Expansión de la CASEN sobre el CENSO de PERSONAS (Nivel nacional rural para el 2017)

Y regresión lineal de ingresos medios por zona sobre frecuencias de respuesta a la pregunta: ¿Cuantos años de escolaridad tiene?, cuya correlación necesitó de su corrección por porcentaje de existencia por zona.

VE-CC-AJ

DataIntelligence

date: 27-07-2021

1 Resumen

Iniciaremos expandiendo los ingresos promedios (multiplicación del ingreso promedio mensual comunal y los habitantes de la misma comuna) obtenidos de la CASEN 2017 sobre la categoría de respuesta: “ESCOLARIDAD” del CENSO de personas del 2017, que fue la categoría de respuesta que más alto correlacionó con los ingresos expandidos, ambos a nivel comunal y ambos a nivel RURAL.

Seguiremos con un análisis sobre todas las zonas Chile comenzando en éste artículo a nivel urbano. En un segundo artículo haremos la publicación a nivel rural.

Como una tercera parte, y ya construída nuestra tabla de trabajo, haremos el análisis por región. Ensayaremos diferentes modelos dentro del análisis de regresión cuya variable independiente será: “frecuencia de población que posee la variable Censal respecto a la zona” y la dependiente: “ingreso expandido por zona por proporción de población zonal respecto al total comunal (multipob)”. Lo anterior para elegir el que posea el mayor coeficiente de determinación y así construir una tabla de valores predichos (estimación del ingreso e ingreso estimado por zona).


1.1 Variable CENSO

Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: ESCOLARIDAD del Censo de personas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver aquí).

1.1.1 Lectura de la tabla censal de personas

Leemos la tabla Censo 2017 de personas que ya tiene integrada la clave zonal:

tabla_con_clave <-  readRDS("censo_personas_con_clave_17")

abc <- head(tabla_con_clave,50)
kbl(abc) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV NHOGAR PERSONAN P07 P08 P09 P10 P10COMUNA P10PAIS P11 P11COMUNA P11PAIS P12 P12COMUNA P12PAIS P12A_LLEGADA P12A_TRAMO P13 P14 P15 P15A P16 P16A P16A_OTRO P17 P18 P19 P20 P21M P21A P10PAIS_GRUPO P11PAIS_GRUPO P12PAIS_GRUPO ESCOLARIDAD P16A_GRUPO REGION_15R PROVINCIA_15R COMUNA_15R P10COMUNA_15R P11COMUNA_15R P12COMUNA_15R clave
15 152 15202 1 2 6 13225 1 1 1 1 1 73 1 98 998 3 15101 998 1 98 998 9998 98 2 4 6 2 1 2 98 7 98 98 98 98 9998 998 998 998 4 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 3 1 1 1 1 78 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 2 2 2 78 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 1 1 3 1965 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 3 5 2 52 1 98 998 2 98 998 1 98 998 9998 98 1 2 5 2 1 2 98 7 98 2 1 4 1995 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 4 11 1 44 1 98 998 2 98 998 1 98 998 9998 98 1 3 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 3 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 1 1 1 39 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 8 98 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 2 2 2 35 1 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 1 Z 2 2 11 2004 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 3 5 1 13 1 98 998 2 98 998 1 98 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 4 5 1 12 1 98 998 2 98 998 1 98 998 9998 98 1 6 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 10 1 1 1 2 65 1 98 998 2 98 998 1 98 998 9998 98 2 4 5 2 1 2 98 6 98 3 3 9 1992 998 998 998 4 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 1 1 1 50 1 98 998 2 98 998 1 98 998 9998 98 2 5 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 2 4 2 43 1 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 6 98 2 2 3 2002 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 3 5 1 15 3 15201 998 2 98 998 1 98 998 9998 98 1 1 7 2 1 2 98 8 98 98 98 98 9998 998 998 998 9 2 15 152 15202 15201 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 1 1 1 75 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 2 16 2 58 4 98 68 6 98 998 5 98 998 9999 1 3 98 98 98 1 2 98 7 98 4 4 99 9999 68 68 68 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 3 2 2 70 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 5 4 99 9999 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 1 1 2 43 2 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 I 3 3 9 2008 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 2 4 1 55 2 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 6 98 98 98 98 9998 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 3 5 2 13 2 98 998 2 98 998 2 15101 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 17 1 4 5 1 8 2 98 998 2 98 998 2 15101 998 9998 98 1 2 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 17 1 5 15 2 29 2 98 998 4 98 998 3 98 998 2015 1 2 6 5 2 1 2 98 6 98 5 5 11 2014 998 604 604 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 6 15 1 4 2 98 998 1 98 998 5 98 998 2015 1 1 0 1 2 1 2 98 98 98 98 98 98 9998 998 998 68 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 7 15 2 2 2 98 998 1 98 998 3 98 998 2015 1 1 0 1 2 1 2 98 98 98 98 98 98 9998 998 998 604 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 8 15 1 16 2 98 998 6 98 998 1 98 998 9998 98 2 4 5 2 1 2 98 6 98 98 98 98 9998 998 68 998 4 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 18 1 1 1 2 74 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 2 2 12 1976 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 19 1 1 1 1 68 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 20 1 1 1 1 74 1 98 998 3 15101 998 1 98 998 9998 98 2 2 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 2 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 20 1 2 2 2 65 1 98 998 3 997 998 3 98 998 9999 2 2 2 5 2 1 2 98 6 98 2 2 9 1982 998 998 604 2 2 15 152 15202 98 997 98 15202012006
15 152 15202 1 2 6 13225 25 1 1 1 2 76 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 6 98 8 6 3 1981 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 25 1 2 5 2 36 1 98 998 2 98 998 1 98 998 9998 98 2 4 8 1 1 2 98 1 A 0 98 98 9998 998 998 998 12 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 1 1 2 31 1 98 998 2 98 998 5 98 998 2007 2 2 5 5 2 1 2 98 1 A 2 2 4 2008 998 998 68 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 2 4 1 35 1 98 998 2 98 998 5 98 998 2007 2 2 6 5 2 1 2 98 1 F 98 98 98 9998 998 998 68 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 3 5 1 11 1 98 998 2 98 998 5 98 998 2007 2 1 5 5 2 1 2 98 98 98 98 98 98 9998 998 998 68 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 4 5 1 8 1 98 998 2 98 998 1 98 998 9998 98 1 2 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 5 15 2 74 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 6 98 6 6 99 9999 998 998 998 3 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 1 1 1 41 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 Z 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 2 2 2 47 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 A 2 1 4 1996 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 3 14 1 88 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 4 14 1 65 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 7 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 1 1 2 59 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 8 8 2 1998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 2 2 1 56 1 98 998 99 99 999 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 98 98 98 9998 998 999 998 2 2 15 152 15202 98 99 98 15202012006
15 152 15202 1 2 6 13225 36 1 3 5 2 36 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 6 98 2 2 7 2010 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 4 12 2 13 1 98 998 2 98 998 1 98 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 5 12 2 6 1 98 998 2 98 998 1 98 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 6 5 1 24 1 98 998 3 15101 998 1 98 998 9998 98 2 4 7 1 1 2 98 1 Z 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 36 1 7 11 2 24 1 98 998 3 15101 998 1 98 998 9998 98 2 4 7 1 1 2 98 1 N 2 2 11 2015 998 998 998 12 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 36 1 8 12 1 6 1 98 998 2 98 998 2 15101 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 36 1 9 12 2 1 1 98 998 1 98 998 2 15101 998 9998 98 3 98 98 98 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 38 1 1 1 1 19 1 98 998 3 15101 998 2 15101 998 9998 98 1 1 8 2 1 2 98 1 A 98 98 98 9998 998 998 998 9 2 15 152 15202 98 15101 15101 15202012006
15 152 15202 1 2 6 13225 39 1 1 1 1 21 1 98 998 2 98 998 1 98 998 9998 98 2 1 7 2 1 2 98 1 F 98 98 98 9998 998 998 998 9 2 15 152 15202 98 98 98 15202012006



Cuantas personas hay en Chile?

length(tabla_con_clave$clave)
## [1] 17574003

Cuántas zonas hay en Chile?

length(unique(tabla_con_clave$clave))
## [1] 15500

1.1.2 Filtro a nivel rural:

tabla_con_clave_u <- filter(tabla_con_clave, tabla_con_clave$AREA ==2)

Cuantas personas hay en Chile rurales?

length(tabla_con_clave_u$clave)
## [1] 2149740

Cuantas zonas hay en el nivel rural?

length(unique(tabla_con_clave_u$clave))
## [1] 10331



Table 1.1: RURAL
ESCOLARIDAD cat_r Correlación total criterio
1_años 1_años 0.2767593 77.533637 21.4581556477961
2_años 2_años 0.2470193 82.750944 20.4410761048424
3_años 3_años 0.2362649 86.971252 20.5482559410038
4_años 4_años 0.2342442 88.607105 20.7557039968554
5_años 5_años 0.2571000 85.161165 21.8949337693051
6_años 6_años 0.2043421 92.449908 18.891404834352
7_años 7_años 0.2895047 82.499274 23.8839261134497
8_años 8_años 0.2608489 95.992643 25.0395797889307
9_años 9_años 0.3934692 80.873100 31.8210743546358
10_años 10_años 0.4110443 85.635466 35.1999687131626
11_años 11_años 0.4201018 76.710870 32.2263767237315
12_años 12_años 0.4255218 96.844449 41.2094267607503
13_años 13_años 0.4692992 47.246152 22.1725816849638
14_años 14_años 0.4923740 64.630723 31.8224876694169
15_años 15_años 0.4784635 64.137063 30.6872423603531
16_años 16_años 0.4633309 58.542251 27.1244364080257
17_años 17_años 0.4894226 69.364050 33.9483328702428
18_años 18_años 0.3755864 5.043074 1.89411023856027
19_años 19_años 0.4479310 23.598877 10.5706692354131
20_años 20_años 0.3853917 5.459297 2.1039675912991
21_años 21_años 0.4362933 8.140548 3.55166622218966

1.2 Criterio de seleccion de las respuestas a las preguntas:

No nos sirve de nada una alta correlación, si nuestra información abarca muy pocas zonas censales. se busca el óptimo simplemente obteniendo el mayor valor de la multiplicación entre ambos, que en nuestro caso fue la categoría 12 años cubriendo el 96.7% de zonas rurales.

tabla_con_clave_u <- filter(tabla_con_clave, tabla_con_clave$AREA ==2)
tabla_con_clave_f <- tabla_con_clave_u[,-c(1,2,4:40,42:48),drop=F]


codigos <- tabla_con_clave_f$COMUNA
rango <- seq(1:nrow(tabla_con_clave_f))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(tabla_con_clave_f,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE]
names(comuna_corr)[3] <- "código"

tabla_con_clave_f <- comuna_corr

claves_con_1 <- filter(tabla_con_clave_f, tabla_con_clave_f$ESCOLARIDAD == 12)

con4 <- xtabs(~ESCOLARIDAD+clave, data=claves_con_1)
con4 <- as.data.frame(con4)

trabajo_001 = merge( x = con4, y =claves_con_1, by = "clave", all.x = TRUE)
trabajo003 <- unique(trabajo_001)
trabajo003 <- trabajo003[,-c(2,4)]

df_2017_2 <- readRDS("Ingresos_expandidos_rural_17.rds")

comunas_censo_casen_666 = merge( x = trabajo003, y = df_2017_2, by = "código", all.x = TRUE)


tabla_de_prop_pob <- readRDS("tabla_de_prop_pob.rds")
names(tabla_de_prop_pob)[1]  <- "clave"


comunas_censo_casen_6666 = merge( x = comunas_censo_casen_666, y = tabla_de_prop_pob, by = "clave", all.x = TRUE)
comunas_censo_casen_6666$multipob <- comunas_censo_casen_6666$ingresos_expandidos*comunas_censo_casen_6666$p
write_xlsx(comunas_censo_casen_6666, "comunas_censo_casen_6666.xlsx")
kbl(head(comunas_censo_casen_6666,50)) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
clave código.x Freq.x personas comuna promedio_i año ingresos_expandidos Freq.y p código.y multipob
10101032002 10101 27 245902 Puerto Montt 176237.4 2017 43337141298 129 0.0005246 10101 22734631
10101032011 10101 106 245902 Puerto Montt 176237.4 2017 43337141298 426 0.0017324 10101 75077153
10101032019 10101 174 245902 Puerto Montt 176237.4 2017 43337141298 829 0.0033713 10101 146100846
10101062003 10101 28 245902 Puerto Montt 176237.4 2017 43337141298 158 0.0006425 10101 27845517
10101062008 10101 83 245902 Puerto Montt 176237.4 2017 43337141298 581 0.0023627 10101 102393958
10101062013 10101 83 245902 Puerto Montt 176237.4 2017 43337141298 571 0.0023221 10101 100631584
10101062029 10101 15 245902 Puerto Montt 176237.4 2017 43337141298 47 0.0001911 10101 8283160
10101062039 10101 18 245902 Puerto Montt 176237.4 2017 43337141298 67 0.0002725 10101 11807909
10101072014 10101 204 245902 Puerto Montt 176237.4 2017 43337141298 997 0.0040545 10101 175708737
10101072021 10101 13 245902 Puerto Montt 176237.4 2017 43337141298 44 0.0001789 10101 7754448
10101072028 10101 22 245902 Puerto Montt 176237.4 2017 43337141298 145 0.0005897 10101 25554430
10101072029 10101 221 245902 Puerto Montt 176237.4 2017 43337141298 1051 0.0042741 10101 185225559
10101072036 10101 17 245902 Puerto Montt 176237.4 2017 43337141298 118 0.0004799 10101 20796019
10101072045 10101 19 245902 Puerto Montt 176237.4 2017 43337141298 113 0.0004595 10101 19914832
10101072050 10101 7 245902 Puerto Montt 176237.4 2017 43337141298 66 0.0002684 10101 11631672
10101082016 10101 18 245902 Puerto Montt 176237.4 2017 43337141298 121 0.0004921 10101 21324731
10101082017 10101 4 245902 Puerto Montt 176237.4 2017 43337141298 38 0.0001545 10101 6697023
10101082018 10101 102 245902 Puerto Montt 176237.4 2017 43337141298 623 0.0025335 10101 109795931
10101082030 10101 26 245902 Puerto Montt 176237.4 2017 43337141298 176 0.0007157 10101 31017791
10101082034 10101 11 245902 Puerto Montt 176237.4 2017 43337141298 66 0.0002684 10101 11631672
10101082042 10101 51 245902 Puerto Montt 176237.4 2017 43337141298 253 0.0010289 10101 44588075
10101082045 10101 23 245902 Puerto Montt 176237.4 2017 43337141298 123 0.0005002 10101 21677206
10101092004 10101 11 245902 Puerto Montt 176237.4 2017 43337141298 97 0.0003945 10101 17095033
10101092008 10101 126 245902 Puerto Montt 176237.4 2017 43337141298 752 0.0030581 10101 132530562
10101092037 10101 68 245902 Puerto Montt 176237.4 2017 43337141298 276 0.0011224 10101 48641536
10101092040 10101 101 245902 Puerto Montt 176237.4 2017 43337141298 509 0.0020699 10101 89704862
10101092041 10101 354 245902 Puerto Montt 176237.4 2017 43337141298 1683 0.0068442 10101 296607627
10101092044 10101 99 245902 Puerto Montt 176237.4 2017 43337141298 530 0.0021553 10101 93405848
10101102005 10101 24 245902 Puerto Montt 176237.4 2017 43337141298 147 0.0005978 10101 25906905
10101102007 10101 166 245902 Puerto Montt 176237.4 2017 43337141298 824 0.0033509 10101 145219658
10101102026 10101 54 245902 Puerto Montt 176237.4 2017 43337141298 245 0.0009963 10101 43178175
10101102035 10101 199 245902 Puerto Montt 176237.4 2017 43337141298 940 0.0038227 10101 165663202
10101102037 10101 24 245902 Puerto Montt 176237.4 2017 43337141298 164 0.0006669 10101 28902942
10101102051 10101 8 245902 Puerto Montt 176237.4 2017 43337141298 57 0.0002318 10101 10045535
10101102901 10101 1 245902 Puerto Montt 176237.4 2017 43337141298 16 0.0000651 10101 2819799
10101112025 10101 186 245902 Puerto Montt 176237.4 2017 43337141298 1078 0.0043839 10101 189983971
10101122024 10101 62 245902 Puerto Montt 176237.4 2017 43337141298 952 0.0038715 10101 167778052
10101132022 10101 121 245902 Puerto Montt 176237.4 2017 43337141298 703 0.0028589 10101 123894927
10101132023 10101 102 245902 Puerto Montt 176237.4 2017 43337141298 603 0.0024522 10101 106271182
10101132027 10101 29 245902 Puerto Montt 176237.4 2017 43337141298 105 0.0004270 10101 18504932
10101132049 10101 359 245902 Puerto Montt 176237.4 2017 43337141298 1883 0.0076575 10101 331855117
10101142009 10101 4 245902 Puerto Montt 176237.4 2017 43337141298 59 0.0002399 10101 10398010
10101142015 10101 14 245902 Puerto Montt 176237.4 2017 43337141298 124 0.0005043 10101 21853444
10101142027 10101 42 245902 Puerto Montt 176237.4 2017 43337141298 192 0.0007808 10101 33837590
10101142038 10101 6 245902 Puerto Montt 176237.4 2017 43337141298 53 0.0002155 10101 9340585
10101142046 10101 56 245902 Puerto Montt 176237.4 2017 43337141298 317 0.0012891 10101 55867271
10101142047 10101 32 245902 Puerto Montt 176237.4 2017 43337141298 263 0.0010695 10101 46350449
10101142049 10101 169 245902 Puerto Montt 176237.4 2017 43337141298 973 0.0039569 10101 171479038
10101152002 10101 118 245902 Puerto Montt 176237.4 2017 43337141298 554 0.0022529 10101 97635547
10101152006 10101 53 245902 Puerto Montt 176237.4 2017 43337141298 214 0.0008703 10101 37714814

Vemos que nuestra tabla de trabajo cubre mas del 90% de zonas rurales.

nrow(comunas_censo_casen_6666)
## [1] 10005

En total Chile posee 10,331 zonas rurales de las que estamos cubriendo 10005, cubriendo el 97% de las zonas rurales con una variable (12_años) de ESCOLARIDAD que difiere con la que mas alto correlaciono con ingresos expandidos en 0.066

x <- (10005 * 100) / 10331
x
## [1] 96.84445

1.3 Diagrama de dispersión loess

scatter.smooth(x=comunas_censo_casen_6666$Freq.x, y=comunas_censo_casen_6666$multipob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2)

2 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

2.1 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

2.2 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

tabla_de_trabajo <- comunas_censo_casen_6666
linearMod <- lm( multipob~(Freq.x) , data=tabla_de_trabajo)
summary(linearMod)
## 
## Call:
## lm(formula = multipob ~ (Freq.x), data = tabla_de_trabajo)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -853492260   -6763317   -3646307    2208289  922748428 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  6344942     313835   20.22   <2e-16 ***
## Freq.x        900756       3494  257.79   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 27310000 on 9648 degrees of freedom
##   (355 observations deleted due to missingness)
## Multiple R-squared:  0.8732, Adjusted R-squared:  0.8732 
## F-statistic: 6.645e+04 on 1 and 9648 DF,  p-value: < 2.2e-16

2.3 Gráfica de la recta de regresión lineal

ggplot(tabla_de_trabajo, aes(x = Freq.x , y = multipob)) +
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.9168 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

3 Modelos alternativos

### 8.1 Modelo cuadrático

linearMod <- lm( multipob~(Freq.x^2) , data=tabla_de_trabajo)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,dato,sintaxis)


### 8.2 Modelo cúbico

linearMod <- lm( multipob~(Freq.x^3) , data=tabla_de_trabajo)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,dato,sintaxis)

### 8.3 Modelo logarítmico

linearMod <- lm( multipob~log(Freq.x) , data=tabla_de_trabajo)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,dato,sintaxis)

### 8.5 Modelo con raíz cuadrada

linearMod <- lm( multipob~sqrt(Freq.x) , data=tabla_de_trabajo)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,dato,sintaxis)

### 8.6 Modelo raíz-raíz

linearMod <- lm( sqrt(multipob)~sqrt(Freq.x) , data=tabla_de_trabajo)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,dato,sintaxis)

### 8.7 Modelo log-raíz

linearMod <- lm( log(multipob)~sqrt(Freq.x) , data=tabla_de_trabajo)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,dato,sintaxis)

### 8.8 Modelo raíz-log

linearMod <- lm( sqrt(multipob)~log(Freq.x) , data=tabla_de_trabajo)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,dato,sintaxis)

### 8.9 Modelo log-log

linearMod <- lm( log(multipob)~log(Freq.x) , data=tabla_de_trabajo)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,dato,sintaxis)

modelos_bind <- rbind(modelos1, modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind <<- modelos_bind[order(modelos_bind$dato, decreasing = T ),]

h_y_m_comuna_corr_01 <<- tabla_de_trabajo

kbl(modelos_bind) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
modelo dato sintaxis
5 raíz-raíz 0.931469599155803 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
8 log-log 0.885928812926616 linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
1 cuadrático 0.873209853833581 linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
2 cúbico 0.873209853833581 linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
6 log-raíz 0.787302082593954 linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
4 raíz cuadrada 0.775090090600853 linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
7 raíz-log 0.765335598062265 linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
3 logarítmico 0.45660973354207 linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)


4 Elección del modelo.

Elegimos el modelo log-log (8) pues tiene el más alto \(R^2\)

h_y_m_comuna_corr <- h_y_m_comuna_corr_01
metodo <- 5
switch (metodo,
        case = linearMod <- lm( multipob~(Freq.x^2) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( multipob~(Freq.x^3) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( multipob~log(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( multipob~sqrt(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( sqrt(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( log(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( sqrt(multipob)~log(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( log(multipob)~log(Freq.x) , data=h_y_m_comuna_corr)
)
summary(linearMod)
## 
## Call:
## lm(formula = sqrt(multipob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -12821.2   -575.0    -65.7    490.5  16381.0 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   485.321     16.989   28.57   <2e-16 ***
## sqrt(Freq.x)  953.222      2.632  362.15   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 999.4 on 9648 degrees of freedom
##   (355 observations deleted due to missingness)
## Multiple R-squared:  0.9315, Adjusted R-squared:  0.9315 
## F-statistic: 1.312e+05 on 1 and 9648 DF,  p-value: < 2.2e-16

4.1 Modelo raíz-raíz (raíz-raíz)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.9315).

4.1.1 Diagrama de dispersión sobre raíz-raíz

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=sqrt(tabla_de_trabajo$Freq.x), y=sqrt(tabla_de_trabajo$multipob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

ggplot(tabla_de_trabajo, aes(x = sqrt(Freq.x) , y = sqrt(multipob))) + geom_point() + stat_smooth(method=lm , color="blue",  level = 0.9, fill="green", se=TRUE)

