set.seed(123)
# Variable: Compuestos Fenolicos
cf = c(rnorm(40, 20, 1),
rnorm(40, 12, 1.2),
rnorm(40, 16, 1.15))
# Factor 1: Tiempo de Coccion
tiemp = gl(3, 40, 120, c(0, 10, 12))
# Factor 2: Vierdades
varie = gl(2, 20, 120, c('var1', 'var2'))
#Covariable : Pesos
pes = runif(120,100,200)
pes = round(sort.int(pes, 6), 2)
df = data.frame(varie, tiemp, cf,pes)
head(df)
## varie tiemp cf pes
## 1 var1 0 19.43952 100.63
## 2 var1 0 19.76982 102.00
## 3 var1 0 21.55871 100.94
## 4 var1 0 20.07051 100.82
## 5 var1 0 20.12929 103.37
## 6 var1 0 21.71506 103.49
mod1 = aov(cf ~ tiemp+varie+pes:pes, df)
summary(mod1)
## Df Sum Sq Mean Sq F value Pr(>F)
## tiemp 2 1297.1 648.5 663.336 <2e-16 ***
## varie 1 5.7 5.7 5.844 0.0172 *
## pes 1 1.8 1.8 1.799 0.1824
## Residuals 115 112.4 1.0
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#La covariable segun la tabla de covarianzas si influye en la concentracion de fenoles
mod1 = aov(cf ~ tiemp*varie*pes, df)
summary(mod1)
## Df Sum Sq Mean Sq F value Pr(>F)
## tiemp 2 1297.1 648.5 643.586 <2e-16 ***
## varie 1 5.7 5.7 5.670 0.019 *
## pes 1 1.8 1.8 1.746 0.189
## tiemp:varie 2 2.8 1.4 1.396 0.252
## tiemp:pes 2 0.4 0.2 0.176 0.839
## varie:pes 1 0.2 0.2 0.203 0.653
## tiemp:varie:pes 2 0.2 0.1 0.114 0.892
## Residuals 108 108.8 1.0
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1