date: 02-08-2021
1 Resumen
Iniciaremos expandiendo los ingresos promedios (multiplicación del ingreso promedio mensual comunal y los habitantes de la misma comuna) obtenidos de la CASEN 2017 sobre la categoría de respuesta: “Trabajó por un pago o especie” del campo P17 del CENSO de personas del 2017, que fue la categoría de respuesta que más alto correlacionó con los ingresos expandidos, ambos a nivel comunal y ambos a nivel URBANO.
Seguiremos con un análisis sobre todas las zonas Chile comenzando en éste artículo a nivel urbano. En un segundo artículo haremos la publicación a nivel rural.
Como una tercera parte, y ya construída nuestra tabla de trabajo, haremos el análisis por región. Ensayaremos diferentes modelos dentro del análisis de regresión cuya variable independiente será: “frecuencia de población que posee la variable Censal respecto a la zona” y la dependiente: “ingreso expandido por zona por proporción de población zonal respecto al total comunal (multipob)”. Lo anterior para elegir el que posea el mayor coeficiente de determinación y así construir una tabla de valores predichos (estimación del ingreso e ingreso estimado por zona).
1.1 Variable CENSO
Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “Trabajó por un pago o especie” del campo P17 del Censo de personas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver aquí).
1.1.1 Lectura de la tabla censal de personas
Leemos la tabla Censo 2017 de personas que ya tiene integrada la clave zonal:
<-
tabla_con_clave readRDS("../../../ds_correlaciones_censo_casen/corre_censo_casen_2017/censos_con_clave/censo_personas_con_clave_17")
<- head(tabla_con_clave,50)
abc kbl(abc) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
REGION | PROVINCIA | COMUNA | DC | AREA | ZC_LOC | ID_ZONA_LOC | NVIV | NHOGAR | PERSONAN | P07 | P08 | P09 | P10 | P10COMUNA | P10PAIS | P11 | P11COMUNA | P11PAIS | P12 | P12COMUNA | P12PAIS | P12A_LLEGADA | P12A_TRAMO | P13 | P14 | P15 | P15A | P16 | P16A | P16A_OTRO | P17 | P18 | P19 | P20 | P21M | P21A | P10PAIS_GRUPO | P11PAIS_GRUPO | P12PAIS_GRUPO | ESCOLARIDAD | P16A_GRUPO | REGION_15R | PROVINCIA_15R | COMUNA_15R | P10COMUNA_15R | P11COMUNA_15R | P12COMUNA_15R | clave |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 1 | 1 | 1 | 1 | 1 | 73 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 6 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 1 | 1 | 1 | 78 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 2 | 2 | 2 | 78 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 1 | 1 | 3 | 1965 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 3 | 5 | 2 | 52 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 2 | 1 | 4 | 1995 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 4 | 11 | 1 | 44 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 3 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 1 | 1 | 1 | 39 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 2 | 2 | 2 | 35 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 2 | 2 | 11 | 2004 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 3 | 5 | 1 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 4 | 5 | 1 | 12 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 6 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 10 | 1 | 1 | 1 | 2 | 65 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 9 | 1992 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 1 | 1 | 1 | 50 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 2 | 4 | 2 | 43 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 3 | 2002 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 3 | 5 | 1 | 15 | 3 | 15201 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 1 | 7 | 2 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 15201 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 1 | 1 | 1 | 75 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 2 | 16 | 2 | 58 | 4 | 98 | 68 | 6 | 98 | 998 | 5 | 98 | 998 | 9999 | 1 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 4 | 4 | 99 | 9999 | 68 | 68 | 68 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 3 | 2 | 2 | 70 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 5 | 4 | 99 | 9999 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 1 | 1 | 2 | 43 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | I | 3 | 3 | 9 | 2008 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 2 | 4 | 1 | 55 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 3 | 5 | 2 | 13 | 2 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 4 | 5 | 1 | 8 | 2 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 5 | 15 | 2 | 29 | 2 | 98 | 998 | 4 | 98 | 998 | 3 | 98 | 998 | 2015 | 1 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 5 | 5 | 11 | 2014 | 998 | 604 | 604 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 6 | 15 | 1 | 4 | 2 | 98 | 998 | 1 | 98 | 998 | 5 | 98 | 998 | 2015 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 7 | 15 | 2 | 2 | 2 | 98 | 998 | 1 | 98 | 998 | 3 | 98 | 998 | 2015 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 8 | 15 | 1 | 16 | 2 | 98 | 998 | 6 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 68 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 18 | 1 | 1 | 1 | 2 | 74 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 12 | 1976 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 19 | 1 | 1 | 1 | 1 | 68 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 1 | 1 | 1 | 74 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 2 | 2 | 2 | 65 | 1 | 98 | 998 | 3 | 997 | 998 | 3 | 98 | 998 | 9999 | 2 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 9 | 1982 | 998 | 998 | 604 | 2 | 2 | 15 | 152 | 15202 | 98 | 997 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 1 | 1 | 2 | 76 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 6 | 98 | 8 | 6 | 3 | 1981 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 2 | 5 | 2 | 36 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | A | 0 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 1 | 1 | 2 | 31 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 1 | A | 2 | 2 | 4 | 2008 | 998 | 998 | 68 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 2 | 4 | 1 | 35 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 1 | F | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 3 | 5 | 1 | 11 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 1 | 5 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 4 | 5 | 1 | 8 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 5 | 15 | 2 | 74 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 6 | 6 | 99 | 9999 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 1 | 1 | 1 | 41 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 2 | 2 | 2 | 47 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | A | 2 | 1 | 4 | 1996 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 3 | 14 | 1 | 88 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 4 | 14 | 1 | 65 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 1 | 1 | 2 | 59 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 