4.1.2 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

4.1.3 Modelo sqrt-sqrt

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multipob)~sqrt(Freq.x) , data=tabla_de_trabajo)
aa <- linearMod$coefficients[1]
bb <- linearMod$coefficients[2]


5 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

tabla_de_trabajo$est_ing <- (aa)^2 +2 * aa*bb*sqrt(tabla_de_trabajo$Freq.x) + (bb)^2 * tabla_de_trabajo$Freq.x


6 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


tabla_de_trabajo$ing_medio_zona <- tabla_de_trabajo$est_ing /(tabla_de_trabajo$personas  * tabla_de_trabajo$p)


write_xlsx(tabla_de_trabajo, "tabla_de_trabajo_escolaridad.xlsx")
write.dbf(tabla_de_trabajo, "tabla_de_trabajo_escolaridad.dbf")

r3_100 <- tabla_de_trabajo[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
clave código.x Freq.x personas comuna promedio_i año ingresos_expandidos Freq.y p código.y multipob est_ing ing_medio_zona
10101032002 10101 27 245902 Puerto Montt 176237.4 2017 43337141298 129 0.0005246 10101 22734631.0 29576261 229273.34
10101032011 10101 106 245902 Puerto Montt 176237.4 2017 43337141298 426 0.0017324 10101 75077153.5 106076386 249005.60
10101032019 10101 174 245902 Puerto Montt 176237.4 2017 43337141298 829 0.0033713 10101 146100845.6 170542154 205720.33
10101062003 10101 28 245902 Puerto Montt 176237.4 2017 43337141298 158 0.0006425 10101 27845517.0 30573114 193500.72
10101062008 10101 83 245902 Puerto Montt 176237.4 2017 43337141298 581 0.0023627 10101 102393958.1 84081270 144718.19
10101062013 10101 83 245902 Puerto Montt 176237.4 2017 43337141298 571 0.0023221 10101 100631583.6 84081270 147252.66
10101062029 10101 15 245902 Puerto Montt 176237.4 2017 43337141298 47 0.0001911 10101 8283160.1 17448437 371243.33
10101062039 10101 18 245902 Puerto Montt 176237.4 2017 43337141298 67 0.0002725 10101 11807909.1 20516352 306214.21
10101072014 10101 204 245902 Puerto Montt 176237.4 2017 43337141298 997 0.0040545 10101 175708737.1 198811417 199409.65
10101072021 10101 13 245902 Puerto Montt 176237.4 2017 43337141298 44 0.0001789 10101 7754447.8 15383735 349630.35
10101072028 10101 22 245902 Puerto Montt 176237.4 2017 43337141298 145 0.0005897 10101 25554430.2 24565177 169415.01
10101072029 10101 221 245902 Puerto Montt 176237.4 2017 43337141298 1051 0.0042741 10101 185225559.4 214797765 204374.66
10101072036 10101 17 245902 Puerto Montt 176237.4 2017 43337141298 118 0.0004799 10101 20796019.0 19497122 165229.85
10101072045 10101 19 245902 Puerto Montt 176237.4 2017 43337141298 113 0.0004595 10101 19914831.8 21532550 190553.54
10101072050 10101 7 245902 Puerto Montt 176237.4 2017 43337141298 66 0.0002684 10101 11631671.7 9043903 137028.84
10101082016 10101 18 245902 Puerto Montt 176237.4 2017 43337141298 121 0.0004921 10101 21324731.4 20516352 169556.63
10101082017 10101 4 245902 Puerto Montt 176237.4 2017 43337141298 38 0.0001545 10101 6697023.1 5720536 150540.41
10101082018 10101 102 245902 Puerto Montt 176237.4 2017 43337141298 623 0.0025335 10101 109795931.0 102260397 164141.89
10101082030 10101 26 245902 Puerto Montt 176237.4 2017 43337141298 176 0.0007157 10101 31017791.1 28577758 162373.63
10101082034 10101 11 245902 Puerto Montt 176237.4 2017 43337141298 66 0.0002684 10101 11631671.7 13299147 201502.22
10101082042 10101 51 245902 Puerto Montt 176237.4 2017 43337141298 253 0.0010289 10101 44588074.7 53183261 210210.52
10101082045 10101 23 245902 Puerto Montt 176237.4 2017 43337141298 123 0.0005002 10101 21677206.3 25571343 207897.10
10101092004 10101 11 245902 Puerto Montt 176237.4 2017 43337141298 97 0.0003945 10101 17095032.6 13299147 137104.60
10101092008 10101 126 245902 Puerto Montt 176237.4 2017 43337141298 752 0.0030581 10101 132530562.0 125108880 166368.19
10101092037 10101 68 245902 Puerto Montt 176237.4 2017 43337141298 276 0.0011224 10101 48641536.1 69652185 252362.99
10101092040 10101 101 245902 Puerto Montt 176237.4 2017 43337141298 509 0.0020699 10101 89704861.8 101305846 199029.17
10101092041 10101 354 245902 Puerto Montt 176237.4 2017 43337141298 1683 0.0068442 10101 296607627.4 339299369 201603.90
10101092044 10101 99 245902 Puerto Montt 176237.4 2017 43337141298 530 0.0021553 10101 93405848.2 99396058 187539.73
10101102005 10101 24 245902 Puerto Montt 176237.4 2017 43337141298 147 0.0005978 10101 25906905.1 26575411 180785.11
10101102007 10101 166 245902 Puerto Montt 176237.4 2017 43337141298 824 0.0033509 10101 145219658.4 162989232 197802.47
10101102026 10101 54 245902 Puerto Montt 176237.4 2017 43337141298 245 0.0009963 10101 43178175.1 56100718 228982.52
10101102035 10101 199 245902 Puerto Montt 176237.4 2017 43337141298 940 0.0038227 10101 165663202.5 194105306 206495.01
10101102037 10101 24 245902 Puerto Montt 176237.4 2017 43337141298 164 0.0006669 10101 28902941.7 26575411 162045.19
10101102051 10101 8 245902 Puerto Montt 176237.4 2017 43337141298 57 0.0002318 10101 10045534.6 10121553 177571.11
10101102901 10101 1 245902 Puerto Montt 176237.4 2017 43337141298 16 0.0000651 10101 2819799.2 2069404 129337.77
10101112025 10101 186 245902 Puerto Montt 176237.4 2017 43337141298 1078 0.0043839 10101 189983970.5 181859570 168700.90
10101122024 10101 62 245902 Puerto Montt 176237.4 2017 43337141298 952 0.0038715 10101 167778051.9 63856019 67075.65
10101132022 10101 121 245902 Puerto Montt 176237.4 2017 43337141298 703 0.0028589 10101 123894927.0 120357570 171205.65
10101132023 10101 102 245902 Puerto Montt 176237.4 2017 43337141298 603 0.0024522 10101 106271182.0 102260397 169586.06
10101132027 10101 29 245902 Puerto Montt 176237.4 2017 43337141298 105 0.0004270 10101 18504932.2 31568405 300651.48
10101132049 10101 359 245902 Puerto Montt 176237.4 2017 43337141298 1883 0.0076575 10101 331855117.3 343965036 182668.63
10101142009 10101 4 245902 Puerto Montt 176237.4 2017 43337141298 59 0.0002399 10101 10398009.5 5720536 96958.23
10101142015 10101 14 245902 Puerto Montt 176237.4 2017 43337141298 124 0.0005043 10101 21853443.7 16418297 132405.62
10101142027 10101 42 245902 Puerto Montt 176237.4 2017 43337141298 192 0.0007808 10101 33837590.3 44394284 231220.23
10101142038 10101 6 245902 Puerto Montt 176237.4 2017 43337141298 53 0.0002155 10101 9340584.8 7953683 150069.50
10101142046 10101 56 245902 Puerto Montt 176237.4 2017 43337141298 317 0.0012891 10101 55867271.5 58042745 183100.14
10101142047 10101 32 245902 Puerto Montt 176237.4 2017 43337141298 263 0.0010695 10101 46350449.2 34545677 131352.39
10101142049 10101 169 245902 Puerto Montt 176237.4 2017 43337141298 973 0.0039569 10101 171479038.3 165822363 170423.81
10101152002 10101 118 245902 Puerto Montt 176237.4 2017 43337141298 554 0.0022529 10101 97635547.0 117504714 212102.37
10101152006 10101 53 245902 Puerto Montt 176237.4 2017 43337141298 214 0.0008703 10101 37714814.2 55128838 257611.39
10101152020 10101 154 245902 Puerto Montt 176237.4 2017 43337141298 617 0.0025091 10101 108738506.3 151646696 245780.71
10101152031 10101 147 245902 Puerto Montt 176237.4 2017 43337141298 642 0.0026108 10101 113144442.6 145022288 225891.41
10101152033 10101 145 245902 Puerto Montt 176237.4 2017 43337141298 700 0.0028467 10101 123366214.6 143128451 204469.22
10101152049 10101 21 245902 Puerto Montt 176237.4 2017 43337141298 96 0.0003904 10101 16918795.1 23556767 245382.99
10101152901 10101 5 245902 Puerto Montt 176237.4 2017 43337141298 46 0.0001871 10101 8106922.7 6847586 148860.57
10101162006 10101 71 245902 Puerto Montt 176237.4 2017 43337141298 233 0.0009475 10101 41063325.7 72544566 311350.07
10101162010 10101 96 245902 Puerto Montt 176237.4 2017 43337141298 351 0.0014274 10101 61859344.8 96529606 275013.12
10101162020 10101 45 245902 Puerto Montt 176237.4 2017 43337141298 205 0.0008337 10101 36128677.1 47330636 230881.15
10101162031 10101 183 245902 Puerto Montt 176237.4 2017 43337141298 762 0.0030988 10101 134292936.5 179031499 234949.47
10101162032 10101 2 245902 Puerto Montt 176237.4 2017 43337141298 24 0.0000976 10101 4229698.8 3361281 140053.39
10101162033 10101 35 245902 Puerto Montt 176237.4 2017 43337141298 168 0.0006832 10101 29607891.5 37511417 223282.25
10101172029 10101 153 245902 Puerto Montt 176237.4 2017 43337141298 854 0.0034729 10101 150506781.8 150700725 176464.55
10102012001 10102 16 33985 Calbuco 155443.9 2017 5282762017 80 0.0023540 10102 12435514.5 18474589 230932.36
10102012004 10102 59 33985 Calbuco 155443.9 2017 5282762017 283 0.0083272 10102 43990632.7 60951681 215376.96
10102012008 10102 103 33985 Calbuco 155443.9 2017 5282762017 697 0.0205090 10102 108344420.4 103214723 148084.25
10102012017 10102 24 33985 Calbuco 155443.9 2017 5282762017 268 0.0078858 10102 41658973.7 26575411 99161.98
10102012033 10102 309 33985 Calbuco 155443.9 2017 5282762017 1490 0.0438429 10102 231611458.2 297266896 199507.98
10102012037 10102 4 33985 Calbuco 155443.9 2017 5282762017 6 0.0001765 10102 932663.6 5720536 953422.62
10102022001 10102 31 33985 Calbuco 155443.9 2017 5282762017 164 0.0048257 10102 25492804.8 33554617 204601.32
10102022002 10102 48 33985 Calbuco 155443.9 2017 5282762017 308 0.0090628 10102 47876730.9 50260083 163182.09
10102022003 10102 32 33985 Calbuco 155443.9 2017 5282762017 184 0.0054142 10102 28601683.4 34545677 187748.25
10102022004 10102 14 33985 Calbuco 155443.9 2017 5282762017 74 0.0021774 10102 11502850.9 16418297 221868.88
10102022010 10102 39 33985 Calbuco 155443.9 2017 5282762017 294 0.0086509 10102 45700515.9 41450271 140987.32
10102022013 10102 47 33985 Calbuco 155443.9 2017 5282762017 450 0.0132411 10102 69949769.2 49284326 109520.73
10102032002 10102 6 33985 Calbuco 155443.9 2017 5282762017 54 0.0015889 10102 8393972.3 7953683 147290.43
10102032011 10102 31 33985 Calbuco 155443.9 2017 5282762017 163 0.0047962 10102 25337360.9 33554617 205856.54
10102032016 10102 18 33985 Calbuco 155443.9 2017 5282762017 95 0.0027954 10102 14767173.5 20516352 215961.60
10102032018 10102 68 33985 Calbuco 155443.9 2017 5282762017 470 0.0138296 10102 73058647.9 69652185 148196.14
10102032034 10102 87 33985 Calbuco 155443.9 2017 5282762017 695 0.0204502 10102 108033532.5 87916523 126498.59
10102032901 10102 13 33985 Calbuco 155443.9 2017 5282762017 89 0.0026188 10102 13834509.9 15383735 172850.96
10102042014 10102 18 33985 Calbuco 155443.9 2017 5282762017 87 0.0025600 10102 13523622.1 20516352 235820.14
10102042016 10102 7 33985 Calbuco 155443.9 2017 5282762017 48 0.0014124 10102 7461308.7 9043903 188414.65
10102042019 10102 72 33985 Calbuco 155443.9 2017 5282762017 336 0.0098867 10102 52229161.0 73507908 218773.54
10102042028 10102 27 33985 Calbuco 155443.9 2017 5282762017 171 0.0050316 10102 26580912.3 29576261 172960.59
10102042029 10102 24 33985 Calbuco 155443.9 2017 5282762017 183 0.0053847 10102 28446239.5 26575411 145220.82
10102042035 10102 55 33985 Calbuco 155443.9 2017 5282762017 271 0.0079741 10102 42125305.5 57072015 210597.84
10102042043 10102 23 33985 Calbuco 155443.9 2017 5282762017 86 0.0025305 10102 13368178.1 25571343 297341.19
10102042901 10102 25 33985 Calbuco 155443.9 2017 5282762017 127 0.0037369 10102 19741379.3 27577510 217145.75
10102052012 10102 67 33985 Calbuco 155443.9 2017 5282762017 302 0.0088863 10102 46944067.4 68687245 227441.21
10102052019 10102 61 33985 Calbuco 155443.9 2017 5282762017 332 0.0097690 10102 51607385.3 62888396 189422.88
10102052042 10102 95 33985 Calbuco 155443.9 2017 5282762017 410 0.0120641 10102 63732012.0 95573635 233106.43
10102052043 10102 52 33985 Calbuco 155443.9 2017 5282762017 273 0.0080330 10102 42436193.3 54156358 198374.94
10102062015 10102 151 33985 Calbuco 155443.9 2017 5282762017 1129 0.0332205 10102 175496198.8 148808415 131805.50
10102062019 10102 59 33985 Calbuco 155443.9 2017 5282762017 362 0.0106518 10102 56270703.3 60951681 168374.81
10102062027 10102 5 33985 Calbuco 155443.9 2017 5282762017 25 0.0007356 10102 3886098.3 6847586 273903.44
10102062038 10102 57 33985 Calbuco 155443.9 2017 5282762017 357 0.0105046 10102 55493483.6 59012924 165302.31
10102062039 10102 85 33985 Calbuco 155443.9 2017 5282762017 643 0.0189201 10102 99950448.1 85999487 133747.26
10102072022 10102 9 33985 Calbuco 155443.9 2017 5282762017 148 0.0043549 10102 23005701.9 11188931 75600.88
10102082022 10102 71 33985 Calbuco 155443.9 2017 5282762017 565 0.0166250 10102 87825821.4 72544566 128397.46
10102092022 10102 31 33985 Calbuco 155443.9 2017 5282762017 308 0.0090628 10102 47876730.9 33554617 108943.56

