set.seed(1617)
# Covariable: Peso inicial de cubos
pic = runif(120, 0.9, 1.3)
pic = round(sort.int(pic, 6), 2)
# Bloque: Laboratorio
lab = gl(2, 10, 120, c('biol','alim'))
# Factor 1: Tiempo de Coccion
tiemp = gl(3, 40, 120, c(0, 10, 12))
# Factor 2: Vierdades
varie = gl(2, 20, 120, c('var1', 'var2'))
# Variable: Compuestos Fenolicos
cf = c(rnorm(40, 20, 1),
rnorm(40, 12, 1.2),
rnorm(40, 16, 1.15))
df = data.frame(lab, varie, tiemp, cf, pic)
head(df)
## lab varie tiemp cf pic
## 1 biol var1 0 19.23917 0.90
## 2 biol var1 0 19.92898 0.91
## 3 biol var1 0 18.34698 0.91
## 4 biol var1 0 22.41811 0.91
## 5 biol var1 0 20.38558 0.91
## 6 biol var1 0 19.52477 0.91
library(collapsibleTree)
collapsibleTreeSummary(
df,
hierarchy = c('lab','varie','tiemp', "cf"))
mod1 = aov(cf ~ lab + varie + tiemp + pic, df)
summary(mod1)
## Df Sum Sq Mean Sq F value Pr(>F)
## lab 1 0.0 0.0 0.002 0.9691
## varie 1 7.7 7.7 4.972 0.0277 *
## tiemp 2 1278.4 639.2 414.025 <2e-16 ***
## pic 1 4.7 4.7 3.022 0.0848 .
## Residuals 114 176.0 1.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
mod2 = aov(cf ~ lab*varie + tiemp + pic, df)
summary(mod2)
## Df Sum Sq Mean Sq F value Pr(>F)
## lab 1 0.0 0.0 0.002 0.9691
## varie 1 7.7 7.7 4.962 0.0279 *
## tiemp 2 1278.4 639.2 413.180 <2e-16 ***
## pic 1 4.7 4.7 3.016 0.0852 .
## lab:varie 1 1.2 1.2 0.767 0.3829
## Residuals 113 174.8 1.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
mod3 = aov(cf ~ tiemp*varie, df)
summary(mod3)
## Df Sum Sq Mean Sq F value Pr(>F)
## tiemp 2 1278.4 639.2 415.296 <2e-16 ***
## varie 1 7.7 7.7 4.987 0.0275 *
## tiemp:varie 2 5.2 2.6 1.691 0.1888
## Residuals 114 175.5 1.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
mod4 = aov(cf ~ lab*varie + tiemp, df)
summary(mod4)
## Df Sum Sq Mean Sq F value Pr(>F)
## lab 1 0.0 0.0 0.001 0.9694
## varie 1 7.7 7.7 4.860 0.0295 *
## tiemp 2 1278.4 639.2 404.697 <2e-16 ***
## lab:varie 1 0.6 0.6 0.386 0.5359
## Residuals 114 180.1 1.6
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
lattice::bwplot(df$cf ~ df$tiemp | df$varie)
Eficiencia de bloqueo
H = 0/180.1
H
## [1] 0