Perform forward stepwise-selection on all variables included in Robert’s canonical specification (“pre_coverage”, “rGDPg2020”, “digIDcov”, “dig_reg”, “fsi”, “eap”, “log_deaths”). At each iteration, the variable which would have the the smallest p-value if added to the model is added. I add in the few variables which are not statistically significant all at once.
##
## Stepwise Selection Summary
## -----------------------------------------------------------------------------------------
## Added/ Adj.
## Step Variable Removed R-Square R-Square C(p) AIC RMSE
## -----------------------------------------------------------------------------------------
## 1 pre_coverage addition 0.505 0.499 52.0620 -8.9381 0.2239
## 2 dig_reg addition 0.644 0.635 17.2740 -34.2834 0.1910
## 3 eap addition 0.675 0.663 11.0240 -39.8843 0.1836
## 4 log_deaths addition 0.711 0.696 3.5080 -47.6148 0.1743
## -----------------------------------------------------------------------------------------
| Dependent variable: | |||||
| coverage | |||||
| (1) | (2) | (3) | (4) | (5) | |
| pre_coverage | 1.147*** | 0.849*** | 0.731*** | 0.673*** | 0.637*** |
| (0.126) | (0.120) | (0.123) | (0.118) | (0.127) | |
| rGDPg2020 | -0.005 | ||||
| (0.004) | |||||
| dig_id | 0.069 | ||||
| (0.070) | |||||
| dig_reg | 0.262*** | 0.267*** | 0.204*** | 0.195*** | |
| (0.047) | (0.045) | (0.047) | (0.053) | ||
| fsi | 0.006 | ||||
| (0.015) | |||||
| eap | 0.164*** | 0.279*** | 0.277*** | ||
| (0.060) | (0.068) | (0.073) | |||
| log_deaths | 0.040*** | 0.035** | |||
| (0.013) | (0.014) | ||||
| Constant | 0.131*** | 0.055* | 0.046 | -0.070 | -0.144 |
| (0.032) | (0.030) | (0.029) | (0.047) | (0.155) | |
| Observations | 83 | 83 | 83 | 83 | 82 |
| R2 | 0.505 | 0.644 | 0.675 | 0.711 | 0.717 |
| Adjusted R2 | 0.499 | 0.635 | 0.663 | 0.696 | 0.690 |
| Residual Std. Error | 0.224 (df = 81) | 0.191 (df = 80) | 0.184 (df = 79) | 0.174 (df = 78) | 0.176 (df = 74) |
| F Statistic | 82.746*** (df = 1; 81) | 72.416*** (df = 2; 80) | 54.771*** (df = 3; 79) | 48.029*** (df = 4; 78) | 26.751*** (df = 7; 74) |
| Note: | p<0.1; p<0.05; p<0.01 | ||||
The following regressions include only one of the variables digital ID coverage, digital ID registration, and FSI each.
| Dependent variable: | |||
| coverage | |||
| (1) | (2) | (3) | |
| pre_coverage | 0.739*** | 0.641*** | 0.735*** |
| (0.128) | (0.121) | (0.136) | |
| rGDPg2020 | -0.004 | -0.005 | -0.004 |
| (0.004) | (0.004) | (0.004) | |
| eap | 0.318*** | 0.268*** | 0.287*** |
| (0.072) | (0.068) | (0.079) | |
| log_deaths | 0.052*** | 0.035** | 0.052*** |
| (0.013) | (0.013) | (0.014) | |
| dig_id | 0.139** | ||
| (0.065) | |||
| dig_reg | 0.205*** | ||
| (0.047) | |||
| fsi | -0.019 | ||
| (0.014) | |||
| Constant | -0.141** | -0.063 | 0.086 |
| (0.057) | (0.047) | (0.138) | |
| Observations | 83 | 83 | 82 |
| R2 | 0.667 | 0.717 | 0.653 |
| Adjusted R2 | 0.646 | 0.699 | 0.630 |
| Residual Std. Error | 0.188 (df = 77) | 0.174 (df = 77) | 0.192 (df = 76) |
| F Statistic | 30.898*** (df = 5; 77) | 39.021*** (df = 5; 77) | 28.559*** (df = 5; 76) |
| Note: | p<0.1; p<0.05; p<0.01 | ||
The following regressions only include either GDP growth and deaths but not both.
| Dependent variable: | |||
| coverage | |||
| (1) | (2) | (3) | |
| pre_coverage | 0.668*** | 0.673*** | 0.735*** |
| (0.125) | (0.118) | (0.136) | |
| dig_reg | 0.257*** | 0.204*** | |
| (0.045) | (0.047) | ||
| eap | 0.169*** | 0.279*** | 0.287*** |
| (0.059) | (0.068) | (0.079) | |
| rGDPg2020 | -0.008** | -0.004 | |
| (0.004) | (0.004) | ||
| log_deaths | 0.040*** | 0.052*** | |
| (0.013) | (0.014) | ||
| fsi | -0.019 | ||
| (0.014) | |||
| Constant | 0.034 | -0.070 | 0.086 |
| (0.029) | (0.047) | (0.138) | |
| Observations | 83 | 83 | 82 |
| R2 | 0.692 | 0.711 | 0.653 |
| Adjusted R2 | 0.676 | 0.696 | 0.630 |
| Residual Std. Error | 0.180 (df = 78) | 0.174 (df = 78) | 0.192 (df = 76) |
| F Statistic | 43.793*** (df = 4; 78) | 48.029*** (df = 4; 78) | 28.559*** (df = 5; 76) |
| Note: | p<0.1; p<0.05; p<0.01 | ||
The first figure below shows predicted versus actual coverage. I wasn’t able to see any pattern in the outliers but I could be missing something. The next few graphs are partial adjustment graphs which are sometimes useful for checking if there are any important non-linearities that we should be taking into account. (There don’t seem to be any.)
Perform stepwise forward selection to select independent variables in a regression of spending on other vars. Do the same thing with spending / coverage.
##
## Stepwise Selection Summary
## ------------------------------------------------------------------------------------------
## Added/ Adj.
## Step Variable Removed R-Square R-Square C(p) AIC RMSE
## ------------------------------------------------------------------------------------------
## 1 pre_coverage addition 0.198 0.188 2.3480 -550.7298 0.0072
## 2 dig_reg addition 0.235 0.215 0.7880 -552.4523 0.0071
## 3 pre_spending addition 0.331 0.300 -0.6580 -484.0511 0.0069
## ------------------------------------------------------------------------------------------
##
## Stepwise Selection Summary
## -------------------------------------------------------------------------------------
## Added/ Adj.
## Step Variable Removed R-Square R-Square C(p) AIC RMSE
## -------------------------------------------------------------------------------------
## 1 dig_reg addition 0.054 0.040 3.8880 -341.5569 0.0198
## -------------------------------------------------------------------------------------
| Dependent variable: | ||
| spending | spending_pc | |
| (1) | (2) | |
| pre_coverage | 0.011** | |
| (0.005) | ||
| dig_reg | 0.005** | -0.009* |
| (0.002) | (0.005) | |
| pre_spending | 0.002** | |
| (0.001) | ||
| Constant | 0.0003 | 0.028*** |
| (0.001) | (0.004) | |
| Observations | 69 | 69 |
| R2 | 0.331 | 0.054 |
| Adjusted R2 | 0.300 | 0.040 |
| Residual Std. Error | 0.007 (df = 65) | 0.020 (df = 67) |
| F Statistic | 10.728*** (df = 3; 65) | 3.800* (df = 1; 67) |
| Note: | p<0.1; p<0.05; p<0.01 | |