#Grupo:
library(readr)
##
## Attaching package: 'readr'
## The following object is masked from 'package:scales':
##
## col_factor
library(knitr)
df <- read_csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/annual_csv.csv")
## Rows: 274 Columns: 3
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): Source
## dbl (2): Year, Mean
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
##
## -- Column specification --------------------------------------------------------
## cols(
## Source = col_character(),
## Year = col_double(),
## Mean = col_double()
## )
knitr::kable(head(df))
| Source | Year | Mean |
|---|---|---|
| GCAG | 2016 | 0.9363 |
| GISTEMP | 2016 | 0.9900 |
| GCAG | 2015 | 0.8998 |
| GISTEMP | 2015 | 0.8700 |
| GCAG | 2014 | 0.7408 |
| GISTEMP | 2014 | 0.7400 |
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
ggplot(df, aes(x = Year, y = Mean)) +
geom_line(color="#69b3a2", size = 1) +
xlab("Year")