6.1 Estadísticos

ingresos <- readRDS("Ingresos_expandidos_rural_17.rds")

kbl(ingresos) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código personas comuna promedio_i año ingresos_expandidos
1 01101 191468 Iquique 272529.7 2017 52180713221
3 01401 15711 Pozo Almonte 243272.4 2017 3822052676
4 01402 1250 Camiña 226831.0 2017 283538750
6 01404 2730 Huara 236599.7 2017 645917134
7 01405 9296 Pica 269198.0 2017 2502464414
10 02103 10186 Sierra Gorda 322997.9 2017 3290056742
11 02104 13317 Taltal 288653.8 2017 3844002134
12 02201 165731 Calama 238080.9 2017 39457387800
14 02203 10996 San Pedro de Atacama 271472.6 2017 2985112297
15 02301 25186 Tocopilla 166115.9 2017 4183793832
17 03101 153937 Copiapó 251396.0 2017 38699138722
19 03103 14019 Tierra Amarilla 287819.4 2017 4034940816
21 03202 13925 Diego de Almagro 326439.0 2017 4545663075
22 03301 51917 Vallenar 217644.6 2017 11299454698
23 03302 5299 Alto del Carmen 196109.9 2017 1039186477
24 03303 7041 Freirina 202463.8 2017 1425547554
25 03304 10149 Huasco 205839.6 2017 2089066548
26 04101 221054 La Serena 200287.4 2017 44274327972
27 04102 227730 Coquimbo 206027.8 2017 46918711304
28 04103 11044 Andacollo 217096.4 2017 2397612293
29 04104 4241 La Higuera 231674.2 2017 982530309
30 04105 4497 Paiguano 174868.5 2017 786383423
31 04106 27771 Vicuña 169077.1 2017 4695441470
32 04201 30848 Illapel 165639.6 2017 5109649759
33 04202 9093 Canela 171370.3 2017 1558270441
34 04203 21382 Los Vilos 173238.5 2017 3704185607
35 04204 29347 Salamanca 193602.0 2017 5681637894
36 04301 111272 Ovalle 230819.8 2017 25683781418
37 04302 13322 Combarbalá 172709.2 2017 2300832587
38 04303 30751 Monte Patria 189761.6 2017 5835357638
39 04304 10956 Punitaqui 165862.0 2017 1817183694
40 04305 4278 Río Hurtado 182027.2 2017 778712384
41 05101 296655 Valparaíso 251998.5 2017 74756602991
42 05102 26867 Casablanca 252317.7 2017 6779018483
45 05105 18546 Puchuncaví 231606.0 2017 4295363979
46 05107 31923 Quintero 285125.8 2017 9102071069
49 05301 66708 Los Andes 280548.0 2017 18714795984
50 05302 14832 Calle Larga 234044.6 2017 3471349123
51 05303 10207 Rinconada 246136.9 2017 2512319225
52 05304 18855 San Esteban 211907.3 2017 3995512770
53 05401 35390 La Ligua 172675.9 2017 6111000517
54 05402 19388 Cabildo 212985.0 2017 4129354103
56 05404 9826 Petorca 270139.8 2017 2654393853
57 05405 7339 Zapallar 235661.4 2017 1729518700
58 05501 90517 Quillota 212067.6 2017 19195726144
59 05502 50554 Calera 226906.2 2017 11471016698
60 05503 17988 Hijuelas 215402.0 2017 3874650405
61 05504 22098 La Cruz 243333.4 2017 5377180726
62 05506 22120 Nogales 219800.7 2017 4861992055
63 05601 91350 San Antonio 230261.5 2017 21034388728
64 05602 13817 Algarrobo 218057.0 2017 3012893845
65 05603 22738 Cartagena 246517.9 2017 5605324190
68 05606 10900 Santo Domingo 250404.5 2017 2729409577
69 05701 76844 San Felipe 240842.4 2017 18507290899
70 05702 13998 Catemu 204903.4 2017 2868237147
71 05703 24608 Llaillay 257020.9 2017 6324771348
72 05704 7273 Panquehue 210643.4 2017 1532009468
73 05705 16754 Putaendo 207222.5 2017 3471806107
74 05706 15241 Santa María 254903.6 2017 3884985562
75 05801 151708 Quilpué 296519.4 2017 44984360344
76 05802 46121 Limache 251682.2 2017 11607834893
77 05803 17516 Olmué 198292.3 2017 3473287749
78 05804 126548 Villa Alemana 249779.9 2017 31609146219
79 06101 241774 Rancagua 243717.4 2017 58924531866
80 06102 12988 Codegua 264737.7 2017 3438412620
81 06103 7359 Coinco 175814.1 2017 1293816308
82 06104 19597 Coltauco 254006.7 2017 4977769953
83 06105 20887 Doñihue 198486.5 2017 4145787348
84 06106 33437 Graneros 248394.9 2017 8305580885
85 06107 24640 Las Cabras 201772.1 2017 4971665251
86 06108 52505 Machalí 252049.6 2017 13233865906
87 06109 13407 Malloa 250691.2 2017 3361017589
88 06110 25343 Mostazal 264277.9 2017 6697593734
89 06111 13608 Olivar 256304.8 2017 3487795575
90 06112 14313 Peumo 230938.1 2017 3305417128
91 06113 19714 Pichidegua 217210.9 2017 4282095940
92 06114 13002 Quinta de Tilcoco 203672.8 2017 2648154389
93 06115 58825 Rengo 250531.0 2017 14737488444
94 06116 27968 Requínoa 244836.0 2017 6847572657
95 06117 46766 San Vicente 242866.0 2017 11357872282
96 06201 16394 Pichilemu 230362.3 2017 3776560181
97 06202 3041 La Estrella 211425.0 2017 642943494
98 06203 6294 Litueche 237979.9 2017 1497845780
99 06204 7308 Marchihue 237849.2 2017 1738201845
100 06205 6641 Navidad 165555.2 2017 1099452202
101 06206 6188 Paredones 194146.1 2017 1201375821
102 06301 73973 San Fernando 239724.5 2017 17733143348
103 06302 15037 Chépica 207192.9 2017 3115559148
104 06303 35399 Chimbarongo 227716.7 2017 8060942027
105 06304 6811 Lolol 210117.9 2017 1431112941
106 06305 17833 Nancagua 213675.0 2017 3810465416
107 06306 12482 Palmilla 230550.0 2017 2877725100
108 06307 11007 Peralillo 231695.3 2017 2550270534
109 06308 8738 Placilla 221358.7 2017 1934232402
110 06309 3421 Pumanque 239369.8 2017 818883984
111 06310 37855 Santa Cruz 224421.9 2017 8495489945
112 07101 220357 Talca 244658.0 2017 53912095394
113 07102 46068 Constitución 198314.7 2017 9135962663
114 07103 9448 Curepto 191743.1 2017 1811588746
115 07104 4142 Empedrado 172428.7 2017 714199777
116 07105 49721 Maule 195207.4 2017 9705908393
117 07106 8422 Pelarco 187124.6 2017 1575963241
118 07107 8245 Pencahue 220957.5 2017 1821794345
119 07108 13906 Río Claro 196539.7 2017 2733081178
120 07109 43269 San Clemente 179181.4 2017 7753001772
121 07110 9191 San Rafael 195848.9 2017 1800047360
122 07201 40441 Cauquenes 152604.5 2017 6171477801
123 07202 8928 Chanco 128982.1 2017 1151552040
124 07203 7571 Pelluhue 113986.7 2017 862993347
125 07301 149136 Curicó 265301.7 2017 39566034949
126 07302 9657 Hualañé 167967.3 2017 1622060226
127 07303 6653 Licantén 179919.7 2017 1197005482
128 07304 45976 Molina 227845.0 2017 10475401720
129 07305 10484 Rauco 196719.6 2017 2062408371
130 07306 15187 Romeral 218360.4 2017 3316239205
131 07307 18544 Sagrada Familia 204922.9 2017 3800089672
132 07308 28921 Teno 250368.7 2017 7240913928
133 07309 4322 Vichuquén 179935.1 2017 777679695
134 07401 93602 Linares 192783.1 2017 18044885598
135 07402 20765 Colbún 161250.1 2017 3348358419
136 07403 30534 Longaví 166612.7 2017 5087351933
137 07404 41637 Parral 183123.5 2017 7624714509
138 07405 19974 Retiro 146406.4 2017 2924321333
139 07406 45547 San Javier 170552.7 2017 7768163327
140 07407 16221 Villa Alegre 178486.5 2017 2895229121
141 07408 18081 Yerbas Buenas 203001.0 2017 3670461912
142 08101 223574 Concepción 197625.8 2017 44183983882
143 08102 116262 Coronel 217018.1 2017 25230952648
145 08104 10624 Florida 147425.2 2017 1566245750
146 08105 24333 Hualqui 202715.1 2017 4932666876
148 08107 47367 Penco 195212.7 2017 9246639961
150 08109 13749 Santa Juana 198449.1 2017 2728477197
151 08110 151749 Talcahuano 161731.1 2017 24542535584
152 08111 54946 Tomé 210053.2 2017 11541584520
154 08201 25522 Lebu 141842.6 2017 3620107931
155 08202 36257 Arauco 184849.0 2017 6702069405
156 08203 34537 Cañete 186912.3 2017 6455391501
157 08204 6031 Contulmo 131551.5 2017 793386801
158 08205 32288 Curanilahue 252073.4 2017 8138946477
159 08206 21035 Los Álamos 189429.4 2017 3984647129
160 08207 10417 Tirúa 144994.9 2017 1510411713
161 08301 202331 Los Ángeles 190810.3 2017 38606846296
162 08302 4073 Antuco 155662.3 2017 634012722
163 08303 28573 Cabrero 249163.0 2017 7119335384
164 08304 22389 Laja 174449.0 2017 3905739533
