Schefferville - transitions; Supplementary 3 and 7 cluster analyzes
Tammy L. Elliott
Date: May 8, 2015
R version 3.1.0
# set global chunk options:
library(knitr)
opts_chunk$set(cache=FALSE, fig.align='center')
Placement of five clusters
#Plot this relationship
#dev.new(width=11.8, height=11.8)
par(mfrow=c(3,3))
par(mar=c(5.1,4.1,4.1,2.1))
site.dist.5<-cmdscale(site.env.dist, k = 54, eig = FALSE, add = FALSE, x.ret = FALSE)
plot(site.dist.5, type="n", xlab="", ylab="", main="", cex=1, pch=16, col="black", xaxt='n', yaxt="n")
ordispider(site.dist.5, site.dist.cfuz$cluster, col="grey40", label=TRUE)
ordiellipse(site.dist.5, site.dist.cfuz$cluster, col="grey70")
box(lwd=1)
#Now do a K-means clustering analysis of these distances
ccas.env<-cascadeKM((site.env.dist),2,15)
plot(ccas.env,sortq=TRUE)
par(mar=c(1,1,1,2))
site.dist.5.3d<-with(site.coord, scatter3D(x = site.lon[,1], y = site.lat[,1], z = site.elev[,1], colvar = site.dist.cfuz$clustering,
col=c("grey95", "gray75", "gray60", "gray25", "black"),pch = 16, cex = 1.25, cex.lab=1.35, cex.axis=1,xlab = "Longitude", ylab = "Latitude",
zlab = "Elevation (m)",
main = "", ticktype = "simple", theta = 35, d = 5,
colkey = list(length = 0.45, width = 0.5, cex.clab = 0.65))
)
par(mar=c(5.1,4.1,4.1,2.1))
angio.abd1.dist.5<-cmdscale(angio.abd1.dist, k = 54, eig = FALSE, add = FALSE, x.ret = FALSE)
plot(angio.abd1.dist.5, type="n", xlab="", ylab="", main="", cex=1, pch=16, col="black", xaxt='n', yaxt="n")
ordispider(angio.abd1.dist.5, angio.abd1.cfuz$cluster, col="grey40", label=TRUE)
ordiellipse(angio.abd1.dist.5, angio.abd1.cfuz$cluster, col="grey70")
box(lwd=1)
#Now do a K-means clustering analysis of these distances
ccas.env<-cascadeKM((angio.abd1.dist),2,15)
plot(ccas.env,sortq=TRUE)
par(mar=c(1,1,1,2))
angio.abd1.dist.5.3d<-with(site.coord, scatter3D(x = site.lon[,1], y = site.lat[,1], z = site.elev[,1], colvar = angio.abd1.cfuz$clustering,
col=c("grey95", "gray75", "gray60", "gray25", "black"),pch = 16, cex = 1.25, cex.lab=1.35, cex.axis=1,xlab = "Longitude", ylab = "Latitude",
zlab = "Elevation (m)",
main = "", ticktype = "simple", theta = 35, d = 5,
colkey = FALSE)
)
par(mar=c(5.1,4.1,4.1,2.1))
angio.ph.abd1.dist.5<-cmdscale(angio.ph.abd1.dist, k = 54, eig = FALSE, add = FALSE, x.ret = FALSE)
plot(angio.ph.abd1.dist.5, type="n", xlab="", ylab="", main="", cex=1, pch=16, col="black", xaxt='n', yaxt="n")
ordispider(angio.ph.abd1.dist.5, angio.ph.abd1.cfuz$cluster, col="grey40", label=TRUE)
ordiellipse(angio.ph.abd1.dist.5, angio.ph.abd1.cfuz$cluster, col="grey70")
box(lwd=1)
#Now do a K-means clustering analysis of these distances
ccas.env<-cascadeKM((angio.ph.abd1.dist),2,15)
plot(ccas.env,sortq=TRUE)
par(mar=c(1,1,1,2))