8 | 8 | 2 | 1998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 2 | 2 | 1 | 56 | 1 | 98 | 998 | 99 | 99 | 999 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 999 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 99 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 3 | 5 | 2 | 36 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 7 | 2010 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 4 | 12 | 2 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 5 | 12 | 2 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 6 | 5 | 1 | 24 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 7 | 11 | 2 | 24 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 1 | N | 2 | 2 | 11 | 2015 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 8 | 12 | 1 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 9 | 12 | 2 | 1 | 1 | 98 | 998 | 1 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 38 | 1 | 1 | 1 | 1 | 19 | 1 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 1 | 8 | 2 | 1 | 2 | 98 | 1 | A | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 1 | 1 | 1 | 21 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 7 | 2 | 1 | 2 | 98 | 1 | F | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
Cuantas personas hay en Chile?
length(tabla_con_clave$clave)
## [1] 17574003
Cuántas zonas hay en Chile?
length(unique(tabla_con_clave$clave))
## [1] 15500
1.1.2 Filtro a nivel urbano:
<- filter(tabla_con_clave, tabla_con_clave$AREA ==1) tabla_con_clave_u
Cuantas personas hay en Chile urbanas?
length(tabla_con_clave_u$clave)
## [1] 15424263
Cuantas zonas hay en el nivel urbano?
length(unique(tabla_con_clave_u$clave))
## [1] 5169
1.1.3 Cálculo de respuestas censales
Obtenemos las respuestas a la pregunta P17 por zona eliminando los campos innecesarios. Despleguemos los primeros 1000 registros:
<- tabla_con_clave_u[,-c(1,2,4:31,33:48),drop=F]
tabla_con_clave_f <- head(tabla_con_clave_f,1000)
abc kbl(abc) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
COMUNA | P17 | clave |
---|---|---|
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 3 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 99 | 15201011001 |
15201 | 99 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 3 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 3 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 4 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 99 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 4 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 4 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 4 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 3 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 4 | 15201011001 |
15201 | 99 | 15201011001 |
15201 | 99 | 15201011001 |
15201 | 99 | 15201011001 |
15201 | 99 | 15201011001 |
15201 | 99 | 15201011001 |
15201 | 99 | 15201011001 |
15201 | 99 | 15201011001 |
15201 | 99 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 4 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 99 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 99 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 3 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 4 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 4 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 99 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 99 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 2 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 99 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 99 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 2 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 4 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 4 | 15201011001 |
15201 | 99 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 2 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 99 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 99 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 3 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 99 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 3 | 15201011001 |
15201 | 3 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 4 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 99 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 3 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 3 | 15201011001 |
15201 | 3 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 4 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 3 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 3 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 3 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 4 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 4 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 99 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 2 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 2 | 15201011001 |
15201 | 2 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 4 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 2 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 3 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 4 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 2 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 4 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 2 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 2 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 3 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 3 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 3 | 15201011001 |
15201 | 3 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 2 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 2 | 15201011001 |
15201 | 3 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 2 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 98 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 7 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 2 | 15201011001 |
15201 | 3 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 4 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 4 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 4 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 4 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 4 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 4 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 2 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 4 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 4 | 15201011001 |
15201 | 2 | 15201011001 |
15201 | 3 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 3 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 5 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 8 | 15201011001 |
15201 | 6 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
15201 | 1 | 15201011001 |
nrow(tabla_con_clave_f)
## [1] 15424263
Vemos que el número total de registros coincide con el total de personas urbanas.
Modifiquemos la tabla para poder trabajarla un poco mejor:
- Agregamos un cero a los códigos comunales de cuatro dígitos.
- Renombramos la columna clave por código.