165 08305 29627 Mulchén 198258.1 2017 5873792045
166 08306 26315 Nacimiento 175829.2 2017 4626944798
167 08307 9737 Negrete 216999.7 2017 2112926492
168 08308 3988 Quilaco 167106.1 2017 666419314
169 08309 9587 Quilleco 222077.0 2017 2129051929
170 08310 3412 San Rosendo 165912.3 2017 566092732
171 08311 13773 Santa Bárbara 176010.5 2017 2424192819
172 08312 14134 Tucapel 155538.6 2017 2198382777
173 08313 21198 Yumbel 138515.0 2017 2936241535
174 08314 5923 Alto Biobío 130542.9 2017 773205492
175 09101 282415 Temuco 173314.1 2017 48946498862
176 09102 24533 Carahue 127924.5 2017 3138372109
177 09103 17526 Cunco 156882.5 2017 2749522512
178 09104 7489 Curarrehue 135420.9 2017 1014167156
179 09105 24606 Freire 197426.1 2017 4857867695
180 09106 11996 Galvarino 147518.2 2017 1769627798
181 09107 14414 Gorbea 140997.5 2017 2032338344
182 09108 38013 Lautaro 282496.1 2017 10738525406
183 09109 23612 Loncoche 160742.5 2017 3795451798
184 09110 6138 Melipeuco 164670.1 2017 1010744848
185 09111 32510 Nueva Imperial 158196.8 2017 5142978907
186 09112 76126 Padre Las Casas 169223.7 2017 12882320064
187 09113 6905 Perquenco 155106.7 2017 1071011969
188 09114 24837 Pitrufquén 205557.8 2017 5105439315
189 09115 28523 Pucón 187764.8 2017 5355614570
190 09116 12450 Saavedra 130775.6 2017 1628156299
191 09117 15045 Teodoro Schmidt 138894.2 2017 2089663239
192 09118 9722 Toltén 113791.8 2017 1106284328
193 09119 28151 Vilcún 135602.8 2017 3817354634
194 09120 55478 Villarrica 198745.4 2017 11026000004
195 09121 11611 Cholchol 115103.4 2017 1336465909
196 09201 53262 Angol 173377.3 2017 9234420713
197 09202 24598 Collipulli 182323.1 2017 4484784762
198 09203 17413 Curacautín 186604.9 2017 3249351008
199 09204 7733 Ercilla 136678.7 2017 1056936411
200 09205 10251 Lonquimay 138745.9 2017 1422283764
201 09206 7265 Los Sauces 142588.7 2017 1035906610
202 09207 9548 Lumaco 170538.2 2017 1628298886
203 09208 11779 Purén 133537.6 2017 1572938990
204 09209 10250 Renaico 218920.0 2017 2243930000
205 09210 18843 Traiguén 210526.3 2017 3966946195
206 09211 34182 Victoria 187662.8 2017 6414689393
207 10101 245902 Puerto Montt 176237.4 2017 43337141298
208 10102 33985 Calbuco 155443.9 2017 5282762017
210 10104 12261 Fresia 183977.2 2017 2255743895
211 10105 18428 Frutillar 174883.1 2017 3222744874
212 10106 17068 Los Muermos 192845.4 2017 3291484556
213 10107 17591 Llanquihue 149333.8 2017 2626930838
214 10108 14216 Maullín 137613.7 2017 1956316762
215 10109 44578 Puerto Varas 219839.1 2017 9799987895
216 10201 43807 Castro 183717.2 2017 8048100927
217 10202 38991 Ancud 161910.1 2017 6313036958
218 10203 14858 Chonchi 193642.9 2017 2877146807
219 10204 3829 Curaco de Vélez 177952.2 2017 681378864
220 10205 13762 Dalcahue 207717.6 2017 2858609503
221 10206 3921 Puqueldón 208274.8 2017 816645370
222 10207 5385 Queilén 151485.0 2017 815746659
223 10208 27192 Quellón 171685.5 2017 4668472212
224 10209 8352 Quemchi 122223.1 2017 1020807718
225 10210 8088 Quinchao 119852.6 2017 969367811
226 10301 161460 Osorno 196610.2 2017 31744688808
227 10302 8999 Puerto Octay 221980.9 2017 1997605810
228 10303 20369 Purranque 186719.5 2017 3803288945
229 10304 11667 Puyehue 176006.9 2017 2053472049
230 10305 14085 Río Negro 156568.1 2017 2205262341
231 10306 7512 San Juan de la Costa 152674.0 2017 1146887184
232 10307 10030 San Pablo 181411.6 2017 1819558805
237 11101 57818 Coyhaique 230013.0 2017 13298894369
239 11201 23959 Aysén 246614.5 2017 5908637554
240 11202 6517 Cisnes 262412.7 2017 1710143349
242 11301 3490 Cochrane 211652.6 2017 738667487
245 11401 4865 Chile Chico 188913.8 2017 919065674
246 11402 2666 Río Ibáñez 171315.6 2017 456727447
247 12101 131592 Punta Arenas 256903.3 2017 33806414442
253 12301 6801 Porvenir 381329.2 2017 2593419712
256 12401 21477 Natales 302167.3 2017 6489647004
291 13202 26521 Pirque 274675.6 2017 7284672878
292 13203 18189 San José de Maipo 344876.8 2017 6272964115
293 13301 146207 Colina 255373.7 2017 37337421744
294 13302 102034 Lampa 243425.7 2017 24837699582
295 13303 19312 Tiltil 264794.8 2017 5113717064
296 13401 301313 San Bernardo 251728.3 2017 75849003232
297 13402 96614 Buin 289884.0 2017 28006850165
298 13403 25392 Calera de Tango 298439.8 2017 7577982724
299 13404 72759 Paine 282280.9 2017 20538478428
300 13501 123627 Melipilla 199121.9 2017 24616837833
301 13502 6444 Alhué 242844.2 2017 1564887792
302 13503 32579 Curacaví 220990.2 2017 7199638514
303 13504 13590 María Pinto 198063.3 2017 2691680700
304 13505 9726 San Pedro 231429.7 2017 2250885401
305 13601 74237 Talagante 230734.4 2017 17129031774
306 13602 35923 El Monte 201444.7 2017 7236496479
307 13603 36219 Isla de Maipo 232595.7 2017 8424384020
308 13604 63250 Padre Hurtado 231845.6 2017 14664233522
309 13605 90201 Peñaflor 249848.3 2017 22536570306
310 14101 166080 Valdivia 211732.5 2017 35164529745
311 14102 5302 Corral 157428.1 2017 834683963
312 14103 16752 Lanco 184730.2 2017 3094599901
313 14104 19634 Los Lagos 190489.7 2017 3740075550
314 14105 7095 Máfil 180289.2 2017 1279152079
315 14106 21278 Mariquina 187045.1 2017 3979945072
316 14107 20188 Paillaco 163833.6 2017 3307473487
317 14108 34539 Panguipulli 180390.3 2017 6230498948
318 14201 38036 La Unión 201975.2 2017 7682327556
319 14202 14665 Futrono 193120.3 2017 2832109866
320 14203 9896 Lago Ranco 186595.7 2017 1846550611
321 14204 31372 Río Bueno 184360.5 2017 5783758517
322 15101 221364 Arica 250863.6 2017 55532177025
323 15102 1255 Camarones 222472.1 2017 279202446
324 15201 2765 Putre 194293.6 2017 537221762
326 16101 184739 Chillán 232041.6 2017 42867130063
327 16102 21493 Bulnes 167693.2 2017 3604229178
328 16103 30907 Chillán Viejo 179855.8 2017 5558803478
329 16104 12044 El Carmen 151144.7 2017 1820386198
330 16105 8448 Pemuco 151889.4 2017 1283161238
331 16106 10827 Pinto 153289.2 2017 1659661870
332 16107 17485 Quillón 133479.9 2017 2333895558
333 16108 16079 San Ignacio 174538.8 2017 2806409365
334 16109 17787 Yungay 194006.8 2017 3450799686
335 16201 11594 Quirihue 155446.9 2017 1802251665
336 16202 5012 Cobquecura 122513.3 2017 614036495
337 16203 15995 Coelemu 174050.2 2017 2783932983
338 16204 5213 Ninhue 161577.8 2017 842304828
339 16205 4862 Portezuelo 168595.2 2017 819710106
340 16206 5755 Ránquil 221951.3 2017 1277329463
341 16207 5401 Treguaco 178763.9 2017 965503625
342 16301 53024 San Carlos 175203.6 2017 9289995173
343 16302 26881 Coihueco 174853.6 2017 4700239750
344 16303 11152 Ñiquén 188830.1 2017 2105832760
345 16304 4308 San Fabián 158019.3 2017 680747063
346 16305 11603 San Nicolás 180675.3 2017 2096375354

Promedio

t_de_c <- tabla_de_trabajo %>%
  group_by(código.y) %>%
  summarize(mean = mean(ing_medio_zona, na.rm = TRUE))

names(t_de_c)[1] <- "código"

estadisticos_finales <- merge( x = ingresos, y = t_de_c, by = "código", all.x = TRUE)
#estadisticos_finales

Desviación standard

t_de_c_2 <- tabla_de_trabajo %>%
  group_by(código.y) %>%
  summarize(sd = sd(ing_medio_zona, na.rm = TRUE))

names(t_de_c_2)[1] <- "código"

estadisticos_finales <- merge( x = estadisticos_finales, y = t_de_c_2, by = "código", all.x = TRUE)
#estadisticos_finales

Mínimo

t_de_c_3 <- tabla_de_trabajo %>%
  group_by(código.y) %>%
  summarize(min = min(ing_medio_zona, na.rm = TRUE))

names(t_de_c_3)[1] <- "código"

estadisticos_finales <- merge( x = estadisticos_finales, y = t_de_c_3, by = "código", all.x = TRUE)
#estadisticos_finales