angio.ph.abd1.dist.5.3d<-with(site.coord, scatter3D(x = site.lon[,1], y = site.lat[,1], z = site.elev[,1], colvar = angio.ph.abd1.cfuz$clustering,
col=c("grey95", "gray75", "gray60", "gray25", "black"),pch = 16, cex = 1.25, cex.lab=1.35, cex.axis=1,xlab = "Longitude", ylab = "Latitude",
zlab = "Elevation (m)",
main = "", ticktype = "simple", theta = 35, d = 5,
colkey = FALSE)
)

#textClick.bold("(A)", cex=1.75)
#textClick.bold("(B)", cex=1.75)
#textClick.bold("(C)", cex=1.75)
#textClick.bold("(D)", cex=1.75)
#textClick.bold("(E)", cex=1.75)
#textClick.bold("(F)", cex=1.75)
#textClick.bold("(G)", cex=1.75)
#textClick.bold("(H)", cex=1.75)
#textClick.bold("(I)", cex=1.75)
Placement of Three clusters for Vasculars
#Plot this relationship
#dev.new(width=11.8, height=11.8)
par(mfrow=c(3,3))
par(mar=c(5.1,4.1,4.1,2.1))
site.dist.3<-cmdscale(site.env.dist, k = 54, eig = FALSE, add = FALSE, x.ret = FALSE)
plot(site.dist.3, type="n", xlab="", ylab="", main="", cex=1, pch=16, col="black", xaxt='n', yaxt="n")
ordispider(site.dist.3, site.dist.cfuz.3$cluster, col="grey40", label=TRUE)
ordiellipse(site.dist.3, site.dist.cfuz.3$cluster, col="grey70")
box(lwd=1)
#Now do a K-means clustering analysis of these distances
ccas.env<-cascadeKM((site.env.dist),2,15)
plot(ccas.env,sortq=TRUE)
par(mar=c(1,1,1,2))
site.dist.3.3d<-with(site.coord, scatter3D(x = site.lon[,1], y = site.lat[,1], z = site.elev[,1], colvar = site.dist.cfuz.3$clustering,
col=c("grey95", "gray75", "gray60", "gray25", "black"),pch = 16, cex = 1.25, cex.lab=1.35, cex.axis=1,xlab = "Longitude", ylab = "Latitude",
zlab = "Elevation (m)",
main = "", ticktype = "simple", theta = 35, d = 5,
colkey = list(length = 0.45, width = 0.3, cex.clab = 0.65))
)
par(mar=c(5.1,4.1,4.1,2.1))
vasc.abd1.dist.3<-cmdscale(vasc.abd1.dist, k = 54, eig = FALSE, add = FALSE, x.ret = FALSE)
plot(vasc.abd1.dist.3, type="n", xlab="", ylab="", main="", cex=1, pch=16, col="black", xaxt='n', yaxt="n")
ordispider(vasc.abd1.dist.3, vasc.abd1.cfuz.3$cluster, col="grey40", label=TRUE)
ordiellipse(vasc.abd1.dist.3, vasc.abd1.cfuz.3$cluster, col="grey70")
box(lwd=1)
#Now do a K-means clustering analysis of these distances
ccas.env<-cascadeKM((vasc.abd1.dist),2,15)
plot(ccas.env,sortq=TRUE)
par(mar=c(1,1,1,2))
vasc.abd1.dist.3.3d<-with(site.coord, scatter3D(x = site.lon[,1], y = site.lat[,1], z = site.elev[,1], colvar = vasc.abd1.cfuz.3$clustering,
col=c("grey95", "gray75", "gray60", "gray25", "black"),pch = 16, cex = 1.25, cex.lab=1.35, cex.axis=1,xlab = "Longitude", ylab = "Latitude",
zlab = "Elevation (m)",
main = "", ticktype = "simple", theta = 35, d = 5,
colkey = FALSE)
)
par(mar=c(5.1,4.1,4.1,2.1))
vasc.ph.abd1.dist.3<-cmdscale(vasc.ph.abd1.dist, k = 54, eig = FALSE, add = FALSE, x.ret = FALSE)