<- tabla_con_clave_f$COMUNA
codigos <- seq(1:nrow(tabla_con_clave_f))
rango <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
cadena <- as.data.frame(codigos)
codigos <- as.data.frame(cadena)
cadena <- cbind(tabla_con_clave_f,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE]
comuna_corr names(comuna_corr)[3] <- "código"
<- head(comuna_corr,50)
abc kbl(abc) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
P17 | clave | código |
---|---|---|
1 | 15201011001 | 15201 |
1 | 15201011001 | 15201 |
1 | 15201011001 | 15201 |
1 | 15201011001 | 15201 |
1 | 15201011001 | 15201 |
3 | 15201011001 | 15201 |
5 | 15201011001 | 15201 |
98 | 15201011001 | 15201 |
1 | 15201011001 | 15201 |
1 | 15201011001 | 15201 |
1 | 15201011001 | 15201 |
6 | 15201011001 | 15201 |
1 | 15201011001 | 15201 |
8 | 15201011001 | 15201 |
6 | 15201011001 | 15201 |
1 | 15201011001 | 15201 |
1 | 15201011001 | 15201 |
1 | 15201011001 | 15201 |
99 | 15201011001 | 15201 |
99 | 15201011001 | 15201 |
1 | 15201011001 | 15201 |
1 | 15201011001 | 15201 |
1 | 15201011001 | 15201 |
1 | 15201011001 | 15201 |
6 | 15201011001 | 15201 |
1 | 15201011001 | 15201 |
98 | 15201011001 | 15201 |
98 | 15201011001 | 15201 |
3 | 15201011001 | 15201 |
98 | 15201011001 | 15201 |
98 | 15201011001 | 15201 |
1 | 15201011001 | 15201 |
1 | 15201011001 | 15201 |
1 | 15201011001 | 15201 |
1 | 15201011001 | 15201 |
1 | 15201011001 | 15201 |
5 | 15201011001 | 15201 |
5 | 15201011001 | 15201 |
98 | 15201011001 | 15201 |
98 | 15201011001 | 15201 |
1 | 15201011001 | 15201 |
3 | 15201011001 | 15201 |
1 | 15201011001 | 15201 |
1 | 15201011001 | 15201 |
1 | 15201011001 | 15201 |
1 | 15201011001 | 15201 |
1 | 15201011001 | 15201 |
1 | 15201011001 | 15201 |
1 | 15201011001 | 15201 |
1 | 15201011001 | 15201 |
<- comuna_corr tabla_con_clave_f
Obtenemos la cuenta de las respuestas 1:
<- filter(tabla_con_clave_f, tabla_con_clave_f$P17 == 1)
claves_con_1 head(claves_con_1,10)
## P17 clave código
## 1 1 15201011001 15201
## 2 1 15201011001 15201
## 3 1 15201011001 15201
## 4 1 15201011001 15201
## 5 1 15201011001 15201
## 6 1 15201011001 15201
## 7 1 15201011001 15201
## 8 1 15201011001 15201
## 9 1 15201011001 15201
## 10 1 15201011001 15201
1.1.3.1 Tabla de contingencia:
<- xtabs(~P17+clave, data=claves_con_1)
con4 <- as.data.frame(con4)
con4
<- head(con4,50)
abc kbl(abc) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
P17 | clave | Freq |
---|---|---|
1 | 10101011001 | 320 |
1 | 10101011002 | 1309 |
1 | 10101021001 | 1828 |
1 | 10101021002 | 581 |
1 | 10101021003 | 1050 |
1 | 10101021004 | 1457 |
1 | 10101021005 | 1165 |
1 | 10101031001 | 2012 |
1 | 10101031002 | 2166 |
1 | 10101031003 | 1663 |
1 | 10101031004 | 1172 |
1 | 10101031005 | 2657 |
1 | 10101031006 | 1233 |
1 | 10101031007 | 1038 |
1 | 10101031008 | 1616 |
1 | 10101031009 | 1995 |
1 | 10101031010 | 1531 |
1 | 10101031011 | 1232 |
1 | 10101031012 | 837 |
1 | 10101031013 | 1642 |
1 | 10101031014 | 1030 |
1 | 10101031015 | 873 |
1 | 10101031016 | 1285 |
1 | 10101031017 | 1457 |
1 | 10101041001 | 1843 |
1 | 10101041002 | 895 |
1 | 10101041003 | 2559 |
1 | 10101051001 | 1148 |
1 | 10101051002 | 814 |
1 | 10101051003 | 1329 |
1 | 10101051004 | 1712 |
1 | 10101061001 | 3383 |
1 | 10101061002 | 1254 |
1 | 10101061003 | 1559 |
1 | 10101061004 | 1184 |
1 | 10101061005 | 1216 |
1 | 10101061006 | 1991 |
1 | 10101061007 | 340 |
1 | 10101061008 | 1008 |
1 | 10101061009 | 68 |
1 | 10101061010 | 610 |
1 | 10101071001 | 909 |
1 | 10101071002 | 1583 |
1 | 10101071003 | 1915 |
1 | 10101071004 | 1419 |
1 | 10101071005 | 1186 |
1 | 10101071006 | 1741 |
1 | 10101071007 | 987 |
1 | 10101071008 | 2104 |
1 | 10101071009 | 1509 |
nrow(con4)
## [1] 5165
No perdemos ni una zona a excepción de 4. Más adelante veremos porqué.
