6948 3059 5234 ...
## $ savings_accnt : chr "A65" "A61" "A61" "A61" ...
## $ present_emp : chr "A75" "A73" "A74" "A74" ...
## $ installment_rate: int 4 2 2 2 3 2 3 2 2 4 ...
## $ status_sex : chr "A93" "A92" "A93" "A93" ...
## $ other_debtors : chr "A101" "A101" "A101" "A103" ...
## $ present_resid : int 4 2 3 4 4 4 4 2 4 2 ...
## $ property : chr "A121" "A121" "A121" "A122" ...
## $ age : int 67 22 49 45 53 35 53 35 61 28 ...
## $ other_install : chr "A143" "A143" "A143" "A143" ...
## $ housing : chr "A152" "A152" "A152" "A153" ...
## $ n_credits : int 2 1 1 1 2 1 1 1 1 2 ...
## $ job : chr "A173" "A173" "A172" "A173" ...
## $ n_people : int 1 1 2 2 2 2 1 1 1 1 ...
## $ telephone : chr "A192" "A191" "A191" "A191" ...
## $ foreign : chr "A201" "A201" "A201" "A201" ...
## $ risk_status : int 1 2 1 1 2 1 1 1 1 2 ...
## Warning: package 'ggpubr' was built under R version 4.0.5
## Loading required package: ggplot2
The dataset was provided by Dr.ย Hans Hofmann. There are 1000 instances where individuals have been classified as risky or not.
Number of Attributes: 20 (7 numerical, 13 categorical) The variable risk_status (v21) in the dataset is the risk label where 1 means bad and 2 means good.
There is a total on 21 attributes in the dataset. Their descriptions and details have been tabulated below:
Following are the insights from the visual plot: