date: 27-07-2021
1 Resumen
Iniciaremos expandiendo los ingresos promedios (multiplicación del ingreso promedio mensual comunal y los habitantes de la misma comuna) obtenidos de la CASEN 2017 sobre la categoría de respuesta: “ESCOLARIDAD” del CENSO de personas del 2017, que fue la categoría de respuesta que más alto correlacionó con los ingresos expandidos, ambos a nivel comunal y ambos a nivel RURAL.
Seguiremos con un análisis sobre todas las zonas Chile comenzando en éste artículo a nivel urbano. En un segundo artículo haremos la publicación a nivel rural.
Como una tercera parte, y ya construída nuestra tabla de trabajo, haremos el análisis por región. Ensayaremos diferentes modelos dentro del análisis de regresión cuya variable independiente será: “frecuencia de población que posee la variable Censal respecto a la zona” y la dependiente: “ingreso expandido por zona por proporción de población zonal respecto al total comunal (multipob)”. Lo anterior para elegir el que posea el mayor coeficiente de determinación y así construir una tabla de valores predichos (estimación del ingreso e ingreso estimado por zona).
1.1 Variable CENSO
Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: ESCOLARIDAD del Censo de personas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver aquí).
1.1.1 Lectura de la tabla censal de personas
Leemos la tabla Censo 2017 de personas que ya tiene integrada la clave zonal:
<- readRDS("censo_personas_con_clave_17")
tabla_con_clave
<- head(tabla_con_clave,50)
abc kbl(abc) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
REGION | PROVINCIA | COMUNA | DC | AREA | ZC_LOC | ID_ZONA_LOC | NVIV | NHOGAR | PERSONAN | P07 | P08 | P09 | P10 | P10COMUNA | P10PAIS | P11 | P11COMUNA | P11PAIS | P12 | P12COMUNA | P12PAIS | P12A_LLEGADA | P12A_TRAMO | P13 | P14 | P15 | P15A | P16 | P16A | P16A_OTRO | P17 | P18 | P19 | P20 | P21M | P21A | P10PAIS_GRUPO | P11PAIS_GRUPO | P12PAIS_GRUPO | ESCOLARIDAD | P16A_GRUPO | REGION_15R | PROVINCIA_15R | COMUNA_15R | P10COMUNA_15R | P11COMUNA_15R | P12COMUNA_15R | clave |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 1 | 1 | 1 | 1 | 1 | 73 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 6 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 1 | 1 | 1 | 78 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 2 | 2 | 2 | 78 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 1 | 1 | 3 | 1965 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 3 | 5 | 2 | 52 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 2 | 1 | 4 | 1995 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 4 | 11 | 1 | 44 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 3 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 1 | 1 | 1 | 39 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 2 | 2 | 2 | 35 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 2 | 2 | 11 | 2004 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 3 | 5 | 1 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 4 | 5 | 1 | 12 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 6 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 10 | 1 | 1 | 1 | 2 | 65 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 9 | 1992 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 1 | 1 | 1 | 50 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 2 | 4 | 2 | 43 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 3 | 2002 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 3 | 5 | 1 | 15 | 3 | 15201 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 1 | 7 | 2 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 15201 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 1 | 1 | 1 | 75 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 2 | 16 | 2 | 58 | 4 | 98 | 68 | 6 | 98 | 998 | 5 | 98 | 998 | 9999 | 1 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 4 | 4 | 99 | 9999 | 68 | 68 | 68 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 3 | 2 | 2 | 70 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 5 | 4 | 99 | 9999 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 1 | 1 | 2 | 43 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | I | 3 | 3 | 9 | 2008 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 2 | 4 | 1 | 55 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 3 | 5 | 2 | 13 | 2 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 4 | 5 | 1 | 8 | 2 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 5 | 15 | 2 | 29 | 2 | 98 | 998 | 4 | 98 | 998 | 3 | 98 | 998 | 2015 | 1 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 5 | 5 | 11 | 2014 | 998 | 604 | 604 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 6 | 15 | 1 | 4 | 2 | 98 | 998 | 1 | 98 | 998 | 5 | 98 | 998 | 2015 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 7 | 15 | 2 | 2 | 2 | 98 | 998 | 1 | 98 | 998 | 3 | 98 | 998 | 2015 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 8 | 15 | 1 | 16 | 2 | 98 | 998 | 6 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 68 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 18 | 1 | 1 | 1 | 2 | 74 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 12 | 1976 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 19 | 1 | 1 | 1 | 1 | 68 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 1 | 1 | 1 | 74 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 2 | 2 | 2 | 65 | 1 | 98 | 998 | 3 | 997 | 998 | 3 | 98 | 998 | 9999 | 2 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 9 | 1982 | 998 | 998 | 604 | 2 | 2 | 15 | 152 | 15202 | 98 | 997 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 1 | 1 | 2 | 76 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 6 | 98 | 8 | 6 | 3 | 1981 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 2 | 5 | 2 | 36 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | A | 0 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 1 | 1 | 2 | 31 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 1 | A | 2 | 2 | 4 | 2008 | 998 | 998 | 68 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 2 | 4 | 1 | 35 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 1 | F | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 3 | 5 | 1 | 11 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 1 | 5 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 4 | 5 | 1 | 8 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 5 | 15 | 2 | 74 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 6 | 6 | 99 | 9999 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 1 | 1 | 1 | 41 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 2 | 2 | 2 | 47 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | A | 2 | 1 | 4 | 1996 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 3 | 14 | 1 | 88 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 4 | 14 | 1 | 65 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 1 | 1 | 2 | 59 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 8 | 8 | 2 | 1998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 2 | 2 | 1 | 56 | 1 | 98 | 998 | 99 | 99 | 999 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 999 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 99 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 3 | 5 | 2 | 36 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 7 | 2010 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 4 | 12 | 2 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 5 | 12 | 2 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 6 | 5 | 1 | 24 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 7 | 11 | 2 | 24 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 1 | N | 2 | 2 | 11 | 2015 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 8 | 12 | 1 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 9 | 12 | 2 | 1 | 1 | 98 | 998 | 1 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 38 | 1 | 1 | 1 | 1 | 19 | 1 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 1 | 8 | 2 | 1 | 2 | 98 | 1 | A | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 1 | 1 | 1 | 21 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 7 | 2 | 1 | 2 | 98 | 1 | F | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
Cuantas personas hay en Chile?
length(tabla_con_clave$clave)
## [1] 17574003
Cuántas zonas hay en Chile?
length(unique(tabla_con_clave$clave))
## [1] 15500
1.1.2 Filtro a nivel rural:
<- filter(tabla_con_clave, tabla_con_clave$AREA ==2) tabla_con_clave_u
Cuantas personas hay en Chile rurales?
length(tabla_con_clave_u$clave)
## [1] 2149740
Cuantas zonas hay en el nivel rural?
length(unique(tabla_con_clave_u$clave))
## [1] 10331
ESCOLARIDAD | cat_r | Correlación | total | criterio |
---|---|---|---|---|
1_años | 1_años | 0.2767593 | 77.533637 | 21.4581556477961 |
2_años | 2_años | 0.2470193 | 82.750944 | 20.4410761048424 |
3_años | 3_años | 0.2362649 | 86.971252 | 20.5482559410038 |
4_años | 4_años | 0.2342442 | 88.607105 | 20.7557039968554 |
5_años | 5_años | 0.2571000 | 85.161165 | 21.8949337693051 |
6_años | 6_años | 0.2043421 | 92.449908 | 18.891404834352 |
7_años | 7_años | 0.2895047 | 82.499274 | 23.8839261134497 |
8_años | 8_años | 0.2608489 | 95.992643 | 25.0395797889307 |
9_años | 9_años | 0.3934692 | 80.873100 | 31.8210743546358 |
10_años | 10_años | 0.4110443 | 85.635466 | 35.1999687131626 |
11_años | 11_años | 0.4201018 | 76.710870 | 32.2263767237315 |
12_años | 12_años | 0.4255218 | 96.844449 | 41.2094267607503 |
13_años | 13_años | 0.4692992 | 47.246152 | 22.1725816849638 |
14_años | 14_años | 0.4923740 | 64.630723 | 31.8224876694169 |
15_años | 15_años | 0.4784635 | 64.137063 | 30.6872423603531 |
16_años | 16_años | 0.4633309 | 58.542251 | 27.1244364080257 |
17_años | 17_años | 0.4894226 | 69.364050 | 33.9483328702428 |
18_años | 18_años | 0.3755864 | 5.043074 | 1.89411023856027 |
19_años | 19_años | 0.4479310 | 23.598877 | 10.5706692354131 |
20_años | 20_años | 0.3853917 | 5.459297 | 2.1039675912991 |
21_años | 21_años | 0.4362933 | 8.140548 | 3.55166622218966 |
1.2 Criterio de seleccion de las respuestas a las preguntas:
No nos sirve de nada una alta correlación, si nuestra información abarca muy pocas zonas censales. se busca el óptimo simplemente obteniendo el mayor valor de la multiplicación entre ambos, que en nuestro caso fue la categoría 12 años cubriendo el 96.7% de zonas rurales.
<- filter(tabla_con_clave, tabla_con_clave$AREA ==2)
tabla_con_clave_u <- tabla_con_clave_u[,-c(1,2,4:40,42:48),drop=F]
tabla_con_clave_f
<- tabla_con_clave_f$COMUNA
codigos <- seq(1:nrow(tabla_con_clave_f))
rango <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
cadena <- as.data.frame(codigos)
codigos <- as.data.frame(cadena)
cadena <- cbind(tabla_con_clave_f,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE]
comuna_corr names(comuna_corr)[3] <- "código"
<- comuna_corr
tabla_con_clave_f
<- filter(tabla_con_clave_f, tabla_con_clave_f$ESCOLARIDAD == 12)
claves_con_1
<- xtabs(~ESCOLARIDAD+clave, data=claves_con_1)
con4 <- as.data.frame(con4)
con4
= merge( x = con4, y =claves_con_1, by = "clave", all.x = TRUE)
trabajo_001 <- unique(trabajo_001)
trabajo003 <- trabajo003[,-c(2,4)]
trabajo003
<- readRDS("Ingresos_expandidos_rural_17.rds")
df_2017_2
= merge( x = trabajo003, y = df_2017_2, by = "código", all.x = TRUE)
comunas_censo_casen_666
<- readRDS("tabla_de_prop_pob.rds")
tabla_de_prop_pob names(tabla_de_prop_pob)[1] <- "clave"
= merge( x = comunas_censo_casen_666, y = tabla_de_prop_pob, by = "clave", all.x = TRUE)
comunas_censo_casen_6666 $multipob <- comunas_censo_casen_6666$ingresos_expandidos*comunas_censo_casen_6666$p comunas_censo_casen_6666
write_xlsx(comunas_censo_casen_6666, "comunas_censo_casen_6666.xlsx")
kbl(head(comunas_censo_casen_6666,50)) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
clave | código.x | Freq.x | personas | comuna | promedio_i | año | ingresos_expandidos | Freq.y | p | código.y | multipob |
---|---|---|---|---|---|---|---|---|---|---|---|
10101032002 | 10101 | 27 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 129 | 0.0005246 | 10101 | 22734631 |
10101032011 | 10101 | 106 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 426 | 0.0017324 | 10101 | 75077153 |
10101032019 | 10101 | 174 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 829 | 0.0033713 | 10101 | 146100846 |
10101062003 | 10101 | 28 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 158 | 0.0006425 | 10101 | 27845517 |
10101062008 | 10101 | 83 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 581 | 0.0023627 | 10101 | 102393958 |
10101062013 | 10101 | 83 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 571 | 0.0023221 | 10101 | 100631584 |
10101062029 | 10101 | 15 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 47 | 0.0001911 | 10101 | 8283160 |
10101062039 | 10101 | 18 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 67 | 0.0002725 | 10101 | 11807909 |
10101072014 | 10101 | 204 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 997 | 0.0040545 | 10101 | 175708737 |
10101072021 | 10101 | 13 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 44 | 0.0001789 | 10101 | 7754448 |
10101072028 | 10101 | 22 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 145 | 0.0005897 | 10101 | 25554430 |
10101072029 | 10101 | 221 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 1051 | 0.0042741 | 10101 | 185225559 |
10101072036 | 10101 | 17 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 118 | 0.0004799 | 10101 | 20796019 |
10101072045 | 10101 | 19 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 113 | 0.0004595 | 10101 | 19914832 |
10101072050 | 10101 | 7 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 66 | 0.0002684 | 10101 | 11631672 |
10101082016 | 10101 | 18 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 121 | 0.0004921 | 10101 | 21324731 |
10101082017 | 10101 | 4 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 38 | 0.0001545 | 10101 | 6697023 |
10101082018 | 10101 | 102 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 623 | 0.0025335 | 10101 | 109795931 |
10101082030 | 10101 | 26 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 176 | 0.0007157 | 10101 | 31017791 |
10101082034 | 10101 | 11 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 66 | 0.0002684 | 10101 | 11631672 |
10101082042 | 10101 | 51 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 253 | 0.0010289 | 10101 | 44588075 |
10101082045 | 10101 | 23 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 123 | 0.0005002 | 10101 | 21677206 |
10101092004 | 10101 | 11 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 97 | 0.0003945 | 10101 | 17095033 |
10101092008 | 10101 | 126 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 752 | 0.0030581 | 10101 | 132530562 |
10101092037 | 10101 | 68 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 276 | 0.0011224 | 10101 | 48641536 |
10101092040 | 10101 | 101 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 509 | 0.0020699 | 10101 | 89704862 |
10101092041 | 10101 | 354 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 1683 | 0.0068442 | 10101 | 296607627 |
10101092044 | 10101 | 99 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 530 | 0.0021553 | 10101 | 93405848 |
10101102005 | 10101 | 24 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 147 | 0.0005978 | 10101 | 25906905 |
10101102007 | 10101 | 166 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 824 | 0.0033509 | 10101 | 145219658 |
10101102026 | 10101 | 54 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 245 | 0.0009963 | 10101 | 43178175 |
10101102035 | 10101 | 199 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 940 | 0.0038227 | 10101 | 165663202 |
10101102037 | 10101 | 24 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 164 | 0.0006669 | 10101 | 28902942 |
10101102051 | 10101 | 8 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 57 | 0.0002318 | 10101 | 10045535 |
10101102901 | 10101 | 1 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 16 | 0.0000651 | 10101 | 2819799 |
10101112025 | 10101 | 186 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 1078 | 0.0043839 | 10101 | 189983971 |
10101122024 | 10101 | 62 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 952 | 0.0038715 | 10101 | 167778052 |
10101132022 | 10101 | 121 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 703 | 0.0028589 | 10101 | 123894927 |
10101132023 | 10101 | 102 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 603 | 0.0024522 | 10101 | 106271182 |
10101132027 | 10101 | 29 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 105 | 0.0004270 | 10101 | 18504932 |
10101132049 | 10101 | 359 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 1883 | 0.0076575 | 10101 | 331855117 |
10101142009 | 10101 | 4 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 59 | 0.0002399 | 10101 | 10398010 |
10101142015 | 10101 | 14 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 124 | 0.0005043 | 10101 | 21853444 |
10101142027 | 10101 | 42 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 192 | 0.0007808 | 10101 | 33837590 |
10101142038 | 10101 | 6 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 53 | 0.0002155 | 10101 | 9340585 |
10101142046 | 10101 | 56 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 317 | 0.0012891 | 10101 | 55867271 |
10101142047 | 10101 | 32 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 263 | 0.0010695 | 10101 | 46350449 |
10101142049 | 10101 | 169 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 973 | 0.0039569 | 10101 | 171479038 |
10101152002 | 10101 | 118 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 554 | 0.0022529 | 10101 | 97635547 |
10101152006 | 10101 | 53 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 214 | 0.0008703 | 10101 | 37714814 |
Vemos que nuestra tabla de trabajo cubre mas del 90% de zonas rurales.
nrow(comunas_censo_casen_6666)
## [1] 10005
En total Chile posee 10,331 zonas rurales de las que estamos cubriendo 10005, cubriendo el 97% de las zonas rurales con una variable (12_años) de ESCOLARIDAD que difiere con la que mas alto correlaciono con ingresos expandidos en 0.066
<- (10005 * 100) / 10331
x x
## [1] 96.84445
1.3 Diagrama de dispersión loess
scatter.smooth(x=comunas_censo_casen_6666$Freq.x, y=comunas_censo_casen_6666$multipob, main="multi_pob ~ Freq.x",
xlab = "Freq.x",
ylab = "multi_pob",
col = 2)
2 Análisis de regresión
Aplicaremos un análisis de regresión donde:
\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]
\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]
2.1 Outliers
Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.
2.2 Modelo lineal
Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.
<- comunas_censo_casen_6666
tabla_de_trabajo <- lm( multipob~(Freq.x) , data=tabla_de_trabajo)
linearMod summary(linearMod)
##
## Call:
## lm(formula = multipob ~ (Freq.x), data = tabla_de_trabajo)
##
## Residuals:
## Min 1Q Median 3Q Max
## -853492260 -6763317 -3646307 2208289 922748428
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6344942 313835 20.22 <2e-16 ***
## Freq.x 900756 3494 257.79 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 27310000 on 9648 degrees of freedom
## (355 observations deleted due to missingness)
## Multiple R-squared: 0.8732, Adjusted R-squared: 0.8732
## F-statistic: 6.645e+04 on 1 and 9648 DF, p-value: < 2.2e-16
2.3 Gráfica de la recta de regresión lineal
ggplot(tabla_de_trabajo, aes(x = Freq.x , y = multipob)) +
geom_point() +
stat_smooth(method = "lm", col = "red")
Si bien obtenemos nuestro modelo lineal da cuenta del 0.9168 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.
3 Modelos alternativos
### 8.1 Modelo cuadrático
<- lm( multipob~(Freq.x^2) , data=tabla_de_trabajo)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "cuadrático"
modelo <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
sintaxis <- cbind(modelo,dato,sintaxis)
modelos1
### 8.2 Modelo cúbico
<- lm( multipob~(Freq.x^3) , data=tabla_de_trabajo)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "cúbico"
modelo <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
sintaxis <- cbind(modelo,dato,sintaxis)
modelos2
### 8.3 Modelo logarítmico
<- lm( multipob~log(Freq.x) , data=tabla_de_trabajo)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "logarítmico"
modelo <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis <- cbind(modelo,dato,sintaxis)
modelos3
### 8.5 Modelo con raíz cuadrada
<- lm( multipob~sqrt(Freq.x) , data=tabla_de_trabajo)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "raíz cuadrada"
modelo <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis <- cbind(modelo,dato,sintaxis)
modelos5
### 8.6 Modelo raíz-raíz
<- lm( sqrt(multipob)~sqrt(Freq.x) , data=tabla_de_trabajo)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "raíz-raíz"
modelo <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis <- cbind(modelo,dato,sintaxis)
modelos6
### 8.7 Modelo log-raíz
<- lm( log(multipob)~sqrt(Freq.x) , data=tabla_de_trabajo)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "log-raíz"
modelo <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis <- cbind(modelo,dato,sintaxis)
modelos7
### 8.8 Modelo raíz-log
<- lm( sqrt(multipob)~log(Freq.x) , data=tabla_de_trabajo)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "raíz-log"
modelo <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis <- cbind(modelo,dato,sintaxis)
modelos8
### 8.9 Modelo log-log
<- lm( log(multipob)~log(Freq.x) , data=tabla_de_trabajo)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "log-log"
modelo <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis <- cbind(modelo,dato,sintaxis)
modelos9
<- rbind(modelos1, modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind <<- modelos_bind[order(modelos_bind$dato, decreasing = T ),]
modelos_bind
<<- tabla_de_trabajo
h_y_m_comuna_corr_01
kbl(modelos_bind) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
modelo | dato | sintaxis | |
---|---|---|---|
5 | raíz-raíz | 0.931469599155803 | linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) |
8 | log-log | 0.885928812926616 | linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) |
1 | cuadrático | 0.873209853833581 | linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01) |
2 | cúbico | 0.873209853833581 | linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01) |
6 | log-raíz | 0.787302082593954 | linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) |
4 | raíz cuadrada | 0.775090090600853 | linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) |
7 | raíz-log | 0.765335598062265 | linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) |
3 | logarítmico | 0.45660973354207 | linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01) |
4 Elección del modelo.
Elegimos el modelo log-log (8) pues tiene el más alto \(R^2\)
<- h_y_m_comuna_corr_01
h_y_m_comuna_corr <- 5
metodo switch (metodo,
case = linearMod <- lm( multipob~(Freq.x^2) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multipob~(Freq.x^3) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multipob~log(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multipob~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( sqrt(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( log(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( sqrt(multipob)~log(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( log(multipob)~log(Freq.x) , data=h_y_m_comuna_corr)
)summary(linearMod)
##
## Call:
## lm(formula = sqrt(multipob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -12821.2 -575.0 -65.7 490.5 16381.0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 485.321 16.989 28.57 <2e-16 ***
## sqrt(Freq.x) 953.222 2.632 362.15 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 999.4 on 9648 degrees of freedom
## (355 observations deleted due to missingness)
## Multiple R-squared: 0.9315, Adjusted R-squared: 0.9315
## F-statistic: 1.312e+05 on 1 and 9648 DF, p-value: < 2.2e-16
4.1 Modelo raíz-raíz (raíz-raíz)
Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.9315).
4.1.1 Diagrama de dispersión sobre raíz-raíz
Desplegamos una curva suavizada por loess en el diagrama de dispersión.
scatter.smooth(x=sqrt(tabla_de_trabajo$Freq.x), y=sqrt(tabla_de_trabajo$multipob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")
ggplot(tabla_de_trabajo, aes(x = sqrt(Freq.x) , y = sqrt(multipob))) + geom_point() + stat_smooth(method=lm , color="blue", level = 0.9, fill="green", se=TRUE)
4.1.2 Análisis de residuos
par(mfrow = c (2,2))
plot(linearMod)
4.1.3 Modelo sqrt-sqrt
\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]
<- lm( sqrt(multipob)~sqrt(Freq.x) , data=tabla_de_trabajo)
linearMod <- linearMod$coefficients[1]
aa <- linearMod$coefficients[2] bb
5 Aplicación la regresión a los valores de la variable a nivel de zona
Esta nueva variable se llamará: est_ing
$est_ing <- (aa)^2 +2 * aa*bb*sqrt(tabla_de_trabajo$Freq.x) + (bb)^2 * tabla_de_trabajo$Freq.x tabla_de_trabajo
6 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona
\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]
$ing_medio_zona <- tabla_de_trabajo$est_ing /(tabla_de_trabajo$personas * tabla_de_trabajo$p)
tabla_de_trabajo
write_xlsx(tabla_de_trabajo, "tabla_de_trabajo_escolaridad.xlsx")
write.dbf(tabla_de_trabajo, "tabla_de_trabajo_escolaridad.dbf")
<- tabla_de_trabajo[c(1:100),]
r3_100 kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
clave | código.x | Freq.x | personas | comuna | promedio_i | año | ingresos_expandidos | Freq.y | p | código.y | multipob | est_ing | ing_medio_zona |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10101032002 | 10101 | 27 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 129 | 0.0005246 | 10101 | 22734631.0 | 29576261 | 229273.34 |
10101032011 | 10101 | 106 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 426 | 0.0017324 | 10101 | 75077153.5 | 106076386 | 249005.60 |
10101032019 | 10101 | 174 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 829 | 0.0033713 | 10101 | 146100845.6 | 170542154 | 205720.33 |
10101062003 | 10101 | 28 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 158 | 0.0006425 | 10101 | 27845517.0 | 30573114 | 193500.72 |
10101062008 | 10101 | 83 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 581 | 0.0023627 | 10101 | 102393958.1 | 84081270 | 144718.19 |
10101062013 | 10101 | 83 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 571 | 0.0023221 | 10101 | 100631583.6 | 84081270 | 147252.66 |
10101062029 | 10101 | 15 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 47 | 0.0001911 | 10101 | 8283160.1 | 17448437 | 371243.33 |
10101062039 | 10101 | 18 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 67 | 0.0002725 | 10101 | 11807909.1 | 20516352 | 306214.21 |
10101072014 | 10101 | 204 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 997 | 0.0040545 | 10101 | 175708737.1 | 198811417 | 199409.65 |
10101072021 | 10101 | 13 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 44 | 0.0001789 | 10101 | 7754447.8 | 15383735 | 349630.35 |
10101072028 | 10101 | 22 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 145 | 0.0005897 | 10101 | 25554430.2 | 24565177 | 169415.01 |
10101072029 | 10101 | 221 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 1051 | 0.0042741 | 10101 | 185225559.4 | 214797765 | 204374.66 |
10101072036 | 10101 | 17 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 118 | 0.0004799 | 10101 | 20796019.0 | 19497122 | 165229.85 |
10101072045 | 10101 | 19 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 113 | 0.0004595 | 10101 | 19914831.8 | 21532550 | 190553.54 |
10101072050 | 10101 | 7 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 66 | 0.0002684 | 10101 | 11631671.7 | 9043903 | 137028.84 |
10101082016 | 10101 | 18 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 121 | 0.0004921 | 10101 | 21324731.4 | 20516352 | 169556.63 |
10101082017 | 10101 | 4 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 38 | 0.0001545 | 10101 | 6697023.1 | 5720536 | 150540.41 |
10101082018 | 10101 | 102 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 623 | 0.0025335 | 10101 | 109795931.0 | 102260397 | 164141.89 |
10101082030 | 10101 | 26 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 176 | 0.0007157 | 10101 | 31017791.1 | 28577758 | 162373.63 |