plot(vasc.ph.abd1.dist.3, type="n", xlab="", ylab="", main="", cex=1, pch=16, col="black", xaxt='n', yaxt="n")
ordispider(vasc.ph.abd1.dist.3, vasc.ph.abd1.cfuz.3$cluster, col="grey40", label=TRUE)
ordiellipse(vasc.ph.abd1.dist.3, vasc.ph.abd1.cfuz.3$cluster, col="grey70")
box(lwd=1)
#Now do a K-means clustering analysis of these distances
ccas.env<-cascadeKM((vasc.ph.abd1.dist),2,15)
plot(ccas.env,sortq=TRUE)
par(mar=c(1,1,1,2))
vasc.ph.abd1.dist.3.3d<-with(site.coord, scatter3D(x = site.lon[,1], y = site.lat[,1], z = site.elev[,1], colvar = vasc.ph.abd1.cfuz.3$clustering,
col=c("grey95", "gray75", "gray60", "gray25", "black"),pch = 16, cex = 1.25, cex.lab=1.35, cex.axis=1,xlab = "Longitude", ylab = "Latitude",
zlab = "Elevation (m)",
main = "", ticktype = "simple", theta = 35, d = 5,
colkey = FALSE)
)

#textClick.bold("(A)", cex=1.75)
#textClick.bold("(B)", cex=1.75)
#textClick.bold("(C)", cex=1.75)
#textClick.bold("(D)", cex=1.75)
#textClick.bold("(E)", cex=1.75)
#textClick.bold("(F)", cex=1.75)
#textClick.bold("(G)", cex=1.75)
#textClick.bold("(H)", cex=1.75)
#textClick.bold("(I)", cex=1.75)
Placement of Three clusters for Angiosperms
#Plot this relationship
#dev.new(width=11.8, height=11.8)
par(mfrow=c(3,3))
par(mar=c(5.1,4.1,4.1,2.1))
site.dist.3<-cmdscale(site.env.dist, k = 54, eig = FALSE, add = FALSE, x.ret = FALSE)
plot(site.dist.3, type="n", xlab="", ylab="", main="", cex=1, pch=16, col="black", xaxt='n', yaxt="n")
ordispider(site.dist.3, site.dist.cfuz.3$cluster, col="grey40", label=TRUE)
ordiellipse(site.dist.3, site.dist.cfuz.3$cluster, col="grey70")
box(lwd=1)
#Now do a K-means clustering analysis of these distances
ccas.env<-cascadeKM((site.env.dist),2,15)
plot(ccas.env,sortq=TRUE)
par(mar=c(1,1,1,2))
site.dist.3.3d<-with(site.coord, scatter3D(x = site.lon[,1], y = site.lat[,1], z = site.elev[,1], colvar = site.dist.cfuz.3$clustering,
col=c("grey95", "gray75", "gray60", "gray25", "black"),pch = 16, cex = 1.25, cex.lab=1.35, cex.axis=1,xlab = "Longitude", ylab = "Latitude",
zlab = "Elevation (m)",
main = "", ticktype = "simple", theta = 35, d = 5,
colkey = list(length = 0.45, width = 0.3, cex.clab = 0.65))
)
par(mar=c(5.1,4.1,4.1,2.1))
angio.abd1.dist.3<-cmdscale(angio.abd1.dist, k = 54, eig = FALSE, add = FALSE, x.ret = FALSE)
plot(angio.abd1.dist.3, type="n", xlab="", ylab="", main="", cex=1, pch=16, col="black", xaxt='n', yaxt="n")
ordispider(angio.abd1.dist.3, angio.abd1.cfuz.3$cluster, col="grey40", label=TRUE)
ordiellipse(angio.abd1.dist.3, angio.abd1.cfuz.3$cluster, col="grey70")
box(lwd=1)
#Now do a K-means clustering analysis of these distances
ccas.env<-cascadeKM((angio.abd1.dist),2,15)
plot(ccas.env,sortq=TRUE)