Máximo

t_de_c_4 <- tabla_de_trabajo %>%
  group_by(código.y) %>%
  summarize(max = max(ing_medio_zona, na.rm = TRUE))

names(t_de_c_4)[1] <- "código"

estadisticos_finales <- merge( x = estadisticos_finales, y = t_de_c_4, by = "código", all.x = TRUE)
#estadisticos_finales

Mediana

t_de_c_5 <- tabla_de_trabajo %>%
  group_by(código.y) %>%
  summarize(mediana = median(ing_medio_zona, na.rm = TRUE))

names(t_de_c_5)[1] <- "código"

estadisticos_finales <- merge( x = estadisticos_finales, y = t_de_c_5, by = "código", all.x = TRUE)



kbl(estadisticos_finales) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código personas comuna promedio_i año ingresos_expandidos mean sd min max mediana
01101 191468 Iquique 272529.7 2017 52180713221 339953.5 113569.64 183139.71 570498.5 316356.4
01401 15711 Pozo Almonte 243272.4 2017 3822052676 360876.6 181186.34 184028.24 855948.3 308088.5
01402 1250 Camiña 226831.0 2017 283538750 251212.6 165760.10 130012.18 715067.0 210701.7
01404 2730 Huara 236599.7 2017 645917134 253653.5 148547.48 59125.84 674770.2 229468.6
01405 9296 Pica 269198.0 2017 2502464414 501614.6 397458.49 243907.01 1521329.2 356104.5
02103 10186 Sierra Gorda 322997.9 2017 3290056742 469880.7 123604.30 301333.10 623158.4 475506.6
02104 13317 Taltal 288653.8 2017 3844002134 387771.1 153556.27 168343.63 843462.8 360965.2
02201 165731 Calama 238080.9 2017 39457387800 351733.9 224247.11 129275.09 1118893.1 284298.4
02203 10996 San Pedro de Atacama 271472.6 2017 2985112297 505101.6 358148.79 212847.94 1130487.9 308967.3
02301 25186 Tocopilla 166115.9 2017 4183793832 299805.8 169408.45 90845.44 753658.6 258560.1
03101 153937 Copiapó 251396.0 2017 38699138722 284981.0 137118.28 107034.52 715067.0 261395.9
03103 14019 Tierra Amarilla 287819.4 2017 4034940816 313280.0 119535.62 26875.38 500398.8 322369.3
03202 13925 Diego de Almagro 326439.0 2017 4545663075 287595.6 116096.06 206940.43 489113.3 243472.2
03301 51917 Vallenar 217644.6 2017 11299454698 293744.9 152594.98 124491.90 1004878.2 246201.4
03302 5299 Alto del Carmen 196109.9 2017 1039186477 346958.5 316318.80 79592.47 2069404.3 279951.8
03303 7041 Freirina 202463.8 2017 1425547554 229223.2 59916.24 138651.42 359436.4 234123.5
03304 10149 Huasco 205839.6 2017 2089066548 230695.5 76337.72 108916.01 384887.3 218206.7
04101 221054 La Serena 200287.4 2017 44274327972 227120.9 89528.39 73340.20 695684.9 220500.2
04102 227730 Coquimbo 206027.8 2017 46918711304 244543.2 66432.17 55102.97 381764.9 248876.7
04103 11044 Andacollo 217096.4 2017 2397612293 222565.2 112411.21 98543.06 480183.1 172105.4
04104 4241 La Higuera 231674.2 2017 982530309 223603.3 106033.49 63388.72 475994.9 213828.0
04105 4497 Paiguano 174868.5 2017 786383423 269202.1 92586.98 170640.03 517351.1 238798.9
04106 27771 Vicuña 169077.1 2017 4695441470 281699.8 163567.41 93802.55 920141.2 232715.2
04201 30848 Illapel 165639.6 2017 5109649759 194462.6 64279.88 101421.95 476711.3 193232.4
04202 9093 Canela 171370.3 2017 1558270441 181661.9 84144.51 43093.35 453618.8 184569.5
04203 21382 Los Vilos 173238.5 2017 3704185607 246155.5 123061.95 73645.22 578223.8 218330.4
04204 29347 Salamanca 193602.0 2017 5681637894 226713.0 71793.01 135305.44 443304.9 208336.1
04301 111272 Ovalle 230819.8 2017 25683781418 233596.7 120731.48 57483.45 1130487.9 217222.9
04302 13322 Combarbalá 172709.2 2017 2300832587 174494.9 65533.13 74430.28 396609.8 161497.3
04303 30751 Monte Patria 189761.6 2017 5835357638 223275.7 111786.41 51735.11 822173.0 201140.7
04304 10956 Punitaqui 165862.0 2017 1817183694 182698.4 84606.31 56021.36 381369.0 175465.5
04305 4278 Río Hurtado 182027.2 2017 778712384 217568.1 118306.38 60864.83 732558.8 199553.3
05101 296655 Valparaíso 251998.5 2017 74756602991 232483.7 35347.16 188716.06 273903.4 233657.6
05102 26867 Casablanca 252317.7 2017 6779018483 248552.7 75429.01 101421.95 421731.4 233485.7
05105 18546 Puchuncaví 231606.0 2017 4295363979 266809.7 87214.79 114966.90 437418.1 248718.9
05107 31923 Quintero 285125.8 2017 9102071069 210321.0 76565.47 103751.30 408609.7 205665.3
05301 66708 Los Andes 280548.0 2017 18714795984 299402.6 108037.12 179718.20 611821.8 280310.2
05302 14832 Calle Larga 234044.6 2017 3471349123 230982.9 82951.22 76644.60 376829.3 243249.6
05303 10207 Rinconada 246136.9 2017 2512319225 200840.5 66979.24 108954.57 360399.3 193953.3
05304 18855 San Esteban 211907.3 2017 3995512770 260084.5 86013.87 137253.94 512791.2 240375.2
05401 35390 La Ligua 172675.9 2017 6111000517 240505.4 60747.27 163421.16 410457.4 229427.2
05402 19388 Cabildo 212985.0 2017 4129354103 220969.0 68099.74 103470.21 420160.2 213036.3
05404 9826 Petorca 270139.8 2017 2654393853 240314.9 81916.98 103751.30 456505.7 239930.3
05405 7339 Zapallar 235661.4 2017 1729518700 241340.5 62848.88 174031.76 345558.7 224009.5
05501 90517 Quillota 212067.6 2017 19195726144 212795.2 35593.36 160217.96 290249.3 216095.7
05502 50554 Calera 226906.2 2017 11471016698 285865.6 68310.69 246074.51 387743.0 254822.5
05503 17988 Hijuelas 215402.0 2017 3874650405 247693.0 81200.45 142624.62 440041.2 249201.4
05504 22098 La Cruz 243333.4 2017 5377180726 237935.2 44851.22 209200.66 289617.1 214988.0
05506 22120 Nogales 219800.7 2017 4861992055 241051.4 35919.97 188267.64 283312.0 243972.1
05601 91350 San Antonio 230261.5 2017 21034388728 283021.5 122693.81 102152.42 715067.0 262534.2
05602 13817 Algarrobo 218057.0 2017 3012893845 240354.8 50112.82 147225.41 336311.1 242009.1
05603 22738 Cartagena 246517.9 2017 5605324190 259835.8 79652.09 102771.63 420982.0 242499.9
05606 10900 Santo Domingo 250404.5 2017 2729409577 238951.3 95040.08 86225.18 456505.7 223835.7
05701 76844 San Felipe 240842.4 2017 18507290899 254914.1 73628.45 180464.57 456398.8 238441.3
05702 13998 Catemu 204903.4 2017 2868237147 214550.1 44660.00 140701.58 312989.4 215251.2
05703 24608 Llaillay 257020.9 2017 6324771348 238706.0 27344.26 204365.17 297721.1 229146.6
05704 7273 Panquehue 210643.4 2017 1532009468 197197.6 64573.58 71516.63 276030.4 222952.7
05705 16754 Putaendo 207222.5 2017 3471806107 215121.4 54481.55 133201.55 351076.0 215141.3
05706 15241 Santa María 254903.6 2017 3884985562 252670.1 53974.51 155954.58 363509.1 248694.1
05801 151708 Quilpué 296519.4 2017 44984360344 243296.5 81480.29 119572.21 414908.0 226950.3
05802 46121 Limache 251682.2 2017 11607834893 203691.4 48398.19 84518.29 285316.1 201129.8
05803 17516 Olmué 198292.3 2017 3473287749 221511.1 52463.91 142624.62 341529.3 215485.1
05804 126548 Villa Alemana 249779.9 2017 31609146219 274113.5 88098.60 132916.98 402799.2 259527.0
06101 241774 Rancagua 243717.4 2017 58924531866 236177.8 113430.86 133201.55 695684.9 209853.8
06102 12988 Codegua 264737.7 2017 3438412620 235511.2 30545.45 194416.15 331019.1 231209.5
06103 7359 Coinco 175814.1 2017 1293816308 193510.3 24956.32 164398.11 223067.4 203990.1
06104 19597 Coltauco 254006.7 2017 4977769953 235813.8 44388.80 177281.75 325999.1 220075.3
06105 20887 Doñihue 198486.5 2017 4145787348 225555.2 23881.88 206179.15 271771.5 215171.7
06106 33437 Graneros 248394.9 2017 8305580885 257330.7 83108.93 177572.15 481978.7 238855.6
06107 24640 Las Cabras 201772.1 2017 4971665251 214975.6 46020.76 152889.60 342379.3 210558.0
06108 52505 Machalí 252049.6 2017 13233865906 324591.7 250571.17 134808.19 904390.3 222510.5
06109 13407 Malloa 250691.2 2017 3361017589 199899.7 43934.03 146142.67 360399.3 194714.9
06110 25343 Mostazal 264277.9 2017 6697593734 237897.9 44594.14 180811.99 380332.3 228706.5
06111 13608 Olivar 256304.8 2017 3487795575 199405.4 25076.44 166286.42 235887.2 196970.9
06112 14313 Peumo 230938.1 2017 3305417128 227342.3 47435.62 176685.40 324369.4 211687.1
06113 19714 Pichidegua 217210.9 2017 4282095940 209270.9 44384.51 141250.23 316266.3 208888.8
06114 13002 Quinta de Tilcoco 203672.8 2017 2648154389 213178.5 59346.98 103726.99 373143.1 202514.8
06115 58825 Rengo 250531.0 2017 14737488444 217213.7 62784.46 138651.42 526737.4 214596.0
06116 27968 Requínoa 244836.0 2017 6847572657 206790.3 38843.13 108428.43 278357.0 209180.9
06117 46766 San Vicente 242866.0 2017 11357872282 214373.5 51729.12 103470.21 397900.5 213781.1
06201 16394 Pichilemu 230362.3 2017 3776560181 200177.8 59959.32 87483.62 305196.4 209201.6
06202 3041 La Estrella 211425.0 2017 642943494 231730.5 74378.10 105040.04 440041.2 217332.7
06203 6294 Litueche 237979.9 2017 1497845780 232927.6 96173.71 48125.68 456505.7 202543.5
06204 7308 Marchihue 237849.2 2017 1738201845 264484.0 95433.94 149556.45 476711.3 235488.2
06205 6641 Navidad 165555.2 2017 1099452202 212534.2 63281.93 68980.14 344900.7 211894.5
06206 6188 Paredones 194146.1 2017 1201375821 191554.8 88633.22 77304.54 414908.0 160281.2
06301 73973 San Fernando 239724.5 2017 17733143348 225425.5 80656.15 120352.61 452195.2 211103.4