10101082034 | 10101 | 11 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 66 | 0.0002684 | 10101 | 11631671.7 | 13299147 | 201502.22 |
10101082042 | 10101 | 51 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 253 | 0.0010289 | 10101 | 44588074.7 | 53183261 | 210210.52 |
10101082045 | 10101 | 23 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 123 | 0.0005002 | 10101 | 21677206.3 | 25571343 | 207897.10 |
10101092004 | 10101 | 11 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 97 | 0.0003945 | 10101 | 17095032.6 | 13299147 | 137104.60 |
10101092008 | 10101 | 126 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 752 | 0.0030581 | 10101 | 132530562.0 | 125108880 | 166368.19 |
10101092037 | 10101 | 68 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 276 | 0.0011224 | 10101 | 48641536.1 | 69652185 | 252362.99 |
10101092040 | 10101 | 101 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 509 | 0.0020699 | 10101 | 89704861.8 | 101305846 | 199029.17 |
10101092041 | 10101 | 354 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 1683 | 0.0068442 | 10101 | 296607627.4 | 339299369 | 201603.90 |
10101092044 | 10101 | 99 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 530 | 0.0021553 | 10101 | 93405848.2 | 99396058 | 187539.73 |
10101102005 | 10101 | 24 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 147 | 0.0005978 | 10101 | 25906905.1 | 26575411 | 180785.11 |
10101102007 | 10101 | 166 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 824 | 0.0033509 | 10101 | 145219658.4 | 162989232 | 197802.47 |
10101102026 | 10101 | 54 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 245 | 0.0009963 | 10101 | 43178175.1 | 56100718 | 228982.52 |
10101102035 | 10101 | 199 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 940 | 0.0038227 | 10101 | 165663202.5 | 194105306 | 206495.01 |
10101102037 | 10101 | 24 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 164 | 0.0006669 | 10101 | 28902941.7 | 26575411 | 162045.19 |
10101102051 | 10101 | 8 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 57 | 0.0002318 | 10101 | 10045534.6 | 10121553 | 177571.11 |
10101102901 | 10101 | 1 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 16 | 0.0000651 | 10101 | 2819799.2 | 2069404 | 129337.77 |
10101112025 | 10101 | 186 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 1078 | 0.0043839 | 10101 | 189983970.5 | 181859570 | 168700.90 |
10101122024 | 10101 | 62 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 952 | 0.0038715 | 10101 | 167778051.9 | 63856019 | 67075.65 |
10101132022 | 10101 | 121 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 703 | 0.0028589 | 10101 | 123894927.0 | 120357570 | 171205.65 |
10101132023 | 10101 | 102 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 603 | 0.0024522 | 10101 | 106271182.0 | 102260397 | 169586.06 |
10101132027 | 10101 | 29 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 105 | 0.0004270 | 10101 | 18504932.2 | 31568405 | 300651.48 |
10101132049 | 10101 | 359 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 1883 | 0.0076575 | 10101 | 331855117.3 | 343965036 | 182668.63 |
10101142009 | 10101 | 4 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 59 | 0.0002399 | 10101 | 10398009.5 | 5720536 | 96958.23 |
10101142015 | 10101 | 14 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 124 | 0.0005043 | 10101 | 21853443.7 | 16418297 | 132405.62 |
10101142027 | 10101 | 42 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 192 | 0.0007808 | 10101 | 33837590.3 | 44394284 | 231220.23 |
10101142038 | 10101 | 6 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 53 | 0.0002155 | 10101 | 9340584.8 | 7953683 | 150069.50 |
10101142046 | 10101 | 56 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 317 | 0.0012891 | 10101 | 55867271.5 | 58042745 | 183100.14 |
10101142047 | 10101 | 32 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 263 | 0.0010695 | 10101 | 46350449.2 | 34545677 | 131352.39 |
10101142049 | 10101 | 169 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 973 | 0.0039569 | 10101 | 171479038.3 | 165822363 | 170423.81 |
10101152002 | 10101 | 118 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 554 | 0.0022529 | 10101 | 97635547.0 | 117504714 | 212102.37 |
10101152006 | 10101 | 53 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 214 | 0.0008703 | 10101 | 37714814.2 | 55128838 | 257611.39 |
10101152020 | 10101 | 154 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 617 | 0.0025091 | 10101 | 108738506.3 | 151646696 | 245780.71 |
10101152031 | 10101 | 147 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 642 | 0.0026108 | 10101 | 113144442.6 | 145022288 | 225891.41 |
10101152033 | 10101 | 145 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 700 | 0.0028467 | 10101 | 123366214.6 | 143128451 | 204469.22 |
10101152049 | 10101 | 21 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 96 | 0.0003904 | 10101 | 16918795.1 | 23556767 | 245382.99 |
10101152901 | 10101 | 5 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 46 | 0.0001871 | 10101 | 8106922.7 | 6847586 | 148860.57 |
10101162006 | 10101 | 71 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 233 | 0.0009475 | 10101 | 41063325.7 | 72544566 | 311350.07 |
10101162010 | 10101 | 96 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 351 | 0.0014274 | 10101 | 61859344.8 | 96529606 | 275013.12 |
10101162020 | 10101 | 45 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 205 | 0.0008337 | 10101 | 36128677.1 | 47330636 | 230881.15 |
10101162031 | 10101 | 183 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 762 | 0.0030988 | 10101 | 134292936.5 | 179031499 | 234949.47 |
10101162032 | 10101 | 2 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 24 | 0.0000976 | 10101 | 4229698.8 | 3361281 | 140053.39 |
10101162033 | 10101 | 35 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 168 | 0.0006832 | 10101 | 29607891.5 | 37511417 | 223282.25 |
10101172029 | 10101 | 153 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 854 | 0.0034729 | 10101 | 150506781.8 | 150700725 | 176464.55 |
10102012001 | 10102 | 16 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 80 | 0.0023540 | 10102 | 12435514.5 | 18474589 | 230932.36 |
10102012004 | 10102 | 59 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 283 | 0.0083272 | 10102 | 43990632.7 | 60951681 | 215376.96 |
10102012008 | 10102 | 103 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 697 | 0.0205090 | 10102 | 108344420.4 | 103214723 | 148084.25 |
10102012017 | 10102 | 24 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 268 | 0.0078858 | 10102 | 41658973.7 | 26575411 | 99161.98 |
10102012033 | 10102 | 309 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 1490 | 0.0438429 | 10102 | 231611458.2 | 297266896 | 199507.98 |
10102012037 | 10102 | 4 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 6 | 0.0001765 | 10102 | 932663.6 | 5720536 | 953422.62 |
10102022001 | 10102 | 31 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 164 | 0.0048257 | 10102 | 25492804.8 | 33554617 | 204601.32 |
10102022002 | 10102 | 48 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 308 | 0.0090628 | 10102 | 47876730.9 | 50260083 | 163182.09 |
10102022003 | 10102 | 32 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 184 | 0.0054142 | 10102 | 28601683.4 | 34545677 | 187748.25 |
10102022004 | 10102 | 14 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 74 | 0.0021774 | 10102 | 11502850.9 | 16418297 | 221868.88 |
10102022010 | 10102 | 39 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 294 | 0.0086509 | 10102 | 45700515.9 | 41450271 | 140987.32 |
10102022013 | 10102 | 47 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 450 | 0.0132411 | 10102 | 69949769.2 | 49284326 | 109520.73 |
10102032002 | 10102 | 6 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 54 | 0.0015889 | 10102 | 8393972.3 | 7953683 | 147290.43 |
10102032011 | 10102 | 31 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 163 | 0.0047962 | 10102 | 25337360.9 | 33554617 | 205856.54 |
10102032016 | 10102 | 18 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 95 | 0.0027954 | 10102 | 14767173.5 | 20516352 | 215961.60 |
10102032018 | 10102 | 68 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 470 | 0.0138296 | 10102 | 73058647.9 | 69652185 | 148196.14 |
10102032034 | 10102 | 87 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 695 | 0.0204502 | 10102 | 108033532.5 | 87916523 | 126498.59 |
10102032901 | 10102 | 13 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 89 | 0.0026188 | 10102 | 13834509.9 | 15383735 | 172850.96 |
10102042014 | 10102 | 18 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 87 | 0.0025600 | 10102 | 13523622.1 | 20516352 | 235820.14 |
10102042016 | 10102 | 7 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 48 | 0.0014124 | 10102 | 7461308.7 | 9043903 | 188414.65 |
10102042019 | 10102 | 72 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 336 | 0.0098867 | 10102 | 52229161.0 | 73507908 | 218773.54 |
10102042028 | 10102 | 27 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 171 | 0.0050316 | 10102 | 26580912.3 | 29576261 | 172960.59 |
10102042029 | 10102 | 24 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 183 | 0.0053847 | 10102 | 28446239.5 | 26575411 | 145220.82 |
10102042035 | 10102 | 55 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 271 | 0.0079741 | 10102 | 42125305.5 | 57072015 | 210597.84 |
10102042043 | 10102 | 23 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 86 | 0.0025305 | 10102 | 13368178.1 | 25571343 | 297341.19 |
10102042901 | 10102 | 25 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 127 | 0.0037369 | 10102 | 19741379.3 | 27577510 | 217145.75 |
10102052012 | 10102 | 67 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 302 | 0.0088863 | 10102 | 46944067.4 | 68687245 | 227441.21 |
10102052019 | 10102 | 61 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 332 | 0.0097690 | 10102 | 51607385.3 | 62888396 | 189422.88 |
10102052042 | 10102 | 95 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 410 | 0.0120641 | 10102 | 63732012.0 | 95573635 | 233106.43 |
10102052043 | 10102 | 52 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 273 | 0.0080330 | 10102 | 42436193.3 | 54156358 | 198374.94 |
10102062015 | 10102 | 151 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 1129 | 0.0332205 | 10102 | 175496198.8 | 148808415 | 131805.50 |