par(mar=c(1,1,1,2))
angio.abd1.dist.3.3d<-with(site.coord, scatter3D(x = site.lon[,1], y = site.lat[,1], z = site.elev[,1], colvar = angio.abd1.cfuz.3$clustering,
col=c("grey95", "gray75", "gray60", "gray25", "black"),pch = 16, cex = 1.25, cex.lab=1.35, cex.axis=1,xlab = "Longitude", ylab = "Latitude",
zlab = "Elevation (m)",
main = "", ticktype = "simple", theta = 35, d = 5,
colkey = FALSE)
)
par(mar=c(5.1,4.1,4.1,2.1))
angio.ph.abd1.dist.3<-cmdscale(angio.ph.abd1.dist, k = 54, eig = FALSE, add = FALSE, x.ret = FALSE)
plot(angio.ph.abd1.dist.3, type="n", xlab="", ylab="", main="", cex=1, pch=16, col="black", xaxt='n', yaxt="n")
ordispider(angio.ph.abd1.dist.3, angio.ph.abd1.cfuz.3$cluster, col="grey40", label=TRUE)
ordiellipse(angio.ph.abd1.dist.3, angio.ph.abd1.cfuz.3$cluster, col="grey70")
box(lwd=1)
#Now do a K-means clustering analysis of these distances
ccas.env<-cascadeKM((angio.ph.abd1.dist),2,15)
plot(ccas.env,sortq=TRUE)
par(mar=c(1,1,1,2))
angio.ph.abd1.dist.3.3d<-with(site.coord, scatter3D(x = site.lon[,1], y = site.lat[,1], z = site.elev[,1], colvar = angio.ph.abd1.cfuz.3$clustering,
col=c("grey95", "gray75", "gray60", "gray25", "black"),pch = 16, cex = 1.25, cex.lab=1.35, cex.axis=1,xlab = "Longitude", ylab = "Latitude",
zlab = "Elevation (m)",
main = "", ticktype = "simple", theta = 35, d = 5,
colkey = FALSE)
)

#textClick.bold("(A)", cex=1.75)
#textClick.bold("(B)", cex=1.75)
#textClick.bold("(C)", cex=1.75)
#textClick.bold("(D)", cex=1.75)
#textClick.bold("(E)", cex=1.75)
#textClick.bold("(F)", cex=1.75)
#textClick.bold("(G)", cex=1.75)
#textClick.bold("(H)", cex=1.75)
#textClick.bold("(I)", cex=1.75)
Placement of Seven clusters for Vasculars
#Plot this relationship
#dev.new(width=11.8, height=11.8)
par(mfrow=c(3,3))
par(mar=c(5.1,4.1,4.1,2.1))
site.dist.7<-cmdscale(site.env.dist, k = 54, eig = FALSE, add = FALSE, x.ret = FALSE)
plot(site.dist.7, type="n", xlab="", ylab="", main="", cex=1, pch=16, col="black", xaxt='n', yaxt="n")
ordispider(site.dist.7, site.dist.cfuz.7$cluster, col="grey40", label=TRUE)
ordiellipse(site.dist.7, site.dist.cfuz.7$cluster, col="grey70")
box(lwd=1)
#Now do a K-means clustering analysis of these distances
ccas.env<-cascadeKM((site.env.dist),2,15)
plot(ccas.env,sortq=TRUE)
par(mar=c(1,1,1,2))
site.dist.7.3d<-with(site.coord, scatter3D(x = site.lon[,1], y = site.lat[,1], z = site.elev[,1], colvar = site.dist.cfuz.7$clustering,
col=c("grey95", "grey85","gray75", "gray60", "grey45","gray25", "black"),pch = 16, cex = 1.25, cex.lab=1.35, cex.axis=1,xlab = "Longitude", ylab = "Latitude",
zlab = "Elevation (m)",
main = "", ticktype = "simple", theta = 35, d = 5,
colkey = list(length = 0.45, width = 0.7, cex.clab = 0.65))
)
