1 Coverage regressions

1.1 Stepwise selection of variables

Perform forward stepwise-selection on all variables included in Robert’s canonical specification (“pre_coverage”, “rGDPg2020”, “digIDcov”, “dig_reg”, “fsi”, “eap”, “log_deaths”). At each iteration, the variable which would have the the smallest p-value if added to the model is added. I add in the few variables which are not statistically significant all at once.

## 
##                                Stepwise Selection Summary                                 
## -----------------------------------------------------------------------------------------
##                          Added/                   Adj.                                       
## Step      Variable      Removed     R-Square    R-Square     C(p)        AIC        RMSE     
## -----------------------------------------------------------------------------------------
##    1    pre_coverage    addition       0.505       0.499    52.0620     -8.9381    0.2239    
##    2      dig_reg       addition       0.644       0.635    17.2740    -34.2834    0.1910    
##    3        eap         addition       0.675       0.663    11.0240    -39.8843    0.1836    
##    4     log_deaths     addition       0.711       0.696     3.5080    -47.6148    0.1743    
## -----------------------------------------------------------------------------------------
Dependent variable:
coverage
(1) (2) (3) (4) (5)
pre_coverage 1.147*** 0.849*** 0.731*** 0.673*** 0.637***
(0.126) (0.120) (0.123) (0.118) (0.127)
rGDPg2020 -0.005
(0.004)
dig_id 0.069
(0.070)
dig_reg 0.262*** 0.267*** 0.204*** 0.195***
(0.047) (0.045) (0.047) (0.053)
fsi 0.006
(0.015)
eap 0.164*** 0.279*** 0.277***
(0.060) (0.068) (0.073)
log_deaths 0.040*** 0.035**
(0.013) (0.014)
Constant 0.131*** 0.055* 0.046 -0.070 -0.144
(0.032) (0.030) (0.029) (0.047) (0.155)
Observations 83 83 83 83 82
R2 0.505 0.644 0.675 0.711 0.717
Adjusted R2 0.499 0.635 0.663 0.696 0.690
Residual Std. Error 0.224 (df = 81) 0.191 (df = 80) 0.184 (df = 79) 0.174 (df = 78) 0.176 (df = 74)
F Statistic 82.746*** (df = 1; 81) 72.416*** (df = 2; 80) 54.771*** (df = 3; 79) 48.029*** (df = 4; 78) 26.751*** (df = 7; 74)
Note: p<0.1; p<0.05; p<0.01

1.2 Only include one capacity variable

The following regressions include only one of the variables digital ID coverage, digital ID registration, and FSI each.

Dependent variable:
coverage
(1) (2) (3)
pre_coverage 0.739*** 0.641*** 0.735***
(0.128) (0.121) (0.136)
rGDPg2020 -0.004 -0.005 -0.004
(0.004) (0.004) (0.004)
eap 0.318*** 0.268*** 0.287***
(0.072) (0.068) (0.079)
log_deaths 0.052*** 0.035** 0.052***
(0.013) (0.013) (0.014)
dig_id 0.139**
(0.065)
dig_reg 0.205***
(0.047)
fsi -0.019
(0.014)
Constant -0.141** -0.063 0.086
(0.057) (0.047) (0.138)
Observations 83 83 82
R2 0.667 0.717 0.653
Adjusted R2 0.646 0.699 0.630
Residual Std. Error 0.188 (df = 77) 0.174 (df = 77) 0.192 (df = 76)
F Statistic 30.898*** (df = 5; 77) 39.021*** (df = 5; 77) 28.559*** (df = 5; 76)
Note: p<0.1; p<0.05; p<0.01

1.3 Only include one demand variable

The following regressions only include either GDP growth and deaths but not both.

Dependent variable:
coverage
(1) (2) (3)
pre_coverage 0.668*** 0.673*** 0.735***
(0.125) (0.118) (0.136)
dig_reg 0.257*** 0.204***
(0.045) (0.047)
eap 0.169*** 0.279*** 0.287***
(0.059) (0.068) (0.079)
rGDPg2020 -0.008** -0.004
(0.004) (0.004)
log_deaths 0.040*** 0.052***
(0.013) (0.014)
fsi -0.019
(0.014)
Constant 0.034 -0.070 0.086
(0.029) (0.047) (0.138)
Observations 83 83 82
R2 0.692 0.711 0.653
Adjusted R2 0.676 0.696 0.630
Residual Std. Error 0.180 (df = 78) 0.174 (df = 78) 0.192 (df = 76)
F Statistic 43.793*** (df = 4; 78) 48.029*** (df = 4; 78) 28.559*** (df = 5; 76)
Note: p<0.1; p<0.05; p<0.01

1.4 Predicted versus actual coverage

The first figure below shows predicted versus actual coverage. I wasn’t able to see any pattern in the outliers but I could be missing something. The next few graphs are partial adjustment graphs which are sometimes useful for checking if there are any important non-linearities that we should be taking into account. (There don’t seem to be any.)

2 Spending regressions

Perform stepwise forward selection to select independent variables in a regression of spending on other vars. Do the same thing with spending / coverage.

## 
##                                 Stepwise Selection Summary                                 
## ------------------------------------------------------------------------------------------
##                          Added/                   Adj.                                        
## Step      Variable      Removed     R-Square    R-Square     C(p)         AIC        RMSE     
## ------------------------------------------------------------------------------------------
##    1    pre_coverage    addition       0.198       0.188     2.3480    -550.7298    0.0072    
##    2      dig_reg       addition       0.235       0.215     0.7880    -552.4523    0.0071    
##    3    pre_spending    addition       0.331       0.300    -0.6580    -484.0511    0.0069    
## ------------------------------------------------------------------------------------------
## 
##                              Stepwise Selection Summary                               
## -------------------------------------------------------------------------------------
##                      Added/                   Adj.                                       
## Step    Variable    Removed     R-Square    R-Square     C(p)        AIC        RMSE     
## -------------------------------------------------------------------------------------
##    1    dig_reg     addition       0.054       0.040    3.8880    -341.5569    0.0198    
## -------------------------------------------------------------------------------------
Dependent variable:
spending spending_pc
(1) (2)
pre_coverage 0.011**
(0.005)
dig_reg 0.005** -0.009*
(0.002) (0.005)
pre_spending 0.002**
(0.001)
Constant 0.0003 0.028***
(0.001) (0.004)
Observations 69 69
R2 0.331 0.054
Adjusted R2 0.300 0.040
Residual Std. Error 0.007 (df = 65) 0.020 (df = 67)
F Statistic 10.728*** (df = 3; 65) 3.800* (df = 1; 67)
Note: p<0.1; p<0.05; p<0.01