10102062019 | 10102 | 59 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 362 | 0.0106518 | 10102 | 56270703.3 | 60951681 | 168374.81 |
10102062027 | 10102 | 5 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 25 | 0.0007356 | 10102 | 3886098.3 | 6847586 | 273903.44 |
10102062038 | 10102 | 57 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 357 | 0.0105046 | 10102 | 55493483.6 | 59012924 | 165302.31 |
10102062039 | 10102 | 85 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 643 | 0.0189201 | 10102 | 99950448.1 | 85999487 | 133747.26 |
10102072022 | 10102 | 9 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 148 | 0.0043549 | 10102 | 23005701.9 | 11188931 | 75600.88 |
10102082022 | 10102 | 71 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 565 | 0.0166250 | 10102 | 87825821.4 | 72544566 | 128397.46 |
10102092022 | 10102 | 31 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 308 | 0.0090628 | 10102 | 47876730.9 | 33554617 | 108943.56 |
6.1 Estadísticos
<- readRDS("Ingresos_expandidos_rural_17.rds")
ingresos
kbl(ingresos) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | personas | comuna | promedio_i | año | ingresos_expandidos | |
---|---|---|---|---|---|---|
1 | 01101 | 191468 | Iquique | 272529.7 | 2017 | 52180713221 |
3 | 01401 | 15711 | Pozo Almonte | 243272.4 | 2017 | 3822052676 |
4 | 01402 | 1250 | Camiña | 226831.0 | 2017 | 283538750 |
6 | 01404 | 2730 | Huara | 236599.7 | 2017 | 645917134 |
7 | 01405 | 9296 | Pica | 269198.0 | 2017 | 2502464414 |
10 | 02103 | 10186 | Sierra Gorda | 322997.9 | 2017 | 3290056742 |
11 | 02104 | 13317 | Taltal | 288653.8 | 2017 | 3844002134 |
12 | 02201 | 165731 | Calama | 238080.9 | 2017 | 39457387800 |
14 | 02203 | 10996 | San Pedro de Atacama | 271472.6 | 2017 | 2985112297 |
15 | 02301 | 25186 | Tocopilla | 166115.9 | 2017 | 4183793832 |
17 | 03101 | 153937 | Copiapó | 251396.0 | 2017 | 38699138722 |
19 | 03103 | 14019 | Tierra Amarilla | 287819.4 | 2017 | 4034940816 |
21 | 03202 | 13925 | Diego de Almagro | 326439.0 | 2017 | 4545663075 |
22 | 03301 | 51917 | Vallenar | 217644.6 | 2017 | 11299454698 |
23 | 03302 | 5299 | Alto del Carmen | 196109.9 | 2017 | 1039186477 |
24 | 03303 | 7041 | Freirina | 202463.8 | 2017 | 1425547554 |
25 | 03304 | 10149 | Huasco | 205839.6 | 2017 | 2089066548 |
26 | 04101 | 221054 | La Serena | 200287.4 | 2017 | 44274327972 |
27 | 04102 | 227730 | Coquimbo | 206027.8 | 2017 | 46918711304 |
28 | 04103 | 11044 | Andacollo | 217096.4 | 2017 | 2397612293 |
29 | 04104 | 4241 | La Higuera | 231674.2 | 2017 | 982530309 |
30 | 04105 | 4497 | Paiguano | 174868.5 | 2017 | 786383423 |
31 | 04106 | 27771 | Vicuña | 169077.1 | 2017 | 4695441470 |
32 | 04201 | 30848 | Illapel | 165639.6 | 2017 | 5109649759 |
33 | 04202 | 9093 | Canela | 171370.3 | 2017 | 1558270441 |
34 | 04203 | 21382 | Los Vilos | 173238.5 | 2017 | 3704185607 |
35 | 04204 | 29347 | Salamanca | 193602.0 | 2017 | 5681637894 |
36 | 04301 | 111272 | Ovalle | 230819.8 | 2017 | 25683781418 |
37 | 04302 | 13322 | Combarbalá | 172709.2 | 2017 | 2300832587 |
38 | 04303 | 30751 | Monte Patria | 189761.6 | 2017 | 5835357638 |
39 | 04304 | 10956 | Punitaqui | 165862.0 | 2017 | 1817183694 |
40 | 04305 | 4278 | Río Hurtado | 182027.2 | 2017 | 778712384 |
41 | 05101 | 296655 | Valparaíso | 251998.5 | 2017 | 74756602991 |
42 | 05102 | 26867 | Casablanca | 252317.7 | 2017 | 6779018483 |
45 | 05105 | 18546 | Puchuncaví | 231606.0 | 2017 | 4295363979 |
46 | 05107 | 31923 | Quintero | 285125.8 | 2017 | 9102071069 |
49 | 05301 | 66708 | Los Andes | 280548.0 | 2017 | 18714795984 |
50 | 05302 | 14832 | Calle Larga | 234044.6 | 2017 | 3471349123 |
51 | 05303 | 10207 | Rinconada | 246136.9 | 2017 | 2512319225 |
52 | 05304 | 18855 | San Esteban | 211907.3 | 2017 | 3995512770 |
53 | 05401 | 35390 | La Ligua | 172675.9 | 2017 | 6111000517 |
54 | 05402 | 19388 | Cabildo | 212985.0 | 2017 | 4129354103 |
56 | 05404 | 9826 | Petorca | 270139.8 | 2017 | 2654393853 |
57 | 05405 | 7339 | Zapallar | 235661.4 | 2017 | 1729518700 |
58 | 05501 | 90517 | Quillota | 212067.6 | 2017 | 19195726144 |
59 | 05502 | 50554 | Calera | 226906.2 | 2017 | 11471016698 |
60 | 05503 | 17988 | Hijuelas | 215402.0 | 2017 | 3874650405 |
61 | 05504 | 22098 | La Cruz | 243333.4 | 2017 | 5377180726 |
62 | 05506 | 22120 | Nogales | 219800.7 | 2017 | 4861992055 |
63 | 05601 | 91350 | San Antonio | 230261.5 | 2017 | 21034388728 |
64 | 05602 | 13817 | Algarrobo | 218057.0 | 2017 | 3012893845 |
65 | 05603 | 22738 | Cartagena | 246517.9 | 2017 | 5605324190 |
68 | 05606 | 10900 | Santo Domingo | 250404.5 | 2017 | 2729409577 |
69 | 05701 | 76844 | San Felipe | 240842.4 | 2017 | 18507290899 |
70 | 05702 | 13998 | Catemu | 204903.4 | 2017 | 2868237147 |
71 | 05703 | 24608 | Llaillay | 257020.9 | 2017 | 6324771348 |
72 | 05704 | 7273 | Panquehue | 210643.4 | 2017 | 1532009468 |
73 | 05705 | 16754 | Putaendo | 207222.5 | 2017 | 3471806107 |
74 | 05706 | 15241 | Santa María | 254903.6 | 2017 | 3884985562 |
75 | 05801 | 151708 | Quilpué | 296519.4 | 2017 | 44984360344 |
76 | 05802 | 46121 | Limache | 251682.2 | 2017 | 11607834893 |
77 | 05803 | 17516 | Olmué | 198292.3 | 2017 | 3473287749 |
78 | 05804 | 126548 | Villa Alemana | 249779.9 | 2017 | 31609146219 |
79 | 06101 | 241774 | Rancagua | 243717.4 | 2017 | 58924531866 |
80 | 06102 | 12988 | Codegua | 264737.7 | 2017 | 3438412620 |
81 | 06103 | 7359 | Coinco | 175814.1 | 2017 | 1293816308 |
82 | 06104 | 19597 | Coltauco | 254006.7 | 2017 | 4977769953 |
83 | 06105 | 20887 | Doñihue | 198486.5 | 2017 | 4145787348 |
84 | 06106 | 33437 | Graneros | 248394.9 | 2017 | 8305580885 |
85 | 06107 | 24640 | Las Cabras | 201772.1 | 2017 | 4971665251 |
86 | 06108 | 52505 | Machalí | 252049.6 | 2017 | 13233865906 |
87 | 06109 | 13407 | Malloa | 250691.2 | 2017 | 3361017589 |
88 | 06110 | 25343 | Mostazal | 264277.9 | 2017 | 6697593734 |
89 | 06111 | 13608 | Olivar | 256304.8 | 2017 | 3487795575 |
90 | 06112 | 14313 | Peumo | 230938.1 | 2017 | 3305417128 |
91 | 06113 | 19714 | Pichidegua | 217210.9 | 2017 | 4282095940 |
92 | 06114 | 13002 | Quinta de Tilcoco | 203672.8 | 2017 | 2648154389 |
93 | 06115 | 58825 | Rengo | 250531.0 | 2017 | 14737488444 |
94 | 06116 | 27968 | Requínoa | 244836.0 | 2017 | 6847572657 |
95 | 06117 | 46766 | San Vicente | 242866.0 | 2017 | 11357872282 |
96 | 06201 | 16394 | Pichilemu | 230362.3 | 2017 | 3776560181 |
97 | 06202 | 3041 | La Estrella | 211425.0 | 2017 | 642943494 |
98 | 06203 | 6294 | Litueche | 237979.9 | 2017 | 1497845780 |
99 | 06204 | 7308 | Marchihue | 237849.2 | 2017 | 1738201845 |
100 | 06205 | 6641 | Navidad | 165555.2 | 2017 | 1099452202 |
101 | 06206 | 6188 | Paredones | 194146.1 | 2017 | 1201375821 |
102 | 06301 | 73973 | San Fernando | 239724.5 | 2017 | 17733143348 |
103 | 06302 | 15037 | Chépica | 207192.9 | 2017 | 3115559148 |
104 | 06303 | 35399 | Chimbarongo | 227716.7 | 2017 | 8060942027 |
105 | 06304 | 6811 | Lolol | 210117.9 | 2017 | 1431112941 |
106 | 06305 | 17833 | Nancagua | 213675.0 | 2017 | 3810465416 |
107 | 06306 | 12482 | Palmilla | 230550.0 | 2017 | 2877725100 |
108 | 06307 | 11007 | Peralillo | 231695.3 | 2017 | 2550270534 |
109 | 06308 | 8738 | Placilla | 221358.7 | 2017 | 1934232402 |
110 | 06309 | 3421 | Pumanque | 239369.8 | 2017 | 818883984 |
111 | 06310 | 37855 | Santa Cruz | 224421.9 | 2017 | 8495489945 |
112 | 07101 | 220357 | Talca | 244658.0 | 2017 | 53912095394 |
113 | 07102 | 46068 | Constitución | 198314.7 | 2017 | 9135962663 |
114 | 07103 | 9448 | Curepto | 191743.1 | 2017 | 1811588746 |
115 | 07104 | 4142 | Empedrado | 172428.7 | 2017 | 714199777 |
116 | 07105 | 49721 | Maule | 195207.4 | 2017 | 9705908393 |
117 | 07106 | 8422 | Pelarco | 187124.6 | 2017 | 1575963241 |
118 | 07107 | 8245 | Pencahue | 220957.5 | 2017 | 1821794345 |
119 | 07108 | 13906 | Río Claro | 196539.7 | 2017 | 2733081178 |
120 | 07109 | 43269 | San Clemente | 179181.4 | 2017 | 7753001772 |
121 | 07110 | 9191 | San Rafael | 195848.9 | 2017 | 1800047360 |
122 | 07201 | 40441 | Cauquenes | 152604.5 | 2017 | 6171477801 |
123 | 07202 | 8928 | Chanco | 128982.1 | 2017 | 1151552040 |
124 | 07203 | 7571 | Pelluhue | 113986.7 | 2017 | 862993347 |
125 | 07301 | 149136 | Curicó | 265301.7 | 2017 | 39566034949 |
126 | 07302 | 9657 | Hualañé | 167967.3 | 2017 | 1622060226 |
127 | 07303 | 6653 | Licantén | 179919.7 | 2017 | 1197005482 |
128 | 07304 | 45976 | Molina | 227845.0 | 2017 | 10475401720 |
129 | 07305 | 10484 | Rauco | 196719.6 | 2017 | 2062408371 |
130 | 07306 | 15187 | Romeral | 218360.4 | 2017 | 3316239205 |
131 | 07307 | 18544 | Sagrada Familia | 204922.9 | 2017 | 3800089672 |
132 | 07308 | 28921 | Teno | 250368.7 | 2017 | 7240913928 |
133 | 07309 | 4322 | Vichuquén | 179935.1 | 2017 | 777679695 |
134 | 07401 | 93602 | Linares | 192783.1 | 2017 | 18044885598 |
135 | 07402 | 20765 | Colbún | 161250.1 | 2017 | 3348358419 |
136 | 07403 | 30534 | Longaví | 166612.7 | 2017 | 5087351933 |
137 | 07404 | 41637 | Parral | 183123.5 | 2017 | 7624714509 |
138 | 07405 | 19974 | Retiro | 146406.4 | 2017 | 2924321333 |
139 | 07406 | 45547 | San Javier | 170552.7 | 2017 | 7768163327 |
140 | 07407 | 16221 | Villa Alegre | 178486.5 | 2017 | 2895229121 |
141 | 07408 | 18081 | Yerbas Buenas | 203001.0 | 2017 | 3670461912 |
142 | 08101 | 223574 | Concepción | 197625.8 | 2017 | 44183983882 |
143 | 08102 | 116262 | Coronel | 217018.1 | 2017 | 25230952648 |
145 | 08104 | 10624 | Florida | 147425.2 | 2017 | 1566245750 |
146 | 08105 | 24333 | Hualqui | 202715.1 | 2017 | 4932666876 |
148 | 08107 | 47367 | Penco | 195212.7 | 2017 | 9246639961 |
150 | 08109 | 13749 | Santa Juana | 198449.1 | 2017 | 2728477197 |
151 | 08110 | 151749 | Talcahuano | 161731.1 | 2017 | 24542535584 |
152 | 08111 | 54946 | Tomé | 210053.2 | 2017 | 11541584520 |
154 | 08201 | 25522 | Lebu | 141842.6 | 2017 | 3620107931 |
155 | 08202 | 36257 | Arauco | 184849.0 | 2017 | 6702069405 |
156 | 08203 | 34537 | Cañete | 186912.3 | 2017 | 6455391501 |
157 | 08204 | 6031 | Contulmo | 131551.5 | 2017 | 793386801 |
158 | 08205 | 32288 | Curanilahue | 252073.4 | 2017 | 8138946477 |
159 | 08206 | 21035 | Los Álamos | 189429.4 | 2017 | 3984647129 |
160 | 08207 | 10417 | Tirúa | 144994.9 | 2017 | 1510411713 |
161 | 08301 | 202331 | Los Ángeles | 190810.3 | 2017 | 38606846296 |
162 | 08302 | 4073 | Antuco | 155662.3 | 2017 | 634012722 |