par(mar=c(5.1,4.1,4.1,2.1))
vasc.abd1.dist.7<-cmdscale(vasc.abd1.dist, k = 54, eig = FALSE, add = FALSE, x.ret = FALSE)
plot(vasc.abd1.dist.7, type="n", xlab="", ylab="", main="", cex=1, pch=16, col="black", xaxt='n', yaxt="n")
ordispider(vasc.abd1.dist.7, vasc.abd1.cfuz.7$cluster, col="grey40", label=TRUE)
ordiellipse(vasc.abd1.dist.7, vasc.abd1.cfuz.7$cluster, col="grey70")
box(lwd=1)
#Now do a K-means clustering analysis of these distances
ccas.env<-cascadeKM((vasc.abd1.dist),2,15)
plot(ccas.env,sortq=TRUE)
par(mar=c(1,1,1,2))
vasc.abd1.dist.7.3d<-with(site.coord, scatter3D(x = site.lon[,1], y = site.lat[,1], z = site.elev[,1], colvar = vasc.abd1.cfuz.7$clustering,
col=c("grey95", "grey85","gray75", "gray60", "grey45","gray25", "black"),pch = 16, cex = 1.25, cex.lab=1.35, cex.axis=1,xlab = "Longitude", ylab = "Latitude",
zlab = "Elevation (m)",
main = "", ticktype = "simple", theta = 35, d = 5,
colkey = FALSE)
)
par(mar=c(5.1,4.1,4.1,2.1))
vasc.ph.abd1.dist.7<-cmdscale(vasc.ph.abd1.dist, k = 54, eig = FALSE, add = FALSE, x.ret = FALSE)
plot(vasc.ph.abd1.dist.7, type="n", xlab="", ylab="", main="", cex=1, pch=16, col="black", xaxt='n', yaxt="n")
ordispider(vasc.ph.abd1.dist.7, vasc.ph.abd1.cfuz.7$cluster, col="grey40", label=TRUE)
ordiellipse(vasc.ph.abd1.dist.7, vasc.ph.abd1.cfuz.7$cluster, col="grey70")
box(lwd=1)
#Now do a K-means clustering analysis of these distances
ccas.env<-cascadeKM((vasc.ph.abd1.dist),2,15)
plot(ccas.env,sortq=TRUE)
par(mar=c(1,1,1,2))
vasc.ph.abd1.dist.7.7d<-with(site.coord, scatter3D(x = site.lon[,1], y = site.lat[,1], z = site.elev[,1], colvar = vasc.ph.abd1.cfuz.7$clustering,
col=c("grey95", "grey85","gray75", "gray60", "grey45","gray25", "black"),pch = 16, cex = 1.25, cex.lab=1.35, cex.axis=1,xlab = "Longitude", ylab = "Latitude",
zlab = "Elevation (m)",
main = "", ticktype = "simple", theta = 35, d = 5,
colkey = FALSE)
)

#textClick.bold("A)", cex=1.5)
#textClick.bold("B)", cex=1.5)
#textClick.bold("C)", cex=1.5)
#textClick.bold("D)", cex=1.5)
#textClick.bold("E)", cex=1.5)
#textClick.bold("F)", cex=1.5)
#textClick.bold("G)", cex=1.5)
#textClick.bold("H)", cex=1.5)
#textClick.bold("I)", cex=1.5)
Placement of Seven clusters for Angiosperms
#Plot this relationship
#dev.new(width=11.8, height=11.8)
par(mfrow=c(3,3))
par(mar=c(5.1,4.1,4.1,2.1))
site.dist.7<-cmdscale(site.env.dist, k = 54, eig = FALSE, add = FALSE, x.ret = FALSE)
plot(site.dist.7, type="n", xlab="", ylab="", main="", cex=1, pch=16, col="black", xaxt='n', yaxt="n")
ordispider(site.dist.7, site.dist.cfuz.7$cluster, col="grey40", label=TRUE)
ordiellipse(site.dist.7, site.dist.cfuz.7$cluster, col="grey70")
box(lwd=1)
#Now do a K-means clustering analysis of these distances
