Assignment 6

Rudy Martinez

7/30/2021


Libraries

library(ISLR)
library(tidyverse)
library(data.table)
library(leaps)
library(glmnet)
library(boot)
library(gam)

Exercises

Exercise 6

In this exercise, you will further analyze the Wage data set considered throughout this chapter.

  • (a) Perform polynomial regression to predict wage using age. Use cross-validation to select the optimal degree d for the polynomial. What degree was chosen, and how does this compare to the results of hypothesis testing using ANOVA? Make a plot of the resulting polynomial fit to the data.
attach(Wage)
set.seed(1)

all.deltas = rep(NA, 10)

for (i in 1:10) {
  glm.fit = glm(wage~poly(age, i), data=Wage)
  all.deltas[i] = cv.glm(Wage, glm.fit, K=10)$delta[2]
}

min_error = which.min(all.deltas)
phrase = " = Lowest Error (degree at which we will be performing the best polynomial regression)"

paste(min_error, phrase)
## [1] "9  = Lowest Error (degree at which we will be performing the best polynomial regression)"
plot(1:10, all.deltas, xlab="Degree", ylab="CV error", type="l", pch=20, lwd=2, ylim=c(1590, 1700))

min.point = min(all.deltas)
sd.points = sd(all.deltas)
fit.1 = lm(wage~poly(age, 1), data=Wage)
fit.2 = lm(wage~poly(age, 2), data=Wage)
fit.3 = lm(wage~poly(age, 3), data=Wage)
fit.4 = lm(wage~poly(age, 4), data=Wage)
fit.5 = lm(wage~poly(age, 5), data=Wage)
fit.6 = lm(wage~poly(age, 6), data=Wage)
fit.7 = lm(wage~poly(age, 7), data=Wage)
fit.8 = lm(wage~poly(age, 8), data=Wage)
fit.9 = lm(wage~poly(age, 9), data=Wage)
fit.10 = lm(wage~poly(age, 10), data=Wage)
anova(fit.1, fit.2, fit.3, fit.4, fit.5, fit.6, fit.7, fit.8, fit.9, fit.10)
## Analysis of Variance Table
## 
## Model  1: wage ~ poly(age, 1)
## Model  2: wage ~ poly(age, 2)
## Model  3: wage ~ poly(age, 3)
## Model  4: wage ~ poly(age, 4)
## Model  5: wage ~ poly(age, 5)
## Model  6: wage ~ poly(age, 6)
## Model  7: wage ~ poly(age, 7)
## Model  8: wage ~ poly(age, 8)
## Model  9: wage ~ poly(age, 9)
## Model 10: wage ~ poly(age, 10)
##    Res.Df     RSS Df Sum of Sq        F    Pr(>F)    
## 1    2998 5022216                                    
## 2    2997 4793430  1    228786 143.7638 < 2.2e-16 ***
## 3    2996 4777674  1     15756   9.9005  0.001669 ** 
## 4    2995 4771604  1      6070   3.8143  0.050909 .  
## 5    2994 4770322  1      1283   0.8059  0.369398    
## 6    2993 4766389  1      3932   2.4709  0.116074    
## 7    2992 4763834  1      2555   1.6057  0.205199    
## 8    2991 4763707  1       127   0.0796  0.777865    
## 9    2990 4756703  1      7004   4.4014  0.035994 *  
## 10   2989 4756701  1         3   0.0017  0.967529    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(wage~age, data=Wage, col="darkgrey")
agelims = range(Wage$age)
age.grid = seq(from=agelims[1], to=agelims[2])

lm.fitd3 = lm(wage~poly(age, 3), data=Wage)
lm.fitd4 = lm(wage~poly(age, 4), data=Wage)

lm.predd3 = predict(lm.fitd3, data.frame(age=age.grid))
lm.predd4 = predict(lm.fitd4, data.frame(age=age.grid))
lines(age.grid, lm.predd3, col="blue", lwd=2)
lines(age.grid, lm.predd4, col="red", lwd=2)

  • The anova() suggests that degree 4 or 3 and degree 9 are not that different and in this case we should really consider a degree 4 or 3 polynomial regression over a degree 9.
  • We really should not use degree 9 as it does not really improve insight very much, if at all, and only stands to complicate our model.


  • (b) Fit a step function to predict wage using age, and perform crossvalidation to choose the optimal number of cuts. Make a plot of the fit obtained.
cv1 = rep(NA, 10)

for (i in 2:10) {
  Wage$age.cut = cut(Wage$age, i)
  lm.fit = glm(wage~age.cut, data=Wage)
  cv1[i] = cv.glm(Wage, lm.fit, K=10)$delta[2]
}

min_error_step = which.min(cv1)
phrase_2 = " = Lowest Error (degree at which we will be performing the best polynomial regression)"
paste(min_error_step, phrase_2)
## [1] "8  = Lowest Error (degree at which we will be performing the best polynomial regression)"
plot(2:10, cv1[-1], xlab="Number of cuts", ylab="CV error", type="l", pch=20, lwd=2)

plot(wage ~ age, data = Wage, col = "grey")
fit = glm(wage ~ cut(age, min_error_step), data = Wage)

preds = predict(fit, list(age = age.grid))
lines(age.grid, preds, col = "red", lwd = 2)


Exercise 10

This question relates to the College data set.