163 | 08303 | 28573 | Cabrero | 249163.0 | 2017 | 7119335384 |
164 | 08304 | 22389 | Laja | 174449.0 | 2017 | 3905739533 |
165 | 08305 | 29627 | Mulchén | 198258.1 | 2017 | 5873792045 |
166 | 08306 | 26315 | Nacimiento | 175829.2 | 2017 | 4626944798 |
167 | 08307 | 9737 | Negrete | 216999.7 | 2017 | 2112926492 |
168 | 08308 | 3988 | Quilaco | 167106.1 | 2017 | 666419314 |
169 | 08309 | 9587 | Quilleco | 222077.0 | 2017 | 2129051929 |
170 | 08310 | 3412 | San Rosendo | 165912.3 | 2017 | 566092732 |
171 | 08311 | 13773 | Santa Bárbara | 176010.5 | 2017 | 2424192819 |
172 | 08312 | 14134 | Tucapel | 155538.6 | 2017 | 2198382777 |
173 | 08313 | 21198 | Yumbel | 138515.0 | 2017 | 2936241535 |
174 | 08314 | 5923 | Alto Biobío | 130542.9 | 2017 | 773205492 |
175 | 09101 | 282415 | Temuco | 173314.1 | 2017 | 48946498862 |
176 | 09102 | 24533 | Carahue | 127924.5 | 2017 | 3138372109 |
177 | 09103 | 17526 | Cunco | 156882.5 | 2017 | 2749522512 |
178 | 09104 | 7489 | Curarrehue | 135420.9 | 2017 | 1014167156 |
179 | 09105 | 24606 | Freire | 197426.1 | 2017 | 4857867695 |
180 | 09106 | 11996 | Galvarino | 147518.2 | 2017 | 1769627798 |
181 | 09107 | 14414 | Gorbea | 140997.5 | 2017 | 2032338344 |
182 | 09108 | 38013 | Lautaro | 282496.1 | 2017 | 10738525406 |
183 | 09109 | 23612 | Loncoche | 160742.5 | 2017 | 3795451798 |
184 | 09110 | 6138 | Melipeuco | 164670.1 | 2017 | 1010744848 |
185 | 09111 | 32510 | Nueva Imperial | 158196.8 | 2017 | 5142978907 |
186 | 09112 | 76126 | Padre Las Casas | 169223.7 | 2017 | 12882320064 |
187 | 09113 | 6905 | Perquenco | 155106.7 | 2017 | 1071011969 |
188 | 09114 | 24837 | Pitrufquén | 205557.8 | 2017 | 5105439315 |
189 | 09115 | 28523 | Pucón | 187764.8 | 2017 | 5355614570 |
190 | 09116 | 12450 | Saavedra | 130775.6 | 2017 | 1628156299 |
191 | 09117 | 15045 | Teodoro Schmidt | 138894.2 | 2017 | 2089663239 |
192 | 09118 | 9722 | Toltén | 113791.8 | 2017 | 1106284328 |
193 | 09119 | 28151 | Vilcún | 135602.8 | 2017 | 3817354634 |
194 | 09120 | 55478 | Villarrica | 198745.4 | 2017 | 11026000004 |
195 | 09121 | 11611 | Cholchol | 115103.4 | 2017 | 1336465909 |
196 | 09201 | 53262 | Angol | 173377.3 | 2017 | 9234420713 |
197 | 09202 | 24598 | Collipulli | 182323.1 | 2017 | 4484784762 |
198 | 09203 | 17413 | Curacautín | 186604.9 | 2017 | 3249351008 |
199 | 09204 | 7733 | Ercilla | 136678.7 | 2017 | 1056936411 |
200 | 09205 | 10251 | Lonquimay | 138745.9 | 2017 | 1422283764 |
201 | 09206 | 7265 | Los Sauces | 142588.7 | 2017 | 1035906610 |
202 | 09207 | 9548 | Lumaco | 170538.2 | 2017 | 1628298886 |
203 | 09208 | 11779 | Purén | 133537.6 | 2017 | 1572938990 |
204 | 09209 | 10250 | Renaico | 218920.0 | 2017 | 2243930000 |
205 | 09210 | 18843 | Traiguén | 210526.3 | 2017 | 3966946195 |
206 | 09211 | 34182 | Victoria | 187662.8 | 2017 | 6414689393 |
207 | 10101 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 |
208 | 10102 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 |
210 | 10104 | 12261 | Fresia | 183977.2 | 2017 | 2255743895 |
211 | 10105 | 18428 | Frutillar | 174883.1 | 2017 | 3222744874 |
212 | 10106 | 17068 | Los Muermos | 192845.4 | 2017 | 3291484556 |
213 | 10107 | 17591 | Llanquihue | 149333.8 | 2017 | 2626930838 |
214 | 10108 | 14216 | Maullín | 137613.7 | 2017 | 1956316762 |
215 | 10109 | 44578 | Puerto Varas | 219839.1 | 2017 | 9799987895 |
216 | 10201 | 43807 | Castro | 183717.2 | 2017 | 8048100927 |
217 | 10202 | 38991 | Ancud | 161910.1 | 2017 | 6313036958 |
218 | 10203 | 14858 | Chonchi | 193642.9 | 2017 | 2877146807 |
219 | 10204 | 3829 | Curaco de Vélez | 177952.2 | 2017 | 681378864 |
220 | 10205 | 13762 | Dalcahue | 207717.6 | 2017 | 2858609503 |
221 | 10206 | 3921 | Puqueldón | 208274.8 | 2017 | 816645370 |
222 | 10207 | 5385 | Queilén | 151485.0 | 2017 | 815746659 |
223 | 10208 | 27192 | Quellón | 171685.5 | 2017 | 4668472212 |
224 | 10209 | 8352 | Quemchi | 122223.1 | 2017 | 1020807718 |
225 | 10210 | 8088 | Quinchao | 119852.6 | 2017 | 969367811 |
226 | 10301 | 161460 | Osorno | 196610.2 | 2017 | 31744688808 |
227 | 10302 | 8999 | Puerto Octay | 221980.9 | 2017 | 1997605810 |
228 | 10303 | 20369 | Purranque | 186719.5 | 2017 | 3803288945 |
229 | 10304 | 11667 | Puyehue | 176006.9 | 2017 | 2053472049 |
230 | 10305 | 14085 | Río Negro | 156568.1 | 2017 | 2205262341 |
231 | 10306 | 7512 | San Juan de la Costa | 152674.0 | 2017 | 1146887184 |
232 | 10307 | 10030 | San Pablo | 181411.6 | 2017 | 1819558805 |
237 | 11101 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 |
239 | 11201 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 |
240 | 11202 | 6517 | Cisnes | 262412.7 | 2017 | 1710143349 |
242 | 11301 | 3490 | Cochrane | 211652.6 | 2017 | 738667487 |
245 | 11401 | 4865 | Chile Chico | 188913.8 | 2017 | 919065674 |
246 | 11402 | 2666 | Río Ibáñez | 171315.6 | 2017 | 456727447 |
247 | 12101 | 131592 | Punta Arenas | 256903.3 | 2017 | 33806414442 |
253 | 12301 | 6801 | Porvenir | 381329.2 | 2017 | 2593419712 |
256 | 12401 | 21477 | Natales | 302167.3 | 2017 | 6489647004 |
291 | 13202 | 26521 | Pirque | 274675.6 | 2017 | 7284672878 |
292 | 13203 | 18189 | San José de Maipo | 344876.8 | 2017 | 6272964115 |
293 | 13301 | 146207 | Colina | 255373.7 | 2017 | 37337421744 |
294 | 13302 | 102034 | Lampa | 243425.7 | 2017 | 24837699582 |
295 | 13303 | 19312 | Tiltil | 264794.8 | 2017 | 5113717064 |
296 | 13401 | 301313 | San Bernardo | 251728.3 | 2017 | 75849003232 |
297 | 13402 | 96614 | Buin | 289884.0 | 2017 | 28006850165 |
298 | 13403 | 25392 | Calera de Tango | 298439.8 | 2017 | 7577982724 |
299 | 13404 | 72759 | Paine | 282280.9 | 2017 | 20538478428 |
300 | 13501 | 123627 | Melipilla | 199121.9 | 2017 | 24616837833 |
301 | 13502 | 6444 | Alhué | 242844.2 | 2017 | 1564887792 |
302 | 13503 | 32579 | Curacaví | 220990.2 | 2017 | 7199638514 |
303 | 13504 | 13590 | María Pinto | 198063.3 | 2017 | 2691680700 |
304 | 13505 | 9726 | San Pedro | 231429.7 | 2017 | 2250885401 |
305 | 13601 | 74237 | Talagante | 230734.4 | 2017 | 17129031774 |
306 | 13602 | 35923 | El Monte | 201444.7 | 2017 | 7236496479 |
307 | 13603 | 36219 | Isla de Maipo | 232595.7 | 2017 | 8424384020 |
308 | 13604 | 63250 | Padre Hurtado | 231845.6 | 2017 | 14664233522 |
309 | 13605 | 90201 | Peñaflor | 249848.3 | 2017 | 22536570306 |
310 | 14101 | 166080 | Valdivia | 211732.5 | 2017 | 35164529745 |
311 | 14102 | 5302 | Corral | 157428.1 | 2017 | 834683963 |
312 | 14103 | 16752 | Lanco | 184730.2 | 2017 | 3094599901 |
313 | 14104 | 19634 | Los Lagos | 190489.7 | 2017 | 3740075550 |
314 | 14105 | 7095 | Máfil | 180289.2 | 2017 | 1279152079 |
315 | 14106 | 21278 | Mariquina | 187045.1 | 2017 | 3979945072 |
316 | 14107 | 20188 | Paillaco | 163833.6 | 2017 | 3307473487 |
317 | 14108 | 34539 | Panguipulli | 180390.3 | 2017 | 6230498948 |
318 | 14201 | 38036 | La Unión | 201975.2 | 2017 | 7682327556 |
319 | 14202 | 14665 | Futrono | 193120.3 | 2017 | 2832109866 |
320 | 14203 | 9896 | Lago Ranco | 186595.7 | 2017 | 1846550611 |
321 | 14204 | 31372 | Río Bueno | 184360.5 | 2017 | 5783758517 |
322 | 15101 | 221364 | Arica | 250863.6 | 2017 | 55532177025 |
323 | 15102 | 1255 | Camarones | 222472.1 | 2017 | 279202446 |
324 | 15201 | 2765 | Putre | 194293.6 | 2017 | 537221762 |
326 | 16101 | 184739 | Chillán | 232041.6 | 2017 | 42867130063 |
327 | 16102 | 21493 | Bulnes | 167693.2 | 2017 | 3604229178 |
328 | 16103 | 30907 | Chillán Viejo | 179855.8 | 2017 | 5558803478 |
329 | 16104 | 12044 | El Carmen | 151144.7 | 2017 | 1820386198 |
330 | 16105 | 8448 | Pemuco | 151889.4 | 2017 | 1283161238 |
331 | 16106 | 10827 | Pinto | 153289.2 | 2017 | 1659661870 |
332 | 16107 | 17485 | Quillón | 133479.9 | 2017 | 2333895558 |
333 | 16108 | 16079 | San Ignacio | 174538.8 | 2017 | 2806409365 |
334 | 16109 | 17787 | Yungay | 194006.8 | 2017 | 3450799686 |
335 | 16201 | 11594 | Quirihue | 155446.9 | 2017 | 1802251665 |
336 | 16202 | 5012 | Cobquecura | 122513.3 | 2017 | 614036495 |
337 | 16203 | 15995 | Coelemu | 174050.2 | 2017 | 2783932983 |
338 | 16204 | 5213 | Ninhue | 161577.8 | 2017 | 842304828 |
339 | 16205 | 4862 | Portezuelo | 168595.2 | 2017 | 819710106 |
340 | 16206 | 5755 | Ránquil | 221951.3 | 2017 | 1277329463 |
341 | 16207 | 5401 | Treguaco | 178763.9 | 2017 | 965503625 |
342 | 16301 | 53024 | San Carlos | 175203.6 | 2017 | 9289995173 |
343 | 16302 | 26881 | Coihueco | 174853.6 | 2017 | 4700239750 |
344 | 16303 | 11152 | Ñiquén | 188830.1 | 2017 | 2105832760 |
345 | 16304 | 4308 | San Fabián | 158019.3 | 2017 | 680747063 |
346 | 16305 | 11603 | San Nicolás | 180675.3 | 2017 | 2096375354 |
Promedio
<- tabla_de_trabajo %>%
t_de_c group_by(código.y) %>%
summarize(mean = mean(ing_medio_zona, na.rm = TRUE))
names(t_de_c)[1] <- "código"
<- merge( x = ingresos, y = t_de_c, by = "código", all.x = TRUE)
estadisticos_finales #estadisticos_finales
Desviación standard
<- tabla_de_trabajo %>%
t_de_c_2 group_by(código.y) %>%
summarize(sd = sd(ing_medio_zona, na.rm = TRUE))
names(t_de_c_2)[1] <- "código"
<- merge( x = estadisticos_finales, y = t_de_c_2, by = "código", all.x = TRUE)
estadisticos_finales #estadisticos_finales
Mínimo
<- tabla_de_trabajo %>%
t_de_c_3 group_by(código.y) %>%
summarize(min = min(ing_medio_zona, na.rm = TRUE))
names(t_de_c_3)[1] <- "código"
<- merge( x = estadisticos_finales, y = t_de_c_3, by = "código", all.x = TRUE)
estadisticos_finales #estadisticos_finales
Máximo
<- tabla_de_trabajo %>%
t_de_c_4 group_by(código.y) %>%
summarize(max = max(ing_medio_zona, na.rm = TRUE))
names(t_de_c_4)[1] <- "código"
<- merge( x = estadisticos_finales, y = t_de_c_4, by = "código", all.x = TRUE)
estadisticos_finales #estadisticos_finales
Mediana
<- tabla_de_trabajo %>%
t_de_c_5 group_by(código.y) %>%
summarize(mediana = median(ing_medio_zona, na.rm = TRUE))
names(t_de_c_5)[1] <- "código"
<- merge( x = estadisticos_finales, y = t_de_c_5, by = "código", all.x = TRUE)
estadisticos_finales
kbl(estadisticos_finales) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | personas | comuna | promedio_i | año | ingresos_expandidos | mean | sd | min | max | mediana |
---|---|---|---|---|---|---|---|---|---|---|
01101 | 191468 | Iquique | 272529.7 | 2017 | 52180713221 | 339953.5 | 113569.64 | 183139.71 | 570498.5 | 316356.4 |
01401 | 15711 | Pozo Almonte | 243272.4 | 2017 | 3822052676 | 360876.6 | 181186.34 | 184028.24 | 855948.3 | 308088.5 |
01402 | 1250 | Camiña | 226831.0 | 2017 | 283538750 | 251212.6 | 165760.10 | 130012.18 | 715067.0 | 210701.7 |