ccas.env<-cascadeKM((site.env.dist),2,15)
plot(ccas.env,sortq=TRUE)
par(mar=c(1,1,1,2))
site.dist.7.3d<-with(site.coord, scatter3D(x = site.lon[,1], y = site.lat[,1], z = site.elev[,1], colvar = site.dist.cfuz.7$clustering,
col=c("grey95", "grey85","gray75", "gray60", "grey45","gray25", "black"),pch = 16, cex = 1.25, cex.lab=1.35, cex.axis=1,xlab = "Longitude", ylab = "Latitude",
zlab = "Elevation (m)",
main = "", ticktype = "simple", theta = 35, d = 5,
colkey = list(length = 0.45, width = 0.7, cex.clab = 0.65))
)
par(mar=c(5.1,4.1,4.1,2.1))
angio.abd1.dist.7<-cmdscale(angio.abd1.dist, k = 54, eig = FALSE, add = FALSE, x.ret = FALSE)
plot(angio.abd1.dist.7, type="n", xlab="", ylab="", main="", cex=1, pch=16, col="black", xaxt='n', yaxt="n")
ordispider(angio.abd1.dist.7, angio.abd1.cfuz.7$cluster, col="grey40", label=TRUE)
ordiellipse(angio.abd1.dist.7, angio.abd1.cfuz.7$cluster, col="grey70")
box(lwd=1)
#Now do a K-means clustering analysis of these distances
ccas.env<-cascadeKM((angio.abd1.dist),2,15)
plot(ccas.env,sortq=TRUE)
par(mar=c(1,1,1,2))
angio.abd1.dist.7.3d<-with(site.coord, scatter3D(x = site.lon[,1], y = site.lat[,1], z = site.elev[,1], colvar = angio.abd1.cfuz.7$clustering,
col=c("grey95", "grey85","gray75", "gray60", "grey45","gray25", "black"),pch = 16, cex = 1.25, cex.lab=1.35, cex.axis=1,xlab = "Longitude", ylab = "Latitude",
zlab = "Elevation (m)",
main = "", ticktype = "simple", theta = 35, d = 5,
colkey = FALSE)
)
par(mar=c(5.1,4.1,4.1,2.1))
angio.ph.abd1.dist.7<-cmdscale(angio.ph.abd1.dist, k = 54, eig = FALSE, add = FALSE, x.ret = FALSE)
plot(angio.ph.abd1.dist.7, type="n", xlab="", ylab="", main="", cex=1, pch=16, col="black", xaxt='n', yaxt="n")
ordispider(angio.ph.abd1.dist.7, angio.ph.abd1.cfuz.7$cluster, col="grey40", label=TRUE)
ordiellipse(angio.ph.abd1.dist.7, angio.ph.abd1.cfuz.7$cluster, col="grey70")
box(lwd=1)
#Now do a K-means clustering analysis of these distances
ccas.env<-cascadeKM((angio.ph.abd1.dist),2,15)
plot(ccas.env,sortq=TRUE)
par(mar=c(1,1,1,2))
angio.ph.abd1.dist.7.7d<-with(site.coord, scatter3D(x = site.lon[,1], y = site.lat[,1], z = site.elev[,1], colvar = angio.ph.abd1.cfuz.7$clustering,
col=c("grey95", "grey85","gray75", "gray60", "grey45","gray25", "black"),pch = 16, cex = 1.25, cex.lab=1.35, cex.axis=1,xlab = "Longitude", ylab = "Latitude",
zlab = "Elevation (m)",
main = "", ticktype = "simple", theta = 35, d = 5,
colkey = FALSE)
)

#textClick.bold("(A)", cex=1.75)
#textClick.bold("(B)", cex=1.75)
#textClick.bold("(C)", cex=1.75)
#textClick.bold("(D)", cex=1.75)
#textClick.bold("(E)", cex=1.75)
#textClick.bold("(F)", cex=1.75)
#textClick.bold("(G)", cex=1.75)
#textClick.bold("(H)", cex=1.75)
#textClick.bold("(I)", cex=1.75)