Messner_Jason_Homework6

setwd("~/Desktop/7.ConsumerChoiceModel")
library(aod)
library(ggplot2)
mydata <- read.csv("ABB Electric Data binary logit (Customer Choice).csv")
## view the first few rows of the data
head(mydata)
##   Observations...Choice.data Choice Price Energy.Loss Maintenance Warranty
## 1                Customer 1       0     6           6           7        6
## 2                Customer 2       0     3           4           5        4
## 3                Customer 3       1     6           6           7        7
## 4                Customer 4       0     6           6           5        5
## 5                Customer 5       0     4           4           6        8
## 6                Customer 6       0     5           4           5        4
##   Spare.Parts Ease.of.Install Prob.Solver Quality
## 1           6               5           7       5
## 2           4               5           6       4
## 3           6               7           7       6
## 4           4               5           5       5
## 5           7               1           5       4
## 6           6               7           6       5
summary(mydata)
##  Observations...Choice.data     Choice           Price        Energy.Loss   
##  Length:88                  Min.   :0.0000   Min.   :1.000   Min.   :3.000  
##  Class :character           1st Qu.:0.0000   1st Qu.:4.000   1st Qu.:4.000  
##  Mode  :character           Median :0.0000   Median :5.000   Median :5.000  
##                             Mean   :0.2045   Mean   :4.636   Mean   :4.886  
##                             3rd Qu.:0.0000   3rd Qu.:6.000   3rd Qu.:6.000  
##                             Max.   :1.0000   Max.   :7.000   Max.   :7.000  
##   Maintenance       Warranty     Spare.Parts    Ease.of.Install  Prob.Solver   
##  Min.   :3.000   Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :3.000  
##  1st Qu.:5.000   1st Qu.:4.00   1st Qu.:4.000   1st Qu.:4.000   1st Qu.:5.000  
##  Median :6.000   Median :5.00   Median :5.000   Median :5.000   Median :6.000  
##  Mean   :5.705   Mean   :5.25   Mean   :5.239   Mean   :5.364   Mean   :5.898  
##  3rd Qu.:6.000   3rd Qu.:7.00   3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :8.000   Max.   :9.00   Max.   :9.000   Max.   :9.000   Max.   :9.000  
##     Quality     
##  Min.   :3.000  
##  1st Qu.:4.000  
##  Median :5.000  
##  Mean   :4.841  
##  3rd Qu.:6.000  
##  Max.   :7.000
sapply(mydata, sd)
## Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
## na.rm): NAs introduced by coercion
## Observations...Choice.data                     Choice 
##                         NA                  0.4056807 
##                      Price                Energy.Loss 
##                  1.2334590                  1.0106538 
##                Maintenance                   Warranty 
##                  1.0738168                  1.9073361 
##                Spare.Parts            Ease.of.Install 
##                  1.7286917                  1.9662779 
##                Prob.Solver                    Quality 
##                  1.0617679                  1.0381943
xtabs(~Choice, data = mydata)
## Choice
##  0  1 
## 70 18
xtabs(~Choice + Quality, data = mydata)
##       Quality
## Choice  3  4  5  6  7
##      0 10 16 26 16  2
##      1  0  6  5  6  1
mylogit <- glm(Choice ~ Price + Energy.Loss+ Maintenance+Warranty + Spare.Parts + Ease.of.Install + Prob.Solver + Quality, data = mydata, family = "binomial")
 summary(mylogit)
## 
## Call:
## glm(formula = Choice ~ Price + Energy.Loss + Maintenance + Warranty + 
##     Spare.Parts + Ease.of.Install + Prob.Solver + Quality, family = "binomial", 
##     data = mydata)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4638  -0.6909  -0.4503  -0.1668   2.5243  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     -8.26146    2.57843  -3.204  0.00135 **
## Price            0.64432    0.44887   1.435  0.15116   
## Energy.Loss      0.12947    0.47179   0.274  0.78376   
## Maintenance      0.63138    0.39354   1.604  0.10864   
## Warranty         0.15164    0.25315   0.599  0.54917   
## Spare.Parts      0.06815    0.20571   0.331  0.74041   
## Ease.of.Install -0.06841    0.18225  -0.375  0.70739   
## Prob.Solver      0.30174    0.43175   0.699  0.48463   
## Quality         -0.68642    0.48880  -1.404  0.16022   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 89.169  on 87  degrees of freedom
## Residual deviance: 73.606  on 79  degrees of freedom
## AIC: 91.606
## 
## Number of Fisher Scoring iterations: 5

Interpret the results of coefficient estimates (or using Odds Ratio)

For every one unit change in Price, the log odds of a customer choosing to buy electrical equiment from ABB (versus not buying electrical equipment from ABB) increases by 0.644. The log odds of a customer choosing to buy for every one unit increase in energy loss rating (more energy efficient less energy loss) rating goes up by .129 and the log odds for every one unit change in maintenance rating goes up by .63.

The log odds of a customer choosing to buy increases by .15 when the warranty rating goes up by 1 unit. When the spare parts and ease of install rating goes up by 1, the log odds of a customer buying go up .068 for spare parts and up .3017 for problem solver salesman.

exp(coef(mylogit))
##     (Intercept)           Price     Energy.Loss     Maintenance        Warranty 
##    0.0002582818    1.9046966198    1.1382252785    1.8802083677    1.1637362151 
##     Spare.Parts Ease.of.Install     Prob.Solver         Quality 
##    1.0705299671    0.9338792341    1.3522075162    0.5033734282

Interpretting the Log Odds Ratio

When variable rating increases by 1, the odds of a customer buying an ABB product increase by a factor of 1.904 for Price, 1.13 for energy efficiency rating, 1.88 for maintenance, 1.163 for warranty, 1.07 for spare parts, and 1.3522 for problem solver salesman.

When the rating increases by 1 for ease of install and quality, the odds of a customer buying an ABB product decrease by a factor of .933 for ease of install and .5033 for Quality.

Which variables are the key drivers of choice in this market for ABBE?

Based off the results, price/maintenance/problem solver supportive salesman variables are the key drivers of choice in this market. The higher the rating by customers in these categories that more likely that they will choose to buy ABB products.