01404 | 2730 | Huara | 236599.7 | 2017 | 645917134 | 253653.5 | 148547.48 | 59125.84 | 674770.2 | 229468.6 |
01405 | 9296 | Pica | 269198.0 | 2017 | 2502464414 | 501614.6 | 397458.49 | 243907.01 | 1521329.2 | 356104.5 |
02103 | 10186 | Sierra Gorda | 322997.9 | 2017 | 3290056742 | 469880.7 | 123604.30 | 301333.10 | 623158.4 | 475506.6 |
02104 | 13317 | Taltal | 288653.8 | 2017 | 3844002134 | 387771.1 | 153556.27 | 168343.63 | 843462.8 | 360965.2 |
02201 | 165731 | Calama | 238080.9 | 2017 | 39457387800 | 351733.9 | 224247.11 | 129275.09 | 1118893.1 | 284298.4 |
02203 | 10996 | San Pedro de Atacama | 271472.6 | 2017 | 2985112297 | 505101.6 | 358148.79 | 212847.94 | 1130487.9 | 308967.3 |
02301 | 25186 | Tocopilla | 166115.9 | 2017 | 4183793832 | 299805.8 | 169408.45 | 90845.44 | 753658.6 | 258560.1 |
03101 | 153937 | Copiapó | 251396.0 | 2017 | 38699138722 | 284981.0 | 137118.28 | 107034.52 | 715067.0 | 261395.9 |
03103 | 14019 | Tierra Amarilla | 287819.4 | 2017 | 4034940816 | 313280.0 | 119535.62 | 26875.38 | 500398.8 | 322369.3 |
03202 | 13925 | Diego de Almagro | 326439.0 | 2017 | 4545663075 | 287595.6 | 116096.06 | 206940.43 | 489113.3 | 243472.2 |
03301 | 51917 | Vallenar | 217644.6 | 2017 | 11299454698 | 293744.9 | 152594.98 | 124491.90 | 1004878.2 | 246201.4 |
03302 | 5299 | Alto del Carmen | 196109.9 | 2017 | 1039186477 | 346958.5 | 316318.80 | 79592.47 | 2069404.3 | 279951.8 |
03303 | 7041 | Freirina | 202463.8 | 2017 | 1425547554 | 229223.2 | 59916.24 | 138651.42 | 359436.4 | 234123.5 |
03304 | 10149 | Huasco | 205839.6 | 2017 | 2089066548 | 230695.5 | 76337.72 | 108916.01 | 384887.3 | 218206.7 |
04101 | 221054 | La Serena | 200287.4 | 2017 | 44274327972 | 227120.9 | 89528.39 | 73340.20 | 695684.9 | 220500.2 |
04102 | 227730 | Coquimbo | 206027.8 | 2017 | 46918711304 | 244543.2 | 66432.17 | 55102.97 | 381764.9 | 248876.7 |
04103 | 11044 | Andacollo | 217096.4 | 2017 | 2397612293 | 222565.2 | 112411.21 | 98543.06 | 480183.1 | 172105.4 |
04104 | 4241 | La Higuera | 231674.2 | 2017 | 982530309 | 223603.3 | 106033.49 | 63388.72 | 475994.9 | 213828.0 |
04105 | 4497 | Paiguano | 174868.5 | 2017 | 786383423 | 269202.1 | 92586.98 | 170640.03 | 517351.1 | 238798.9 |
04106 | 27771 | Vicuña | 169077.1 | 2017 | 4695441470 | 281699.8 | 163567.41 | 93802.55 | 920141.2 | 232715.2 |
04201 | 30848 | Illapel | 165639.6 | 2017 | 5109649759 | 194462.6 | 64279.88 | 101421.95 | 476711.3 | 193232.4 |
04202 | 9093 | Canela | 171370.3 | 2017 | 1558270441 | 181661.9 | 84144.51 | 43093.35 | 453618.8 | 184569.5 |
04203 | 21382 | Los Vilos | 173238.5 | 2017 | 3704185607 | 246155.5 | 123061.95 | 73645.22 | 578223.8 | 218330.4 |
04204 | 29347 | Salamanca | 193602.0 | 2017 | 5681637894 | 226713.0 | 71793.01 | 135305.44 | 443304.9 | 208336.1 |
04301 | 111272 | Ovalle | 230819.8 | 2017 | 25683781418 | 233596.7 | 120731.48 | 57483.45 | 1130487.9 | 217222.9 |
04302 | 13322 | Combarbalá | 172709.2 | 2017 | 2300832587 | 174494.9 | 65533.13 | 74430.28 | 396609.8 | 161497.3 |
04303 | 30751 | Monte Patria | 189761.6 | 2017 | 5835357638 | 223275.7 | 111786.41 | 51735.11 | 822173.0 | 201140.7 |
04304 | 10956 | Punitaqui | 165862.0 | 2017 | 1817183694 | 182698.4 | 84606.31 | 56021.36 | 381369.0 | 175465.5 |
04305 | 4278 | Río Hurtado | 182027.2 | 2017 | 778712384 | 217568.1 | 118306.38 | 60864.83 | 732558.8 | 199553.3 |
05101 | 296655 | Valparaíso | 251998.5 | 2017 | 74756602991 | 232483.7 | 35347.16 | 188716.06 | 273903.4 | 233657.6 |
05102 | 26867 | Casablanca | 252317.7 | 2017 | 6779018483 | 248552.7 | 75429.01 | 101421.95 | 421731.4 | 233485.7 |
05105 | 18546 | Puchuncaví | 231606.0 | 2017 | 4295363979 | 266809.7 | 87214.79 | 114966.90 | 437418.1 | 248718.9 |
05107 | 31923 | Quintero | 285125.8 | 2017 | 9102071069 | 210321.0 | 76565.47 | 103751.30 | 408609.7 | 205665.3 |
05301 | 66708 | Los Andes | 280548.0 | 2017 | 18714795984 | 299402.6 | 108037.12 | 179718.20 | 611821.8 | 280310.2 |
05302 | 14832 | Calle Larga | 234044.6 | 2017 | 3471349123 | 230982.9 | 82951.22 | 76644.60 | 376829.3 | 243249.6 |
05303 | 10207 | Rinconada | 246136.9 | 2017 | 2512319225 | 200840.5 | 66979.24 | 108954.57 | 360399.3 | 193953.3 |
05304 | 18855 | San Esteban | 211907.3 | 2017 | 3995512770 | 260084.5 | 86013.87 | 137253.94 | 512791.2 | 240375.2 |
05401 | 35390 | La Ligua | 172675.9 | 2017 | 6111000517 | 240505.4 | 60747.27 | 163421.16 | 410457.4 | 229427.2 |
05402 | 19388 | Cabildo | 212985.0 | 2017 | 4129354103 | 220969.0 | 68099.74 | 103470.21 | 420160.2 | 213036.3 |
05404 | 9826 | Petorca | 270139.8 | 2017 | 2654393853 | 240314.9 | 81916.98 | 103751.30 | 456505.7 | 239930.3 |
05405 | 7339 | Zapallar | 235661.4 | 2017 | 1729518700 | 241340.5 | 62848.88 | 174031.76 | 345558.7 | 224009.5 |
05501 | 90517 | Quillota | 212067.6 | 2017 | 19195726144 | 212795.2 | 35593.36 | 160217.96 | 290249.3 | 216095.7 |
05502 | 50554 | Calera | 226906.2 | 2017 | 11471016698 | 285865.6 | 68310.69 | 246074.51 | 387743.0 | 254822.5 |
05503 | 17988 | Hijuelas | 215402.0 | 2017 | 3874650405 | 247693.0 | 81200.45 | 142624.62 | 440041.2 | 249201.4 |
05504 | 22098 | La Cruz | 243333.4 | 2017 | 5377180726 | 237935.2 | 44851.22 | 209200.66 | 289617.1 | 214988.0 |
05506 | 22120 | Nogales | 219800.7 | 2017 | 4861992055 | 241051.4 | 35919.97 | 188267.64 | 283312.0 | 243972.1 |
05601 | 91350 | San Antonio | 230261.5 | 2017 | 21034388728 | 283021.5 | 122693.81 | 102152.42 | 715067.0 | 262534.2 |
05602 | 13817 | Algarrobo | 218057.0 | 2017 | 3012893845 | 240354.8 | 50112.82 | 147225.41 | 336311.1 | 242009.1 |
05603 | 22738 | Cartagena | 246517.9 | 2017 | 5605324190 | 259835.8 | 79652.09 | 102771.63 | 420982.0 | 242499.9 |
05606 | 10900 | Santo Domingo | 250404.5 | 2017 | 2729409577 | 238951.3 | 95040.08 | 86225.18 | 456505.7 | 223835.7 |
05701 | 76844 | San Felipe | 240842.4 | 2017 | 18507290899 | 254914.1 | 73628.45 | 180464.57 | 456398.8 | 238441.3 |
05702 | 13998 | Catemu | 204903.4 | 2017 | 2868237147 | 214550.1 | 44660.00 | 140701.58 | 312989.4 | 215251.2 |
05703 | 24608 | Llaillay | 257020.9 | 2017 | 6324771348 | 238706.0 | 27344.26 | 204365.17 | 297721.1 | 229146.6 |
05704 | 7273 | Panquehue | 210643.4 | 2017 | 1532009468 | 197197.6 | 64573.58 | 71516.63 | 276030.4 | 222952.7 |
05705 | 16754 | Putaendo | 207222.5 | 2017 | 3471806107 | 215121.4 | 54481.55 | 133201.55 | 351076.0 | 215141.3 |
05706 | 15241 | Santa María | 254903.6 | 2017 | 3884985562 | 252670.1 | 53974.51 | 155954.58 | 363509.1 | 248694.1 |
05801 | 151708 | Quilpué | 296519.4 | 2017 | 44984360344 | 243296.5 | 81480.29 | 119572.21 | 414908.0 | 226950.3 |
05802 | 46121 | Limache | 251682.2 | 2017 | 11607834893 | 203691.4 | 48398.19 | 84518.29 | 285316.1 | 201129.8 |
05803 | 17516 | Olmué | 198292.3 | 2017 | 3473287749 | 221511.1 | 52463.91 | 142624.62 | 341529.3 | 215485.1 |
05804 | 126548 | Villa Alemana | 249779.9 | 2017 | 31609146219 | 274113.5 | 88098.60 | 132916.98 | 402799.2 | 259527.0 |
06101 | 241774 | Rancagua | 243717.4 | 2017 | 58924531866 | 236177.8 | 113430.86 | 133201.55 | 695684.9 | 209853.8 |
06102 | 12988 | Codegua | 264737.7 | 2017 | 3438412620 | 235511.2 | 30545.45 | 194416.15 | 331019.1 | 231209.5 |
06103 | 7359 | Coinco | 175814.1 | 2017 | 1293816308 | 193510.3 | 24956.32 | 164398.11 | 223067.4 | 203990.1 |
06104 | 19597 | Coltauco | 254006.7 | 2017 | 4977769953 | 235813.8 | 44388.80 | 177281.75 | 325999.1 | 220075.3 |
06105 | 20887 | Doñihue | 198486.5 | 2017 | 4145787348 | 225555.2 | 23881.88 | 206179.15 | 271771.5 | 215171.7 |
06106 | 33437 | Graneros | 248394.9 | 2017 | 8305580885 | 257330.7 | 83108.93 | 177572.15 | 481978.7 | 238855.6 |
06107 | 24640 | Las Cabras | 201772.1 | 2017 | 4971665251 | 214975.6 | 46020.76 | 152889.60 | 342379.3 | 210558.0 |
06108 | 52505 | Machalí | 252049.6 | 2017 | 13233865906 | 324591.7 | 250571.17 | 134808.19 | 904390.3 | 222510.5 |
06109 | 13407 | Malloa | 250691.2 | 2017 | 3361017589 | 199899.7 | 43934.03 | 146142.67 | 360399.3 | 194714.9 |
06110 | 25343 | Mostazal | 264277.9 | 2017 | 6697593734 | 237897.9 | 44594.14 | 180811.99 | 380332.3 | 228706.5 |
06111 | 13608 | Olivar | 256304.8 | 2017 | 3487795575 | 199405.4 | 25076.44 | 166286.42 | 235887.2 | 196970.9 |
06112 | 14313 | Peumo | 230938.1 | 2017 | 3305417128 | 227342.3 | 47435.62 | 176685.40 | 324369.4 | 211687.1 |
06113 | 19714 | Pichidegua | 217210.9 | 2017 | 4282095940 | 209270.9 | 44384.51 | 141250.23 | 316266.3 | 208888.8 |
06114 | 13002 | Quinta de Tilcoco | 203672.8 | 2017 | 2648154389 | 213178.5 | 59346.98 | 103726.99 | 373143.1 | 202514.8 |
06115 | 58825 | Rengo | 250531.0 | 2017 | 14737488444 | 217213.7 | 62784.46 | 138651.42 | 526737.4 | 214596.0 |
06116 | 27968 | Requínoa | 244836.0 | 2017 | 6847572657 | 206790.3 | 38843.13 | 108428.43 | 278357.0 | 209180.9 |
06117 | 46766 | San Vicente | 242866.0 | 2017 | 11357872282 | 214373.5 | 51729.12 | 103470.21 | 397900.5 | 213781.1 |
06201 | 16394 | Pichilemu | 230362.3 | 2017 | 3776560181 | 200177.8 | 59959.32 | 87483.62 | 305196.4 | 209201.6 |
06202 | 3041 | La Estrella | 211425.0 | 2017 | 642943494 | 231730.5 | 74378.10 | 105040.04 | 440041.2 | 217332.7 |
06203 | 6294 | Litueche | 237979.9 | 2017 | 1497845780 | 232927.6 | 96173.71 | 48125.68 | 456505.7 | 202543.5 |
06204 | 7308 | Marchihue | 237849.2 | 2017 | 1738201845 | 264484.0 | 95433.94 | 149556.45 | 476711.3 | 235488.2 |
06205 | 6641 | Navidad | 165555.2 | 2017 | 1099452202 | 212534.2 | 63281.93 | 68980.14 | 344900.7 | 211894.5 |
06206 | 6188 | Paredones | 194146.1 | 2017 | 1201375821 | 191554.8 | 88633.22 | 77304.54 | 414908.0 | 160281.2 |
06301 | 73973 | San Fernando | 239724.5 | 2017 | 17733143348 | 225425.5 | 80656.15 | 120352.61 | 452195.2 | 211103.4 |
06302 | 15037 | Chépica | 207192.9 | 2017 | 3115559148 | 212337.7 | 61045.29 | 89718.96 | 414087.5 | 206940.4 |
06303 | 35399 | Chimbarongo | 227716.7 | 2017 | 8060942027 | 218961.1 | 59903.81 | 124209.99 | 380332.3 | 207173.1 |
06304 | 6811 | Lolol | 210117.9 | 2017 | 1431112941 | 200294.6 | 68557.51 | 112042.71 | 421731.4 | 198498.4 |
06305 | 17833 | Nancagua | 213675.0 | 2017 | 3810465416 | 225224.9 | 69095.84 | 152512.70 | 478309.2 | 214990.1 |
06306 | 12482 | Palmilla | 230550.0 | 2017 | 2877725100 | 239339.2 | 73306.74 | 134266.39 | 570498.5 | 231992.7 |
06307 | 11007 | Peralillo | 231695.3 | 2017 | 2550270534 | 246972.8 | 42613.74 | 155233.73 | 307607.9 | 237242.5 |
06308 | 8738 | Placilla | 221358.7 | 2017 | 1934232402 | 218702.6 | 55796.71 | 114966.90 | 338076.0 | 205054.6 |