  • (a) Split the data into a training set and a test set. Using out-of-state tuition as the response and the other variables as the predictors, perform forward stepwise selection on the training set in order to identify a satisfactory model that uses just a subset of the predictors.
attach(College)
set.seed(1)

train = sample(length(Outstate), length(Outstate) / 2)
test = -train

College.train = College[train, ]
College.test = College[test, ]

fit = regsubsets(Outstate ~ ., data = College.train, nvmax = 17, method = "forward")
fit.summary = summary(fit)

par(mfrow = c(1, 3),bg = "white")

#Plot 1
plot(fit.summary$cp, xlab = "Number of variables", ylab = "Cp", type = "l")
min.cp = min(fit.summary$cp)
std.cp = sd(fit.summary$cp)
abline(h = min.cp + 0.2 * std.cp, col = "black", lty = 2)
abline(h = min.cp - 0.2 * std.cp, col = "black", lty = 2)

#Plot 2
plot(fit.summary$bic, xlab = "Number of variables", ylab = "BIC", type='l')
min.bic = min(fit.summary$bic)
std.bic = sd(fit.summary$bic)
abline(h = min.bic + 0.2 * std.bic, col = "black", lty = 2)
abline(h = min.bic - 0.2 * std.bic, col = "black", lty = 2)

#Plot 3
plot(fit.summary$adjr2, xlab = "Number of variables", ylab = "Adjusted R2", type = "l", ylim = c(0.4, 0.84))
max.adjr2 = max(fit.summary$adjr2)
std.adjr2 = sd(fit.summary$adjr2)
abline(h = max.adjr2 + 0.2 * std.adjr2, col = "black", lty = 2)
abline(h = max.adjr2 - 0.2 * std.adjr2, col = "black", lty = 2)

cp_result = which.min(fit.summary$cp)
bic_result = which.min(fit.summary$bic)
adjr2_result = which.min(fit.summary$adjr2)

cp = "cp = "
bic = "bic = "
adjr2 = "adjr2 = "

paste(cp, cp_result)
## [1] "cp =  14"
paste(bic, bic_result)
## [1] "bic =  6"
paste(adjr2, adjr2_result)
## [1] "adjr2 =  1"
co = coef(fit, id = 6)
names(co)
## [1] "(Intercept)" "PrivateYes"  "Room.Board"  "Terminal"    "perc.alumni"
## [6] "Expend"      "Grad.Rate"
  • We’ll select 6 since that has the best bic score.


  • (b) Fit a GAM on the training data, using out-of-state tuition as the response and the features selected in the previous step as the predictors. Plot the results, and explain your findings.
gam.fit = gam(Outstate ~ Private + s(Room.Board, df = 2) + s(Terminal, df = 2) + 
    s(perc.alumni, df = 2) + s(Expend, df = 2) + s(Grad.Rate, df = 2), data = College.train)

par(mfrow = c(2, 3), bg = "white")
plot(gam.fit, se = T, col = "red")


  • (c) Evaluate the model obtained on the test set, and explain the results obtained.
gam.pred = predict(gam.fit, College.test)
gam.err = mean((College.test$Outstate - gam.pred)^2)
gam.err
## [1] 3456745
gam.tss = mean((College.test$Outstate - mean(College.test$Outstate))^2)
test.rss = 1 - gam.err / gam.tss
test.rss
## [1] 0.7584943
phrase_3 = "We obtain the following test R^2 when using GAM with 6 predictors = "
paste(phrase_3, test.rss)
## [1] "We obtain the following test R^2 when using GAM with 6 predictors =  0.7584942641655"


  • (d) For which variables, if any, is there evidence of a non-linear relationship with the response?
summary(gam.fit)
## 
## Call: gam(formula = Outstate ~ Private + s(Room.Board, df = 2) + s(Terminal, 
##     df = 2) + s(perc.alumni, df = 2) + s(Expend, df = 2) + s(Grad.Rate, 
##     df = 2), data = College.train)
## Deviance Residuals:
##     Min      1Q  Median      3Q     Max 
## -6632.2 -1268.4  -125.7  1362.1  8676.0 
## 
## (Dispersion Parameter for gaussian family taken to be 3959960)
## 
##     Null Deviance: 6989966760 on 387 degrees of freedom
## Residual Deviance: 1488945983 on 376.0003 degrees of freedom
## AIC: 7009.303 
## 
## Number of Local Scoring Iterations: NA 
## 
## Anova for Parametric Effects
##                         Df     Sum Sq    Mean Sq F value    Pr(>F)    
## Private                  1 1848374254 1848374254 466.766 < 2.2e-16 ***
## s(Room.Board, df = 2)    1 1732263048 1732263048 437.445 < 2.2e-16 ***
## s(Terminal, df = 2)      1  358063651  358063651  90.421 < 2.2e-16 ***
## s(perc.alumni, df = 2)   1  365964119  365964119  92.416 < 2.2e-16 ***
## s(Expend, df = 2)        1  470210508  470210508 118.741 < 2.2e-16 ***
## s(Grad.Rate, df = 2)     1   89293627   89293627  22.549 2.918e-06 ***
## Residuals              376 1488945983    3959960                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Anova for Nonparametric Effects
##                        Npar Df Npar F     Pr(F)    
## (Intercept)                                        
## Private                                            
## s(Room.Board, df = 2)        1  1.737    0.1883    
## s(Terminal, df = 2)          1  0.718    0.3973    
## s(perc.alumni, df = 2)       1  0.310    0.5780    
## s(Expend, df = 2)            1 50.821 5.218e-12 ***
## s(Grad.Rate, df = 2)         1  0.900    0.3434    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  • Non-parametric Anova test shows a strong evidence of non-linear relationship between response and Expend