Asignación - como faltantes NA a los 5 datos mas extremos -Con la libreria mice rellenar los datos faltantes -volver a ajustar el modelo lineal y comparar el R2
library(readxl)
## Warning: package 'readxl' was built under R version 4.0.4
ANCOVA_mice<- read_excel("~/R/design/Mice.xlsx"); head(ANCOVA_mice)
## # A tibble: 6 x 5
## X Y Fertilizantes MO Proteina
## <dbl> <dbl> <chr> <dbl> <dbl>
## 1 1 1 D0 2.24 4.15
## 2 2 1 D5 1.99 4.76
## 3 3 1 D10 1.82 5.10
## 4 4 1 D15 2.36 4.99
## 5 5 1 D0 2.32 5.14
## 6 6 1 D5 2.38 5.19
#Datos
Mo<-ANCOVA_mice$MO
Prot<-ANCOVA_mice$Proteina
fert<-ANCOVA_mice$Fertilizantes
x<-ANCOVA_mice$X
y<-ANCOVA_mice$Y
# Total de NA en los datos
sum(is.na(ANCOVA_mice))
## [1] 5
library(mice)
## Warning: package 'mice' was built under R version 4.0.5
##
## Attaching package: 'mice'
## The following object is masked from 'package:stats':
##
## filter
## The following objects are masked from 'package:base':
##
## cbind, rbind
columns <- c("Proteina","MO")
imputed_data <- mice(ANCOVA_mice[,names(ANCOVA_mice) %in% columns],m = 1,
maxit = 1, method = "mean",print=F)
complete.data_ka <- mice::complete(imputed_data)
prt2<-complete.data_ka$Proteina
prt2
## [1] 4.152665 4.760998 5.101513 4.987683 5.142567 5.185140 5.695623 5.444234
## [9] 5.733434 5.755230 5.677692 5.626676 5.598141 5.607175 5.819383 5.977163
## [17] 5.965704 5.794938 6.202655 5.794938 5.933305 6.467691 6.099083 6.172753
## [25] 6.303712 6.623972 5.794938 5.794938 5.833666 6.242823 6.358568 6.042403
## [33] 6.737814 5.794938 5.950471 6.443134
#Ajuste del modelo: Minimos cuadrados
mod1 = lm(prt2~Mo)
summary(mod1)
##
## Call:
## lm(formula = prt2 ~ Mo)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.12617 -0.30092 0.04827 0.21030 0.77967
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.8193 0.3561 10.727 1.88e-12 ***
## Mo 0.6513 0.1155 5.641 2.52e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3848 on 34 degrees of freedom
## Multiple R-squared: 0.4835, Adjusted R-squared: 0.4683
## F-statistic: 31.82 on 1 and 34 DF, p-value: 2.521e-06
res1<-mod1$residuals
shapiro.test(res1)
##
## Shapiro-Wilk normality test
##
## data: res1
## W = 0.96361, p-value = 0.2771
coef = round(mod1$coefficients, 2);coef
## (Intercept) Mo
## 3.82 0.65
atan(coef[2])*180/pi
## Mo
## 33.02387
hist(res1);plot(res1, pch = 19)
mod2<- aov(prt2 ~ Mo + fert); summary(mod2)
## Df Sum Sq Mean Sq F value Pr(>F)
## Mo 1 4.712 4.712 29.921 5.58e-06 ***
## fert 3 0.153 0.051 0.323 0.809
## Residuals 31 4.882 0.157
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
res2<-mod1$residuals
shapiro.test(res2)
##
## Shapiro-Wilk normality test
##
## data: res2
## W = 0.96361, p-value = 0.2771
boxplot(prt2 ~ fert)
library(mvoutlier)
## Warning: package 'mvoutlier' was built under R version 4.0.5
## Loading required package: sgeostat
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
## sROC 0.1-2 loaded
corr.plot(Mo, prt2)
## $cor.cla
## [1] 0.6953084
##
## $cor.rob
## [1] 0.6158389
chisq.plot(cbind(Mo, prt2))
## Remove outliers with left-click, stop with right-click on plotting device
## $outliers
## NULL
color.plot(cbind(Mo, prt2))
## $outliers
## [1] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
## $md
## [1] 4.2227277 2.5490260 2.0676848 2.0209716 1.6660210 1.5611913 0.8220103
## [8] 0.9758213 0.7381415 0.5613393 0.5018113 0.8432943 0.9631971 0.6979591
## [15] 0.7652339 0.3690713 0.4003065 0.4315777 1.3584362 0.6332372 0.9944610
## [22] 2.1175247 0.5828309 0.7841266 1.1699200 1.9605837 0.9237652 0.9049790
## [29] 1.2969178 1.0874739 1.2224228 1.3820444 2.2017390 0.9705705 1.7578216
## [36] 1.5792929
##
## $euclidean
## [1] 1.705472 1.705125 2.037450 2.484556 2.628058 2.769432 3.705577 3.373193
## [9] 3.830306 3.983589 4.304715 4.428104 4.428390 4.201198 4.003848 4.721953
## [17] 4.646211 4.145402 4.793051 4.022871 4.173341 5.215427 5.142200 5.216433
## [25] 5.377170 6.030662 5.024777 5.011238 5.396847 5.911306 5.639916 5.919004
## [33] 6.328256 5.058584 6.013924 6.530478
chisq.plot(cbind(Mo, prt2))
## Remove outliers with left-click, stop with right-click on plotting device
## $outliers
## NULL
color.plot(cbind(Mo, prt2))
## $outliers
## [1] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
## $md
## [1] 4.2227277 2.5490260 2.0676848 2.0209716 1.6660210 1.5611913 0.8220103
## [8] 0.9758213 0.7381415 0.5613393 0.5018113 0.8432943 0.9631971 0.6979591
## [15] 0.7652339 0.3690713 0.4003065 0.4315777 1.3584362 0.6332372 0.9944610
## [22] 2.1175247 0.5828309 0.7841266 1.1699200 1.9605837 0.9237652 0.9049790
## [29] 1.2969178 1.0874739 1.2224228 1.3820444 2.2017390 0.9705705 1.7578216
## [36] 1.5792929
##
## $euclidean
## [1] 1.705472 1.705125 2.037450 2.484556 2.628058 2.769432 3.705577 3.373193
## [9] 3.830306 3.983589 4.304715 4.428104 4.428390 4.201198 4.003848 4.721953
## [17] 4.646211 4.145402 4.793051 4.022871 4.173341 5.215427 5.142200 5.216433
## [25] 5.377170 6.030662 5.024777 5.011238 5.396847 5.911306 5.639916 5.919004
## [33] 6.328256 5.058584 6.013924 6.530478