06309 | 3421 | Pumanque | 239369.8 | 2017 | 818883984 | 220277.5 | 71837.55 | 68980.14 | 373475.7 | 226259.7 |
06310 | 37855 | Santa Cruz | 224421.9 | 2017 | 8495489945 | 223913.7 | 62601.33 | 79623.09 | 404862.1 | 212273.7 |
07101 | 220357 | Talca | 244658.0 | 2017 | 53912095394 | 205829.8 | 72534.55 | 92534.95 | 420160.2 | 196818.1 |
07102 | 46068 | Constitución | 198314.7 | 2017 | 9135962663 | 190947.9 | 108501.23 | 60022.88 | 672256.3 | 182861.3 |
07103 | 9448 | Curepto | 191743.1 | 2017 | 1811588746 | 156610.7 | 72671.42 | 55102.97 | 456398.8 | 139587.5 |
07104 | 4142 | Empedrado | 172428.7 | 2017 | 714199777 | 233257.8 | 99665.70 | 94063.83 | 480183.1 | 208767.0 |
07105 | 49721 | Maule | 195207.4 | 2017 | 9705908393 | 228759.7 | 69776.59 | 120722.77 | 456398.8 | 212357.3 |
07106 | 8422 | Pelarco | 187124.6 | 2017 | 1575963241 | 215792.3 | 64404.75 | 124501.57 | 420160.2 | 203653.9 |
07107 | 8245 | Pencahue | 220957.5 | 2017 | 1821794345 | 218436.9 | 90462.96 | 71516.63 | 568120.2 | 197722.4 |
07108 | 13906 | Río Claro | 196539.7 | 2017 | 2733081178 | 214556.2 | 78627.77 | 124501.57 | 520048.7 | 193886.3 |
07109 | 43269 | San Clemente | 179181.4 | 2017 | 7753001772 | 197860.3 | 60881.22 | 76644.60 | 452544.5 | 191330.0 |
07110 | 9191 | San Rafael | 195848.9 | 2017 | 1800047360 | 221031.7 | 47828.83 | 108833.91 | 297977.2 | 215058.6 |
07201 | 40441 | Cauquenes | 152604.5 | 2017 | 6171477801 | 184219.8 | 102327.66 | 39045.36 | 684758.6 | 163443.9 |
07202 | 8928 | Chanco | 128982.1 | 2017 | 1151552040 | 159033.7 | 72087.14 | 64281.52 | 427974.1 | 142237.9 |
07203 | 7571 | Pelluhue | 113986.7 | 2017 | 862993347 | 207491.2 | 81711.28 | 51101.39 | 381369.0 | 180199.6 |
07301 | 149136 | Curicó | 265301.7 | 2017 | 39566034949 | 201468.7 | 56685.10 | 59125.84 | 360399.3 | 203348.9 |
07302 | 9657 | Hualañé | 167967.3 | 2017 | 1622060226 | 163114.0 | 55576.94 | 56345.53 | 278442.5 | 162195.9 |
07303 | 6653 | Licantén | 179919.7 | 2017 | 1197005482 | 172942.3 | 55234.79 | 57483.45 | 257457.3 | 173710.9 |
07304 | 45976 | Molina | 227845.0 | 2017 | 10475401720 | 226126.7 | 63296.27 | 86225.18 | 456505.7 | 222059.0 |
07305 | 10484 | Rauco | 196719.6 | 2017 | 2062408371 | 219800.7 | 134233.84 | 59544.23 | 635615.1 | 205561.9 |
07306 | 15187 | Romeral | 218360.4 | 2017 | 3316239205 | 243841.1 | 174451.68 | 99475.11 | 1034702.1 | 212355.2 |
07307 | 18544 | Sagrada Familia | 204922.9 | 2017 | 3800089672 | 205202.4 | 53526.96 | 114099.69 | 304265.8 | 195712.8 |
07308 | 28921 | Teno | 250368.7 | 2017 | 7240913928 | 220526.5 | 62304.46 | 89974.10 | 506077.7 | 211462.9 |
07309 | 4322 | Vichuquén | 179935.1 | 2017 | 777679695 | 164168.4 | 53402.34 | 76392.76 | 285249.2 | 149257.2 |
07401 | 93602 | Linares | 192783.1 | 2017 | 18044885598 | 187009.2 | 71417.50 | 36535.67 | 414908.0 | 183909.7 |
07402 | 20765 | Colbún | 161250.1 | 2017 | 3348358419 | 201001.9 | 59903.52 | 43653.01 | 357533.5 | 198502.9 |
07403 | 30534 | Longaví | 166612.7 | 2017 | 5087351933 | 189760.3 | 60338.36 | 47224.73 | 371250.9 | 186352.4 |
07404 | 41637 | Parral | 183123.5 | 2017 | 7624714509 | 196214.1 | 77170.33 | 53069.62 | 476711.3 | 179160.7 |
07405 | 19974 | Retiro | 146406.4 | 2017 | 2924321333 | 195510.3 | 60505.69 | 51735.11 | 409835.1 | 193337.2 |
07406 | 45547 | San Javier | 170552.7 | 2017 | 7768163327 | 187190.3 | 77565.36 | 73907.29 | 572053.6 | 173178.1 |
07407 | 16221 | Villa Alegre | 178486.5 | 2017 | 2895229121 | 245808.9 | 61641.68 | 130012.18 | 381369.0 | 232685.6 |
07408 | 18081 | Yerbas Buenas | 203001.0 | 2017 | 3670461912 | 214799.5 | 45324.87 | 158276.02 | 376829.3 | 203974.2 |
08101 | 223574 | Concepción | 197625.8 | 2017 | 44183983882 | 235711.1 | 90897.02 | 114126.43 | 510694.6 | 210760.4 |
08102 | 116262 | Coronel | 217018.1 | 2017 | 25230952648 | 179735.7 | 58975.93 | 88259.01 | 258560.1 | 192366.1 |
08104 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 211913.4 | 97944.96 | 68980.14 | 562308.5 | 194861.5 |
08105 | 24333 | Hualqui | 202715.1 | 2017 | 4932666876 | 208327.3 | 108691.51 | 31354.61 | 502439.1 | 183546.5 |
08107 | 47367 | Penco | 195212.7 | 2017 | 9246639961 | 191583.0 | 70591.53 | 95198.98 | 326075.5 | 177861.5 |
08109 | 13749 | Santa Juana | 198449.1 | 2017 | 2728477197 | 168959.3 | 65207.09 | 82776.17 | 380332.3 | 157378.9 |
08110 | 151749 | Talcahuano | 161731.1 | 2017 | 24542535584 | 314620.2 | 217658.92 | 168251.05 | 564743.9 | 210865.7 |
08111 | 54946 | Tomé | 210053.2 | 2017 | 11541584520 | 185685.6 | 77960.59 | 44987.05 | 460070.6 | 174509.5 |
08201 | 25522 | Lebu | 141842.6 | 2017 | 3620107931 | 165770.0 | 60194.44 | 68597.58 | 301080.8 | 157378.9 |
08202 | 36257 | Arauco | 184849.0 | 2017 | 6702069405 | 174205.3 | 66310.15 | 67980.20 | 380421.4 | 173798.6 |
08203 | 34537 | Cañete | 186912.3 | 2017 | 6455391501 | 176231.3 | 69210.65 | 69037.43 | 489113.3 | 159083.7 |
08204 | 6031 | Contulmo | 131551.5 | 2017 | 793386801 | 168611.0 | 61709.02 | 77355.72 | 317807.5 | 168991.5 |
08205 | 32288 | Curanilahue | 252073.4 | 2017 | 8138946477 | 259355.4 | 159900.25 | 107436.03 | 835035.3 | 228423.4 |
08206 | 21035 | Los Álamos | 189429.4 | 2017 | 3984647129 | 190212.0 | 102415.53 | 98543.06 | 513189.3 | 166564.4 |
08207 | 10417 | Tirúa | 144994.9 | 2017 | 1510411713 | 167977.8 | 75454.19 | 50985.15 | 380332.3 | 147848.5 |
08301 | 202331 | Los Ángeles | 190810.3 | 2017 | 38606846296 | 214679.8 | 58087.14 | 110928.64 | 595630.3 | 205080.5 |
08302 | 4073 | Antuco | 155662.3 | 2017 | 634012722 | 358595.3 | 260769.75 | 140912.20 | 1034702.1 | 274423.0 |
08303 | 28573 | Cabrero | 249163.0 | 2017 | 7119335384 | 237473.0 | 71838.37 | 129280.05 | 520048.7 | 219986.9 |
08304 | 22389 | Laja | 174449.0 | 2017 | 3905739533 | 182947.5 | 58676.00 | 68980.14 | 381369.0 | 185309.2 |
08305 | 29627 | Mulchén | 198258.1 | 2017 | 5873792045 | 173288.6 | 80744.61 | 39796.24 | 380332.3 | 151204.0 |
08306 | 26315 | Nacimiento | 175829.2 | 2017 | 4626944798 | 174817.2 | 72938.94 | 52967.92 | 361756.1 | 152785.5 |
08307 | 9737 | Negrete | 216999.7 | 2017 | 2112926492 | 234603.3 | 85147.87 | 139167.03 | 502439.1 | 238414.6 |
08308 | 3988 | Quilaco | 167106.1 | 2017 | 666419314 | 305018.2 | 300907.59 | 115270.77 | 1521329.2 | 215875.2 |
08309 | 9587 | Quilleco | 222077.0 | 2017 | 2129051929 | 229197.4 | 120218.74 | 57953.13 | 532713.3 | 221961.0 |
08310 | 3412 | San Rosendo | 165912.3 | 2017 | 566092732 | 225293.1 | 117371.04 | 89974.10 | 441871.3 | 188516.2 |
08311 | 13773 | Santa Bárbara | 176010.5 | 2017 | 2424192819 | 190014.9 | 61698.15 | 98260.00 | 397684.2 | 183900.4 |
08312 | 14134 | Tucapel | 155538.6 | 2017 | 2198382777 | 220161.6 | 54613.01 | 143638.83 | 339058.5 | 208676.3 |
08313 | 21198 | Yumbel | 138515.0 | 2017 | 2936241535 | 217036.8 | 92435.58 | 56021.36 | 622507.8 | 199868.5 |
08314 | 5923 | Alto Biobío | 130542.9 | 2017 | 773205492 | 160689.9 | 79921.44 | 72277.97 | 336157.3 | 139072.4 |
09101 | 282415 | Temuco | 173314.1 | 2017 | 48946498862 | 192179.5 | 52989.35 | 95083.08 | 356919.5 | 188414.7 |
09102 | 24533 | Carahue | 127924.5 | 2017 | 3138372109 | 157525.2 | 55861.38 | 76536.00 | 318147.3 | 147464.2 |
09103 | 17526 | Cunco | 156882.5 | 2017 | 2749522512 | 240391.4 | 102416.83 | 118964.37 | 684758.6 | 218782.9 |
09104 | 7489 | Curarrehue | 135420.9 | 2017 | 1014167156 | 150236.3 | 37173.78 | 88967.80 | 217069.2 | 140372.4 |
09105 | 24606 | Freire | 197426.1 | 2017 | 4857867695 | 178727.5 | 50833.81 | 83507.15 | 297721.1 | 178403.1 |
09106 | 11996 | Galvarino | 147518.2 | 2017 | 1769627798 | 185567.2 | 70788.68 | 91950.19 | 408609.7 | 167340.5 |
09107 | 14414 | Gorbea | 140997.5 | 2017 | 2032338344 | 243989.2 | 83714.13 | 53693.97 | 418614.9 | 239614.8 |
09108 | 38013 | Lautaro | 282496.1 | 2017 | 10738525406 | 206642.3 | 80172.77 | 105551.72 | 530245.6 | 186288.7 |
09109 | 23612 | Loncoche | 160742.5 | 2017 | 3795451798 | 205457.8 | 126875.02 | 62520.38 | 1034702.1 | 187436.2 |
09110 | 6138 | Melipeuco | 164670.1 | 2017 | 1010744848 | 219711.0 | 78969.09 | 101558.35 | 420160.2 | 216665.0 |
09111 | 32510 | Nueva Imperial | 158196.8 | 2017 | 5142978907 | 189457.0 | 81045.13 | 62245.95 | 520048.7 | 175023.8 |
09112 | 76126 | Padre Las Casas | 169223.7 | 2017 | 12882320064 | 206522.7 | 68398.06 | 44029.88 | 489113.3 | 200619.0 |
09113 | 6905 | Perquenco | 155106.7 | 2017 | 1071011969 | 217786.4 | 76800.57 | 140602.99 | 426189.0 | 195877.4 |
09114 | 24837 | Pitrufquén | 205557.8 | 2017 | 5105439315 | 189618.8 | 65286.93 | 86112.98 | 397684.2 | 181560.6 |
09115 | 28523 | Pucón | 187764.8 | 2017 | 5355614570 | 215458.8 | 71521.29 | 59515.59 | 369420.7 | 209228.8 |
09116 | 12450 | Saavedra | 130775.6 | 2017 | 1628156299 | 186864.5 | 80306.28 | 61114.21 | 456398.8 | 158872.7 |
09117 | 15045 | Teodoro Schmidt | 138894.2 | 2017 | 2089663239 | 180043.6 | 65546.78 | 43056.49 | 478141.0 | 174432.2 |
09118 | 9722 | Toltén | 113791.8 | 2017 | 1106284328 | 184932.4 | 66760.57 | 60255.18 | 408609.7 | 173349.6 |
09119 | 28151 | Vilcún | 135602.8 | 2017 | 3817354634 | 221673.3 | 83415.78 | 60864.83 | 532713.3 | 205890.2 |
09120 | 55478 | Villarrica | 198745.4 | 2017 | 11026000004 | 222515.9 | 62114.35 | 107267.15 | 404862.1 | 210740.8 |
09121 | 11611 | Cholchol | 115103.4 | 2017 | 1336465909 | 185489.9 | 57150.64 | 60864.83 | 373475.7 | 180199.6 |
09201 | 53262 | Angol | 173377.3 | 2017 | 9234420713 | 169914.0 | 77768.69 | 55102.97 | 420160.2 | 147562.7 |
09202 | 24598 | Collipulli | 182323.1 | 2017 | 4484784762 | 205030.6 | 108602.87 | 92266.71 | 489113.3 | 166316.2 |
09203 | 17413 | Curacautín | 186604.9 | 2017 | 3249351008 | 237012.7 | 113134.61 | 83499.48 | 531994.3 | 207454.0 |
09204 | 7733 | Ercilla | 136678.7 | 2017 | 1056936411 | 210079.0 | 113557.94 | 90370.18 | 535149.2 | 193978.7 |
09205 | 10251 | Lonquimay | 138745.9 | 2017 | 1422283764 | 168076.0 | 82603.24 | 42232.74 | 410457.4 | 163052.9 |
09206 | 7265 | Los Sauces | 142588.7 | 2017 | 1035906610 | 172642.8 | 68199.82 | 64881.75 | 337385.1 | 172450.4 |
09207 | 9548 | Lumaco | 170538.2 | 2017 | 1628298886 | 154657.7 | 69391.75 | 39796.24 | 393600.1 | 149051.6 |
09208 | 11779 | Purén | 133537.6 | 2017 | 1572938990 | 168001.9 | 67821.85 | 61114.21 | 351076.0 | 157941.1 |
09209 | 10250 | Renaico | 218920.0 | 2017 | 2243930000 | 217386.4 | 59273.72 | 106993.53 | 344900.7 | 220197.5 |
09210 | 18843 | Traiguén | 210526.3 | 2017 | 3966946195 | 182873.9 | 90237.90 | 53061.65 | 572053.6 | 174010.0 |