06302 15037 Chépica 207192.9 2017 3115559148 212337.7 61045.29 89718.96 414087.5 206940.4
06303 35399 Chimbarongo 227716.7 2017 8060942027 218961.1 59903.81 124209.99 380332.3 207173.1
06304 6811 Lolol 210117.9 2017 1431112941 200294.6 68557.51 112042.71 421731.4 198498.4
06305 17833 Nancagua 213675.0 2017 3810465416 225224.9 69095.84 152512.70 478309.2 214990.1
06306 12482 Palmilla 230550.0 2017 2877725100 239339.2 73306.74 134266.39 570498.5 231992.7
06307 11007 Peralillo 231695.3 2017 2550270534 246972.8 42613.74 155233.73 307607.9 237242.5
06308 8738 Placilla 221358.7 2017 1934232402 218702.6 55796.71 114966.90 338076.0 205054.6
06309 3421 Pumanque 239369.8 2017 818883984 220277.5 71837.55 68980.14 373475.7 226259.7
06310 37855 Santa Cruz 224421.9 2017 8495489945 223913.7 62601.33 79623.09 404862.1 212273.7
07101 220357 Talca 244658.0 2017 53912095394 205829.8 72534.55 92534.95 420160.2 196818.1
07102 46068 Constitución 198314.7 2017 9135962663 190947.9 108501.23 60022.88 672256.3 182861.3
07103 9448 Curepto 191743.1 2017 1811588746 156610.7 72671.42 55102.97 456398.8 139587.5
07104 4142 Empedrado 172428.7 2017 714199777 233257.8 99665.70 94063.83 480183.1 208767.0
07105 49721 Maule 195207.4 2017 9705908393 228759.7 69776.59 120722.77 456398.8 212357.3
07106 8422 Pelarco 187124.6 2017 1575963241 215792.3 64404.75 124501.57 420160.2 203653.9
07107 8245 Pencahue 220957.5 2017 1821794345 218436.9 90462.96 71516.63 568120.2 197722.4
07108 13906 Río Claro 196539.7 2017 2733081178 214556.2 78627.77 124501.57 520048.7 193886.3
07109 43269 San Clemente 179181.4 2017 7753001772 197860.3 60881.22 76644.60 452544.5 191330.0
07110 9191 San Rafael 195848.9 2017 1800047360 221031.7 47828.83 108833.91 297977.2 215058.6
07201 40441 Cauquenes 152604.5 2017 6171477801 184219.8 102327.66 39045.36 684758.6 163443.9
07202 8928 Chanco 128982.1 2017 1151552040 159033.7 72087.14 64281.52 427974.1 142237.9
07203 7571 Pelluhue 113986.7 2017 862993347 207491.2 81711.28 51101.39 381369.0 180199.6
07301 149136 Curicó 265301.7 2017 39566034949 201468.7 56685.10 59125.84 360399.3 203348.9
07302 9657 Hualañé 167967.3 2017 1622060226 163114.0 55576.94 56345.53 278442.5 162195.9
07303 6653 Licantén 179919.7 2017 1197005482 172942.3 55234.79 57483.45 257457.3 173710.9
07304 45976 Molina 227845.0 2017 10475401720 226126.7 63296.27 86225.18 456505.7 222059.0
07305 10484 Rauco 196719.6 2017 2062408371 219800.7 134233.84 59544.23 635615.1 205561.9
07306 15187 Romeral 218360.4 2017 3316239205 243841.1 174451.68 99475.11 1034702.1 212355.2
07307 18544 Sagrada Familia 204922.9 2017 3800089672 205202.4 53526.96 114099.69 304265.8 195712.8
07308 28921 Teno 250368.7 2017 7240913928 220526.5 62304.46 89974.10 506077.7 211462.9
07309 4322 Vichuquén 179935.1 2017 777679695 164168.4 53402.34 76392.76 285249.2 149257.2
07401 93602 Linares 192783.1 2017 18044885598 187009.2 71417.50 36535.67 414908.0 183909.7
07402 20765 Colbún 161250.1 2017 3348358419 201001.9 59903.52 43653.01 357533.5 198502.9
07403 30534 Longaví 166612.7 2017 5087351933 189760.3 60338.36 47224.73 371250.9 186352.4
07404 41637 Parral 183123.5 2017 7624714509 196214.1 77170.33 53069.62 476711.3 179160.7
07405 19974 Retiro 146406.4 2017 2924321333 195510.3 60505.69 51735.11 409835.1 193337.2
07406 45547 San Javier 170552.7 2017 7768163327 187190.3 77565.36 73907.29 572053.6 173178.1
07407 16221 Villa Alegre 178486.5 2017 2895229121 245808.9 61641.68 130012.18 381369.0 232685.6
07408 18081 Yerbas Buenas 203001.0 2017 3670461912 214799.5 45324.87 158276.02 376829.3 203974.2
08101 223574 Concepción 197625.8 2017 44183983882 235711.1 90897.02 114126.43 510694.6 210760.4
08102 116262 Coronel 217018.1 2017 25230952648 179735.7 58975.93 88259.01 258560.1 192366.1
08104 10624 Florida 147425.2 2017 1566245750 211913.4 97944.96 68980.14 562308.5 194861.5
08105 24333 Hualqui 202715.1 2017 4932666876 208327.3 108691.51 31354.61 502439.1 183546.5
08107 47367 Penco 195212.7 2017 9246639961 191583.0 70591.53 95198.98 326075.5 177861.5
08109 13749 Santa Juana 198449.1 2017 2728477197 168959.3 65207.09 82776.17 380332.3 157378.9
08110 151749 Talcahuano 161731.1 2017 24542535584 314620.2 217658.92 168251.05 564743.9 210865.7
08111 54946 Tomé 210053.2 2017 11541584520 185685.6 77960.59 44987.05 460070.6 174509.5
08201 25522 Lebu 141842.6 2017 3620107931 165770.0 60194.44 68597.58 301080.8 157378.9
08202 36257 Arauco 184849.0 2017 6702069405 174205.3 66310.15 67980.20 380421.4 173798.6
08203 34537 Cañete 186912.3 2017 6455391501 176231.3 69210.65 69037.43 489113.3 159083.7
08204 6031 Contulmo 131551.5 2017 793386801 168611.0 61709.02 77355.72 317807.5 168991.5
08205 32288 Curanilahue 252073.4 2017 8138946477 259355.4 159900.25 107436.03 835035.3 228423.4
08206 21035 Los Álamos 189429.4 2017 3984647129 190212.0 102415.53 98543.06 513189.3 166564.4
08207 10417 Tirúa 144994.9 2017 1510411713 167977.8 75454.19 50985.15 380332.3 147848.5
08301 202331 Los Ángeles 190810.3 2017 38606846296 214679.8 58087.14 110928.64 595630.3 205080.5
08302 4073 Antuco 155662.3 2017 634012722 358595.3 260769.75 140912.20 1034702.1 274423.0
08303 28573 Cabrero 249163.0 2017 7119335384 237473.0 71838.37 129280.05 520048.7 219986.9
08304 22389 Laja 174449.0 2017 3905739533 182947.5 58676.00 68980.14 381369.0 185309.2
08305 29627 Mulchén 198258.1 2017 5873792045 173288.6 80744.61 39796.24 380332.3 151204.0
08306 26315 Nacimiento 175829.2 2017 4626944798 174817.2 72938.94 52967.92 361756.1 152785.5
08307 9737 Negrete 216999.7 2017 2112926492 234603.3 85147.87 139167.03 502439.1 238414.6
08308 3988 Quilaco 167106.1 2017 666419314 305018.2 300907.59 115270.77 1521329.2 215875.2
08309 9587 Quilleco 222077.0 2017 2129051929 229197.4 120218.74 57953.13 532713.3 221961.0
08310 3412 San Rosendo 165912.3 2017 566092732 225293.1 117371.04 89974.10 441871.3 188516.2
08311 13773 Santa Bárbara 176010.5 2017 2424192819 190014.9 61698.15 98260.00 397684.2 183900.4
08312 14134 Tucapel 155538.6 2017 2198382777 220161.6 54613.01 143638.83 339058.5 208676.3
08313 21198 Yumbel 138515.0 2017 2936241535 217036.8 92435.58 56021.36 622507.8 199868.5
08314 5923 Alto Biobío 130542.9 2017 773205492 160689.9 79921.44 72277.97 336157.3 139072.4
09101 282415 Temuco 173314.1 2017 48946498862 192179.5 52989.35 95083.08 356919.5 188414.7
09102 24533 Carahue 127924.5 2017 3138372109 157525.2 55861.38 76536.00 318147.3 147464.2
09103 17526 Cunco 156882.5 2017 2749522512 240391.4 102416.83 118964.37 684758.6 218782.9
09104 7489 Curarrehue 135420.9 2017 1014167156 150236.3 37173.78 88967.80 217069.2 140372.4
09105 24606 Freire 197426.1 2017 4857867695 178727.5 50833.81 83507.15 297721.1 178403.1
09106 11996 Galvarino 147518.2 2017 1769627798 185567.2 70788.68 91950.19 408609.7 167340.5
09107 14414 Gorbea 140997.5 2017 2032338344 243989.2 83714.13 53693.97 418614.9 239614.8
09108 38013 Lautaro 282496.1 2017 10738525406 206642.3 80172.77 105551.72 530245.6 186288.7
09109 23612 Loncoche 160742.5 2017 3795451798 205457.8 126875.02 62520.38 1034702.1 187436.2
09110 6138 Melipeuco 164670.1 2017 1010744848 219711.0 78969.09 101558.35 420160.2 216665.0
09111 32510 Nueva Imperial 158196.8 2017 5142978907 189457.0 81045.13 62245.95 520048.7 175023.8
09112 76126 Padre Las Casas 169223.7 2017 12882320064 206522.7 68398.06 44029.88 489113.3 200619.0
09113 6905 Perquenco 155106.7 2017 1071011969 217786.4 76800.57 140602.99 426189.0 195877.4
09114 24837 Pitrufquén 205557.8 2017 5105439315 189618.8 65286.93 86112.98 397684.2 181560.6
09115 28523 Pucón 187764.8 2017 5355614570 215458.8 71521.29 59515.59 369420.7 209228.8
09116 12450 Saavedra 130775.6 2017 1628156299 186864.5 80306.28 61114.21 456398.8 158872.7
09117 15045 Teodoro Schmidt 138894.2 2017 2089663239 180043.6 65546.78 43056.49 478141.0 174432.2
09118 9722 Toltén 113791.8 2017 1106284328 184932.4 66760.57 60255.18 408609.7 173349.6
09119 28151 Vilcún 135602.8 2017 3817354634 221673.3 83415.78 60864.83 532713.3 205890.2
09120 55478 Villarrica 198745.4 2017 11026000004 222515.9 62114.35 107267.15 404862.1 210740.8
09121 11611 Cholchol 115103.4 2017 1336465909 185489.9 57150.64 60864.83 373475.7 180199.6
09201 53262 Angol 173377.3 2017 9234420713 169914.0 77768.69 55102.97 420160.2 147562.7
09202 24598 Collipulli 182323.1 2017 4484784762 205030.6 108602.87 92266.71 489113.3 166316.2
09203 17413 Curacautín 186604.9 2017 3249351008 237012.7 113134.61 83499.48 531994.3 207454.0
09204 7733 Ercilla 136678.7 2017 1056936411 210079.0 113557.94 90370.18 535149.2 193978.7
09205 10251 Lonquimay 138745.9 2017 1422283764 168076.0 82603.24 42232.74 410457.4 163052.9
09206 7265 Los Sauces 142588.7 2017 1035906610 172642.8 68199.82 64881.75 337385.1 172450.4
