In this exercise, you will further analyze the Wage data set considered throughout this chapter.
- (a) Perform polynomial regression to predict
wage using age. Use cross-validation to select the optimal degree d for the polynomial. What degree was chosen, and how does this compare to the results of hypothesis testing using ANOVA? Make a plot of the resulting polynomial fit to the data.
attach(Wage)
set.seed(1)
all.deltas = rep(NA, 10)
for (i in 1:10) {
glm.fit = glm(wage~poly(age, i), data=Wage)
all.deltas[i] = cv.glm(Wage, glm.fit, K=10)$delta[2]
}
min_error = which.min(all.deltas)
phrase = " = Lowest Error (degree at which we will be performing the best polynomial regression)"
paste(min_error, phrase)
## [1] "9 = Lowest Error (degree at which we will be performing the best polynomial regression)"
plot(1:10, all.deltas, xlab="Degree", ylab="CV error", type="l", pch=20, lwd=2, ylim=c(1590, 1700))

min.point = min(all.deltas)
sd.points = sd(all.deltas)
fit.1 = lm(wage~poly(age, 1), data=Wage)
fit.2 = lm(wage~poly(age, 2), data=Wage)
fit.3 = lm(wage~poly(age, 3), data=Wage)
fit.4 = lm(wage~poly(age, 4), data=Wage)
fit.5 = lm(wage~poly(age, 5), data=Wage)
fit.6 = lm(wage~poly(age, 6), data=Wage)
fit.7 = lm(wage~poly(age, 7), data=Wage)
fit.8 = lm(wage~poly(age, 8), data=Wage)
fit.9 = lm(wage~poly(age, 9), data=Wage)
fit.10 = lm(wage~poly(age, 10), data=Wage)
anova(fit.1, fit.2, fit.3, fit.4, fit.5, fit.6, fit.7, fit.8, fit.9, fit.10)
## Analysis of Variance Table
##
## Model 1: wage ~ poly(age, 1)
## Model 2: wage ~ poly(age, 2)
## Model 3: wage ~ poly(age, 3)
## Model 4: wage ~ poly(age, 4)
## Model 5: wage ~ poly(age, 5)
## Model 6: wage ~ poly(age, 6)
## Model 7: wage ~ poly(age, 7)
## Model 8: wage ~ poly(age, 8)
## Model 9: wage ~ poly(age, 9)
## Model 10: wage ~ poly(age, 10)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 2998 5022216
## 2 2997 4793430 1 228786 143.7638 < 2.2e-16 ***
## 3 2996 4777674 1 15756 9.9005 0.001669 **
## 4 2995 4771604 1 6070 3.8143 0.050909 .
## 5 2994 4770322 1 1283 0.8059 0.369398
## 6 2993 4766389 1 3932 2.4709 0.116074
## 7 2992 4763834 1 2555 1.6057 0.205199
## 8 2991 4763707 1 127 0.0796 0.777865
## 9 2990 4756703 1 7004 4.4014 0.035994 *
## 10 2989 4756701 1 3 0.0017 0.967529
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(wage~age, data=Wage, col="darkgrey")
agelims = range(Wage$age)
age.grid = seq(from=agelims[1], to=agelims[2])
lm.fitd3 = lm(wage~poly(age, 3), data=Wage)
lm.fitd4 = lm(wage~poly(age, 4), data=Wage)
lm.predd3 = predict(lm.fitd3, data.frame(age=age.grid))
lm.predd4 = predict(lm.fitd4, data.frame(age=age.grid))
lines(age.grid, lm.predd3, col="blue", lwd=2)
lines(age.grid, lm.predd4, col="red", lwd=2)

- The anova() suggests that degree 4 or 3 and degree 9 are not that different and in this case we should really consider a degree 4 or 3 polynomial regression over a degree 9.
- We really should not use degree 9 as it does not really improve insight very much, if at all, and only stands to complicate our model.
- (b) Fit a step function to predict
wage using age, and perform crossvalidation to choose the optimal number of cuts. Make a plot of the fit obtained.
cv1 = rep(NA, 10)
for (i in 2:10) {
Wage$age.cut = cut(Wage$age, i)
lm.fit = glm(wage~age.cut, data=Wage)
cv1[i] = cv.glm(Wage, lm.fit, K=10)$delta[2]
}
min_error_step = which.min(cv1)
phrase_2 = " = Lowest Error (degree at which we will be performing the best polynomial regression)"
paste(min_error_step, phrase_2)
## [1] "8 = Lowest Error (degree at which we will be performing the best polynomial regression)"
plot(2:10, cv1[-1], xlab="Number of cuts", ylab="CV error", type="l", pch=20, lwd=2)

plot(wage ~ age, data = Wage, col = "grey")
fit = glm(wage ~ cut(age, min_error_step), data = Wage)
preds = predict(fit, list(age = age.grid))
lines(age.grid, preds, col = "red", lwd = 2)