09211 | 34182 | Victoria | 187662.8 | 2017 | 6414689393 | 215528.8 | 109608.16 | 54458.01 | 611821.8 | 189966.2 |
10101 | 245902 | Puerto Montt | 176237.4 | 2017 | 43337141298 | 197473.1 | 56043.23 | 67075.65 | 371243.3 | 192027.1 |
10102 | 33985 | Calbuco | 155443.9 | 2017 | 5282762017 | 182657.5 | 118466.41 | 75600.88 | 953422.6 | 170612.9 |
10104 | 12261 | Fresia | 183977.2 | 2017 | 2255743895 | 181292.2 | 77863.33 | 73907.29 | 440041.2 | 162737.8 |
10105 | 18428 | Frutillar | 174883.1 | 2017 | 3222744874 | 174292.4 | 45345.16 | 95677.31 | 286895.7 | 167014.3 |
10106 | 17068 | Los Muermos | 192845.4 | 2017 | 3291484556 | 157078.2 | 76053.84 | 45422.72 | 520048.7 | 144003.3 |
10107 | 17591 | Llanquihue | 149333.8 | 2017 | 2626930838 | 168757.9 | 64423.01 | 54214.22 | 381369.0 | 161413.8 |
10108 | 14216 | Maullín | 137613.7 | 2017 | 1956316762 | 189086.9 | 64407.05 | 87768.99 | 380332.3 | 176981.5 |
10109 | 44578 | Puerto Varas | 219839.1 | 2017 | 9799987895 | 206584.0 | 76873.99 | 78853.08 | 476711.3 | 188469.3 |
10201 | 43807 | Castro | 183717.2 | 2017 | 8048100927 | 173333.2 | 53071.56 | 52714.31 | 299575.3 | 171895.8 |
10202 | 38991 | Ancud | 161910.1 | 2017 | 6313036958 | 188868.7 | 79048.79 | 38322.30 | 526737.4 | 175380.0 |
10203 | 14858 | Chonchi | 193642.9 | 2017 | 2877146807 | 167785.7 | 65722.61 | 63420.40 | 381369.0 | 159841.9 |
10204 | 3829 | Curaco de Vélez | 177952.2 | 2017 | 681378864 | 208858.2 | 89448.70 | 107578.57 | 476711.3 | 176865.1 |
10205 | 13762 | Dalcahue | 207717.6 | 2017 | 2858609503 | 186524.8 | 59299.26 | 95105.36 | 336128.1 | 184230.3 |
10206 | 3921 | Puqueldón | 208274.8 | 2017 | 816645370 | 173632.0 | 49454.82 | 117833.71 | 325999.1 | 159529.2 |
10207 | 5385 | Queilén | 151485.0 | 2017 | 815746659 | 168544.5 | 115193.32 | 80030.51 | 689801.4 | 138579.3 |
10208 | 27192 | Quellón | 171685.5 | 2017 | 4668472212 | 165555.2 | 65965.54 | 48893.47 | 385825.2 | 161428.4 |
10209 | 8352 | Quemchi | 122223.1 | 2017 | 1020807718 | 152747.8 | 57849.69 | 40015.25 | 306713.7 | 150855.5 |
10210 | 8088 | Quinchao | 119852.6 | 2017 | 969367811 | 177598.0 | 102715.38 | 49156.58 | 440041.2 | 164995.9 |
10301 | 161460 | Osorno | 196610.2 | 2017 | 31744688808 | 207382.7 | 73230.81 | 55929.84 | 440067.5 | 197227.4 |
10302 | 8999 | Puerto Octay | 221980.9 | 2017 | 1997605810 | 211239.8 | 66399.41 | 122955.28 | 489113.3 | 198135.6 |
10303 | 20369 | Purranque | 186719.5 | 2017 | 3803288945 | 187588.0 | 59423.37 | 98193.62 | 336502.1 | 175146.2 |
10304 | 11667 | Puyehue | 176006.9 | 2017 | 2053472049 | 225363.5 | 86360.65 | 73907.29 | 684244.0 | 221399.2 |
10305 | 14085 | Río Negro | 156568.1 | 2017 | 2205262341 | 193961.7 | 57947.88 | 46617.38 | 355501.3 | 190044.4 |
10306 | 7512 | San Juan de la Costa | 152674.0 | 2017 | 1146887184 | 170936.0 | 81437.05 | 44987.05 | 570632.2 | 156976.9 |
10307 | 10030 | San Pablo | 181411.6 | 2017 | 1819558805 | 210759.2 | 89224.71 | 48893.47 | 568120.2 | 184533.4 |
11101 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 192566.1 | 94976.28 | 48125.68 | 520048.7 | 171795.0 |
11201 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 334920.4 | 188844.10 | 34490.07 | 874836.2 | 301080.8 |
11202 | 6517 | Cisnes | 262412.7 | 2017 | 1710143349 | 406630.7 | 165461.96 | 149428.61 | 738841.5 | 358028.8 |
11301 | 3490 | Cochrane | 211652.6 | 2017 | 738667487 | 212939.8 | 86545.33 | 89974.10 | 351076.0 | 201304.7 |
11401 | 4865 | Chile Chico | 188913.8 | 2017 | 919065674 | 214902.6 | 115487.63 | 89440.32 | 480183.1 | 191067.4 |
11402 | 2666 | Río Ibáñez | 171315.6 | 2017 | 456727447 | 208216.7 | 77860.29 | 76644.60 | 325999.1 | 202239.5 |
12101 | 131592 | Punta Arenas | 256903.3 | 2017 | 33806414442 | 284163.3 | 102902.75 | 129337.77 | 635615.1 | 272563.9 |
12301 | 6801 | Porvenir | 381329.2 | 2017 | 2593419712 | 227287.7 | 132627.53 | 33377.49 | 476711.3 | 198434.2 |
12401 | 21477 | Natales | 302167.3 | 2017 | 6489647004 | 354855.1 | 196933.65 | 86186.70 | 799209.3 | 271651.7 |
13202 | 26521 | Pirque | 274675.6 | 2017 | 7284672878 | 199119.2 | 48723.60 | 129429.40 | 318527.4 | 195157.2 |
13203 | 18189 | San José de Maipo | 344876.8 | 2017 | 6272964115 | 285581.4 | 111899.84 | 146142.67 | 572053.6 | 248124.8 |
13301 | 146207 | Colina | 255373.7 | 2017 | 37337421744 | 164112.6 | 66152.35 | 75432.24 | 311253.9 | 153485.6 |
13302 | 102034 | Lampa | 243425.7 | 2017 | 24837699582 | 214233.3 | 57533.27 | 82754.78 | 360399.3 | 213694.0 |
13303 | 19312 | Tiltil | 264794.8 | 2017 | 5113717064 | 228172.9 | 53071.29 | 164483.41 | 347635.6 | 211341.8 |
13401 | 301313 | San Bernardo | 251728.3 | 2017 | 75849003232 | 250483.1 | 88039.30 | 89974.10 | 460070.6 | 223957.1 |
13402 | 96614 | Buin | 289884.0 | 2017 | 28006850165 | 200234.0 | 51963.97 | 123750.05 | 306568.8 | 196650.5 |
13403 | 25392 | Calera de Tango | 298439.8 | 2017 | 7577982724 | 200869.5 | 45365.93 | 125722.44 | 305464.5 | 206170.3 |
13404 | 72759 | Paine | 282280.9 | 2017 | 20538478428 | 219347.8 | 41982.94 | 158094.23 | 351076.0 | 214237.1 |
13501 | 123627 | Melipilla | 199121.9 | 2017 | 24616837833 | 236950.5 | 74290.78 | 90845.44 | 635615.1 | 222727.0 |
13502 | 6444 | Alhué | 242844.2 | 2017 | 1564887792 | 287621.5 | 115997.86 | 198434.25 | 570632.2 | 234731.0 |
13503 | 32579 | Curacaví | 220990.2 | 2017 | 7199638514 | 234089.5 | 68700.74 | 129337.77 | 497105.2 | 221980.8 |
13504 | 13590 | María Pinto | 198063.3 | 2017 | 2691680700 | 251327.7 | 80360.91 | 155626.96 | 583224.2 | 234062.0 |
13505 | 9726 | San Pedro | 231429.7 | 2017 | 2250885401 | 240349.3 | 94173.98 | 62709.22 | 570498.5 | 218249.4 |
13601 | 74237 | Talagante | 230734.4 | 2017 | 17129031774 | 190341.0 | 42017.86 | 112061.05 | 280437.7 | 188402.9 |
13602 | 35923 | El Monte | 201444.7 | 2017 | 7236496479 | 216599.9 | 24035.59 | 170198.31 | 237288.2 | 223350.8 |
13603 | 36219 | Isla de Maipo | 232595.7 | 2017 | 8424384020 | 230501.4 | 47062.08 | 169663.89 | 325999.1 | 224391.3 |
13604 | 63250 | Padre Hurtado | 231845.6 | 2017 | 14664233522 | 206410.4 | 37350.59 | 138206.83 | 276670.0 | 206169.6 |
13605 | 90201 | Peñaflor | 249848.3 | 2017 | 22536570306 | 212279.7 | 53564.17 | 164434.61 | 337385.1 | 202477.3 |
14101 | 166080 | Valdivia | 211732.5 | 2017 | 35164529745 | 215231.9 | 81987.77 | 62709.22 | 497105.2 | 208838.1 |
14102 | 5302 | Corral | 157428.1 | 2017 | 834683963 | 176293.7 | 69774.41 | 50473.27 | 297692.7 | 168925.4 |
14103 | 16752 | Lanco | 184730.2 | 2017 | 3094599901 | 224325.2 | 61463.93 | 82981.59 | 341402.4 | 222769.4 |
14104 | 19634 | Los Lagos | 190489.7 | 2017 | 3740075550 | 235958.3 | 80319.36 | 91279.75 | 560213.6 | 232490.9 |
14105 | 7095 | Máfil | 180289.2 | 2017 | 1279152079 | 251663.6 | 95372.69 | 62863.03 | 602926.9 | 229364.9 |
14106 | 21278 | Mariquina | 187045.1 | 2017 | 3979945072 | 213736.1 | 86451.95 | 63420.40 | 486475.2 | 206259.8 |
14107 | 20188 | Paillaco | 163833.6 | 2017 | 3307473487 | 212936.6 | 71288.17 | 98267.51 | 502439.1 | 204304.8 |
14108 | 34539 | Panguipulli | 180390.3 | 2017 | 6230498948 | 202737.1 | 83020.41 | 68737.66 | 427974.1 | 186554.5 |
14201 | 38036 | La Unión | 201975.2 | 2017 | 7682327556 | 172209.8 | 64321.07 | 79592.47 | 414908.0 | 159500.4 |
14202 | 14665 | Futrono | 193120.3 | 2017 | 2832109866 | 224472.0 | 87682.03 | 79592.47 | 530245.6 | 203197.2 |
14203 | 9896 | Lago Ranco | 186595.7 | 2017 | 1846550611 | 167270.3 | 54064.74 | 89682.47 | 318147.3 | 167814.9 |
14204 | 31372 | Río Bueno | 184360.5 | 2017 | 5783758517 | 181340.9 | 63209.14 | 57607.35 | 452195.2 | 168223.0 |
15101 | 221364 | Arica | 250863.6 | 2017 | 55532177025 | 354756.1 | 169246.50 | 227500.96 | 817219.4 | 279433.6 |
15102 | 1255 | Camarones | 222472.1 | 2017 | 279202446 | 317728.1 | 112352.51 | 231592.91 | 489113.3 | 246422.9 |
15201 | 2765 | Putre | 194293.6 | 2017 | 537221762 | 392864.4 | 283886.06 | 171189.65 | 1140996.9 | 281369.3 |
16101 | 184739 | Chillán | 232041.6 | 2017 | 42867130063 | 222934.7 | 108093.70 | 147920.53 | 822173.0 | 201140.7 |
16102 | 21493 | Bulnes | 167693.2 | 2017 | 3604229178 | 211065.7 | 77544.66 | 75749.37 | 506077.7 | 207686.9 |
16103 | 30907 | Chillán Viejo | 179855.8 | 2017 | 5558803478 | 232844.8 | 65182.54 | 76644.60 | 342047.9 | 240209.9 |
16104 | 12044 | El Carmen | 151144.7 | 2017 | 1820386198 | 152159.4 | 52015.46 | 57635.39 | 314043.8 | 135612.5 |
16105 | 8448 | Pemuco | 151889.4 | 2017 | 1283161238 | 208912.1 | 89354.72 | 42232.74 | 480183.1 | 200617.0 |
16106 | 10827 | Pinto | 153289.2 | 2017 | 1659661870 | 195999.3 | 102525.38 | 87768.99 | 589120.1 | 177640.3 |
16107 | 17485 | Quillón | 133479.9 | 2017 | 2333895558 | 204120.1 | 86476.93 | 53693.97 | 415598.3 | 194635.6 |
16108 | 16079 | San Ignacio | 174538.8 | 2017 | 2806409365 | 199182.1 | 72336.49 | 105133.85 | 568120.2 | 197543.7 |
16109 | 17787 | Yungay | 194006.8 | 2017 | 3450799686 | 225714.7 | 111632.12 | 51735.11 | 695684.9 | 206475.7 |
16201 | 11594 | Quirihue | 155446.9 | 2017 | 1802251665 | 228160.7 | 126558.91 | 76084.29 | 928434.4 | 217332.7 |
16202 | 5012 | Cobquecura | 122513.3 | 2017 | 614036495 | 193636.3 | 92605.11 | 66754.98 | 441871.3 | 174288.6 |
16203 | 15995 | Coelemu | 174050.2 | 2017 | 2783932983 | 193315.9 | 74882.46 | 53295.85 | 351076.0 | 178352.6 |
16204 | 5213 | Ninhue | 161577.8 | 2017 | 842304828 | 173292.0 | 74143.70 | 84306.90 | 393213.2 | 144090.7 |
16205 | 4862 | Portezuelo | 168595.2 | 2017 | 819710106 | 189701.3 | 75678.81 | 71506.70 | 380421.4 | 172027.3 |
16206 | 5755 | Ránquil | 221951.3 | 2017 | 1277329463 | 207346.5 | 86035.64 | 50473.27 | 414908.0 | 193011.4 |
16207 | 5401 | Treguaco | 178763.9 | 2017 | 965503625 | 173468.9 | 79267.60 | 57953.13 | 414908.0 | 166050.8 |
16301 | 53024 | San Carlos | 175203.6 | 2017 | 9289995173 | 198025.9 | 86288.63 | 40576.55 | 520048.7 | 184965.9 |
16302 | 26881 | Coihueco | 174853.6 | 2017 | 4700239750 | 199215.6 | 61481.47 | 90099.82 | 356090.5 | 191944.7 |
16303 | 11152 | Ñiquén | 188830.1 | 2017 | 2105832760 | 185733.7 | 55845.46 | 54458.01 | 336128.1 | 194949.9 |
16304 | 4308 | San Fabián | 158019.3 | 2017 | 680747063 | 214696.4 | 77350.35 | 76644.60 | 381369.0 | 214964.4 |
16305 | 11603 | San Nicolás | 180675.3 | 2017 | 2096375354 | 207126.3 | 74502.87 | 79592.47 | 402606.3 | 194378.0 |
write_xlsx(estadisticos_finales, "estadisticos_finales_escolaridad.xlsx")
write.dbf(estadisticos_finales, "estadisticos_finales_escolaridad.dbf")