Nous allons ici employer les données description
:`
Pentes_HID <- read.csv2("C:/Users/mallah.s/Desktop/StatsTheses/These_Romane/Av_Ap/avec_HID/Pentes_HID.csv", stringsAsFactors=TRUE)
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.0.5
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.2 v dplyr 1.0.7
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.0.5
## Warning: package 'tibble' was built under R version 4.0.5
## Warning: package 'tidyr' was built under R version 4.0.5
## Warning: package 'dplyr' was built under R version 4.0.5
## Warning: package 'forcats' was built under R version 4.0.5
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
Pentes <-Pentes_HID %>%
pivot_longer(cols=c(Pente_0 ,Pente_1),names_to="periode" ,values_to = "Pente" )
Pentes$periode<- fct_relevel(Pentes$periode, c("Pente_0" ,"Pente_1"))
head(Pentes)
## # A tibble: 6 x 3
## patient_ID periode Pente
## <fct> <fct> <dbl>
## 1 3_T Pente_0 -0.083
## 2 3_T Pente_1 -0.044
## 3 4_T Pente_0 -0.03
## 4 4_T Pente_1 -0.026
## 5 5_T Pente_0 -0.08
## 6 5_T Pente_1 0.048
ggplot(Pentes , aes(x=periode, y=Pente, colour=patient_ID)) +
geom_point()+
geom_line(aes(group=patient_ID))+
theme_classic()+
theme(legend.position = "none")
ggplot(Pentes, aes(x=periode, y=Pente, colour=patient_ID)) +
geom_point()+
geom_line(aes(group=patient_ID))+
theme_classic()+
theme(legend.position = "none")+
facet_wrap(~patient_ID)
##Calcul de la Difference
Pentes_HID$d <-Pentes_HID$Pente_0-Pentes_HID$Pente_1
head(Pentes_HID)
## patient_ID Pente_0 Pente_1 d
## 1 3_T -0.083 -0.044 -0.039
## 2 4_T -0.030 -0.026 -0.004
## 3 5_T -0.080 0.048 -0.128
## 4 8_T -0.087 -0.060 -0.027
## 5 10_T -0.037 -0.045 0.008
## 6 11_T -0.042 -0.023 -0.019
library(car)
## Warning: package 'car' was built under R version 4.0.5
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
## recode
## The following object is masked from 'package:purrr':
##
## some
qqPlot(Pentes_HID$d)
## [1] 3 9
la normalité n’est pas globalement satisfaisante
shapiro.test(Pentes_HID$d)
##
## Shapiro-Wilk normality test
##
## data: Pentes_HID$d
## W = 0.92832, p-value = 0.01988
Le test de Shapiro-Wilk rejette l’hypothèse de normalité. Au final, nous n’ acceptons cette hypothèse. Nous faison donc un test de Wilcoxon
wilcox.test(Pentes_HID$Pente_0, Pentes_HID$Pente_1, paired=TRUE)
## Warning in wilcox.test.default(Pentes_HID$Pente_0, Pentes_HID$Pente_1, paired =
## TRUE): cannot compute exact p-value with ties
##
## Wilcoxon signed rank test with continuity correction
##
## data: Pentes_HID$Pente_0 and Pentes_HID$Pente_1
## V = 153.5, p-value = 0.002886
## alternative hypothesis: true location shift is not equal to 0