09207 9548 Lumaco 170538.2 2017 1628298886 154657.7 69391.75 39796.24 393600.1 149051.6
09208 11779 Purén 133537.6 2017 1572938990 168001.9 67821.85 61114.21 351076.0 157941.1
09209 10250 Renaico 218920.0 2017 2243930000 217386.4 59273.72 106993.53 344900.7 220197.5
09210 18843 Traiguén 210526.3 2017 3966946195 182873.9 90237.90 53061.65 572053.6 174010.0
09211 34182 Victoria 187662.8 2017 6414689393 215528.8 109608.16 54458.01 611821.8 189966.2
10101 245902 Puerto Montt 176237.4 2017 43337141298 197473.1 56043.23 67075.65 371243.3 192027.1
10102 33985 Calbuco 155443.9 2017 5282762017 182657.5 118466.41 75600.88 953422.6 170612.9
10104 12261 Fresia 183977.2 2017 2255743895 181292.2 77863.33 73907.29 440041.2 162737.8
10105 18428 Frutillar 174883.1 2017 3222744874 174292.4 45345.16 95677.31 286895.7 167014.3
10106 17068 Los Muermos 192845.4 2017 3291484556 157078.2 76053.84 45422.72 520048.7 144003.3
10107 17591 Llanquihue 149333.8 2017 2626930838 168757.9 64423.01 54214.22 381369.0 161413.8
10108 14216 Maullín 137613.7 2017 1956316762 189086.9 64407.05 87768.99 380332.3 176981.5
10109 44578 Puerto Varas 219839.1 2017 9799987895 206584.0 76873.99 78853.08 476711.3 188469.3
10201 43807 Castro 183717.2 2017 8048100927 173333.2 53071.56 52714.31 299575.3 171895.8
10202 38991 Ancud 161910.1 2017 6313036958 188868.7 79048.79 38322.30 526737.4 175380.0
10203 14858 Chonchi 193642.9 2017 2877146807 167785.7 65722.61 63420.40 381369.0 159841.9
10204 3829 Curaco de Vélez 177952.2 2017 681378864 208858.2 89448.70 107578.57 476711.3 176865.1
10205 13762 Dalcahue 207717.6 2017 2858609503 186524.8 59299.26 95105.36 336128.1 184230.3
10206 3921 Puqueldón 208274.8 2017 816645370 173632.0 49454.82 117833.71 325999.1 159529.2
10207 5385 Queilén 151485.0 2017 815746659 168544.5 115193.32 80030.51 689801.4 138579.3
10208 27192 Quellón 171685.5 2017 4668472212 165555.2 65965.54 48893.47 385825.2 161428.4
10209 8352 Quemchi 122223.1 2017 1020807718 152747.8 57849.69 40015.25 306713.7 150855.5
10210 8088 Quinchao 119852.6 2017 969367811 177598.0 102715.38 49156.58 440041.2 164995.9
10301 161460 Osorno 196610.2 2017 31744688808 207382.7 73230.81 55929.84 440067.5 197227.4
10302 8999 Puerto Octay 221980.9 2017 1997605810 211239.8 66399.41 122955.28 489113.3 198135.6
10303 20369 Purranque 186719.5 2017 3803288945 187588.0 59423.37 98193.62 336502.1 175146.2
10304 11667 Puyehue 176006.9 2017 2053472049 225363.5 86360.65 73907.29 684244.0 221399.2
10305 14085 Río Negro 156568.1 2017 2205262341 193961.7 57947.88 46617.38 355501.3 190044.4
10306 7512 San Juan de la Costa 152674.0 2017 1146887184 170936.0 81437.05 44987.05 570632.2 156976.9
10307 10030 San Pablo 181411.6 2017 1819558805 210759.2 89224.71 48893.47 568120.2 184533.4
11101 57818 Coyhaique 230013.0 2017 13298894369 192566.1 94976.28 48125.68 520048.7 171795.0
11201 23959 Aysén 246614.5 2017 5908637554 334920.4 188844.10 34490.07 874836.2 301080.8
11202 6517 Cisnes 262412.7 2017 1710143349 406630.7 165461.96 149428.61 738841.5 358028.8
11301 3490 Cochrane 211652.6 2017 738667487 212939.8 86545.33 89974.10 351076.0 201304.7
11401 4865 Chile Chico 188913.8 2017 919065674 214902.6 115487.63 89440.32 480183.1 191067.4
11402 2666 Río Ibáñez 171315.6 2017 456727447 208216.7 77860.29 76644.60 325999.1 202239.5
12101 131592 Punta Arenas 256903.3 2017 33806414442 284163.3 102902.75 129337.77 635615.1 272563.9
12301 6801 Porvenir 381329.2 2017 2593419712 227287.7 132627.53 33377.49 476711.3 198434.2
12401 21477 Natales 302167.3 2017 6489647004 354855.1 196933.65 86186.70 799209.3 271651.7
13202 26521 Pirque 274675.6 2017 7284672878 199119.2 48723.60 129429.40 318527.4 195157.2
13203 18189 San José de Maipo 344876.8 2017 6272964115 285581.4 111899.84 146142.67 572053.6 248124.8
13301 146207 Colina 255373.7 2017 37337421744 164112.6 66152.35 75432.24 311253.9 153485.6
13302 102034 Lampa 243425.7 2017 24837699582 214233.3 57533.27 82754.78 360399.3 213694.0
13303 19312 Tiltil 264794.8 2017 5113717064 228172.9 53071.29 164483.41 347635.6 211341.8
13401 301313 San Bernardo 251728.3 2017 75849003232 250483.1 88039.30 89974.10 460070.6 223957.1
13402 96614 Buin 289884.0 2017 28006850165 200234.0 51963.97 123750.05 306568.8 196650.5
13403 25392 Calera de Tango 298439.8 2017 7577982724 200869.5 45365.93 125722.44 305464.5 206170.3
13404 72759 Paine 282280.9 2017 20538478428 219347.8 41982.94 158094.23 351076.0 214237.1
13501 123627 Melipilla 199121.9 2017 24616837833 236950.5 74290.78 90845.44 635615.1 222727.0
13502 6444 Alhué 242844.2 2017 1564887792 287621.5 115997.86 198434.25 570632.2 234731.0
13503 32579 Curacaví 220990.2 2017 7199638514 234089.5 68700.74 129337.77 497105.2 221980.8
13504 13590 María Pinto 198063.3 2017 2691680700 251327.7 80360.91 155626.96 583224.2 234062.0
13505 9726 San Pedro 231429.7 2017 2250885401 240349.3 94173.98 62709.22 570498.5 218249.4
13601 74237 Talagante 230734.4 2017 17129031774 190341.0 42017.86 112061.05 280437.7 188402.9
13602 35923 El Monte 201444.7 2017 7236496479 216599.9 24035.59 170198.31 237288.2 223350.8
13603 36219 Isla de Maipo 232595.7 2017 8424384020 230501.4 47062.08 169663.89 325999.1 224391.3
13604 63250 Padre Hurtado 231845.6 2017 14664233522 206410.4 37350.59 138206.83 276670.0 206169.6
13605 90201 Peñaflor 249848.3 2017 22536570306 212279.7 53564.17 164434.61 337385.1 202477.3
14101 166080 Valdivia 211732.5 2017 35164529745 215231.9 81987.77 62709.22 497105.2 208838.1
14102 5302 Corral 157428.1 2017 834683963 176293.7 69774.41 50473.27 297692.7 168925.4
14103 16752 Lanco 184730.2 2017 3094599901 224325.2 61463.93 82981.59 341402.4 222769.4
14104 19634 Los Lagos 190489.7 2017 3740075550 235958.3 80319.36 91279.75 560213.6 232490.9
14105 7095 Máfil 180289.2 2017 1279152079 251663.6 95372.69 62863.03 602926.9 229364.9
14106 21278 Mariquina 187045.1 2017 3979945072 213736.1 86451.95 63420.40 486475.2 206259.8
14107 20188 Paillaco 163833.6 2017 3307473487 212936.6 71288.17 98267.51 502439.1 204304.8
14108 34539 Panguipulli 180390.3 2017 6230498948 202737.1 83020.41 68737.66 427974.1 186554.5
14201 38036 La Unión 201975.2 2017 7682327556 172209.8 64321.07 79592.47 414908.0 159500.4
14202 14665 Futrono 193120.3 2017 2832109866 224472.0 87682.03 79592.47 530245.6 203197.2
14203 9896 Lago Ranco 186595.7 2017 1846550611 167270.3 54064.74 89682.47 318147.3 167814.9
14204 31372 Río Bueno 184360.5 2017 5783758517 181340.9 63209.14 57607.35 452195.2 168223.0
15101 221364 Arica 250863.6 2017 55532177025 354756.1 169246.50 227500.96 817219.4 279433.6
15102 1255 Camarones 222472.1 2017 279202446 317728.1 112352.51 231592.91 489113.3 246422.9
15201 2765 Putre 194293.6 2017 537221762 392864.4 283886.06 171189.65 1140996.9 281369.3
16101 184739 Chillán 232041.6 2017 42867130063 222934.7 108093.70 147920.53 822173.0 201140.7
16102 21493 Bulnes 167693.2 2017 3604229178 211065.7 77544.66 75749.37 506077.7 207686.9
16103 30907 Chillán Viejo 179855.8 2017 5558803478 232844.8 65182.54 76644.60 342047.9 240209.9
16104 12044 El Carmen 151144.7 2017 1820386198 152159.4 52015.46 57635.39 314043.8 135612.5
16105 8448 Pemuco 151889.4 2017 1283161238 208912.1 89354.72 42232.74 480183.1 200617.0
16106 10827 Pinto 153289.2 2017 1659661870 195999.3 102525.38 87768.99 589120.1 177640.3
16107 17485 Quillón 133479.9 2017 2333895558 204120.1 86476.93 53693.97 415598.3 194635.6
16108 16079 San Ignacio 174538.8 2017 2806409365 199182.1 72336.49 105133.85 568120.2 197543.7
16109 17787 Yungay 194006.8 2017 3450799686 225714.7 111632.12 51735.11 695684.9 206475.7
16201 11594 Quirihue 155446.9 2017 1802251665 228160.7 126558.91 76084.29 928434.4 217332.7
16202 5012 Cobquecura 122513.3 2017 614036495 193636.3 92605.11 66754.98 441871.3 174288.6
16203 15995 Coelemu 174050.2 2017 2783932983 193315.9 74882.46 53295.85 351076.0 178352.6
16204 5213 Ninhue 161577.8 2017 842304828 173292.0 74143.70 84306.90 393213.2 144090.7
16205 4862 Portezuelo 168595.2 2017 819710106 189701.3 75678.81 71506.70 380421.4 172027.3
16206 5755 Ránquil 221951.3 2017 1277329463 207346.5 86035.64 50473.27 414908.0 193011.4
16207 5401 Treguaco 178763.9 2017 965503625 173468.9 79267.60 57953.13 414908.0 166050.8
16301 53024 San Carlos 175203.6 2017 9289995173 198025.9 86288.63 40576.55 520048.7 184965.9
16302 26881 Coihueco 174853.6 2017 4700239750 199215.6 61481.47 90099.82 356090.5 191944.7
16303 11152 Ñiquén 188830.1 2017 2105832760 185733.7 55845.46 54458.01 336128.1 194949.9
16304 4308 San Fabián 158019.3 2017 680747063 214696.4 77350.35 76644.60 381369.0 214964.4
16305 11603 San Nicolás 180675.3 2017 2096375354 207126.3 74502.87 79592.47 402606.3 194378.0
write_xlsx(estadisticos_finales, "estadisticos_finales_escolaridad.xlsx")
write.dbf(estadisticos_finales, "estadisticos_finales_escolaridad.dbf")