A la tabla de frecuencias por zona le añadimos el campo comunal:
= merge( x = con4, y =claves_con_1, by = "clave", all.x = TRUE)
trabajo_001 head(trabajo_001,10)
## clave P17.x Freq P17.y código
## 1 10101011001 1 320 1 10101
## 2 10101011001 1 320 1 10101
## 3 10101011001 1 320 1 10101
## 4 10101011001 1 320 1 10101
## 5 10101011001 1 320 1 10101
## 6 10101011001 1 320 1 10101
## 7 10101011001 1 320 1 10101
## 8 10101011001 1 320 1 10101
## 9 10101011001 1 320 1 10101
## 10 10101011001 1 320 1 10101
Eliminamos los registros repetidos y renombramos COMUNA como código:
<- unique(trabajo_001)
trabajo003 <- trabajo003[,-c(2,4)]
trabajo003 # trabajo003$código <- as.numeric(trabajo003$código)
head(trabajo003,10)
## clave Freq código
## 1 10101011001 320 10101
## 321 10101011002 1309 10101
## 1630 10101021001 1828 10101
## 3458 10101021002 581 10101
## 4039 10101021003 1050 10101
## 5089 10101021004 1457 10101
## 6546 10101021005 1165 10101
## 7711 10101031001 2012 10101
## 9723 10101031002 2166 10101
## 11889 10101031003 1663 10101
nrow(trabajo003)
## [1] 5165
Calculamos los ingresos expandidos a nivel urbano:
<- import("../../../../archivos_grandes/Microdato_Censo2017-Personas.csv")
x <- readRDS(file = "../../../../archivos_grandes/casen_2017_c.rds")
casen_2017
<- filter(casen_2017, casen_2017$zona == "Urbano")
casen_2017_u <- casen_2017_u[!is.na(casen_2017_u$ytotcor),]
casen_2017_u <- quantile(casen_2017_u$ytotcor, probs=c(.25, .75), na.rm = FALSE)
Q <- IQR(casen_2017_u$ytotcor)
iqr <- subset(casen_2017_u, casen_2017_u$ytotcor >
casen_2017_sin_o 1] - 1.5*iqr) &
(Q[$ytotcor < (Q[2]+1.5*iqr))
casen_2017_u<- data.frame(lapply(casen_2017_sin_o, as.character),
casen_2017_sin_o stringsAsFactors=FALSE)
<- as.numeric(casen_2017_sin_o$ytotcor)
b <- casen_2017_sin_o$comuna
a <-aggregate(b, by=list(a), FUN = mean , na.rm=TRUE )
promedios_grupales names(promedios_grupales)[1] <- "comuna"
names(promedios_grupales)[2] <- "promedio_i"
$año <- "2017"
promedios_grupales<- readRDS(file = "../../../../archivos_grandes/codigos_comunales_2011-2017.rds")
codigos_comunales names(codigos_comunales)[1] <- "código"
names(codigos_comunales)[2] <- "comuna"
= merge( promedios_grupales, codigos_comunales,
df_2017 by = "comuna",
all.x = TRUE)
<- x %>%
my_summary_data group_by(x$COMUNA) %>%
summarise(Count = n())
names(my_summary_data)[1] <- "comuna"
names(my_summary_data)[2] <- "personas"
# recogemos el campo Comuna:
<- my_summary_data$comuna
codigos # construimos una secuencia llamada rango del 1 al total de filas del
# dataset:
<- seq(1:nrow(my_summary_data))
rango # Creamos un string que agrega un cero a todos los registros:
<- paste("0",codigos[rango], sep = "")
cadena # El string cadena tiene o 5 o 6 digitos, los cuales siempre deben ser
# siempre 5
# agregandole un cero al inicio de los que tienen 4.
# Para ello extraemos un substring de la cadena sobre todas las filas
#(rangos)
# comenzando desde el primero o el segundo y llegando siempre al 6.
<- substr(cadena,(nchar(cadena)[rango])-(4),6)
cadena <- as.data.frame(codigos)
codigos <- as.data.frame(cadena)
cadena <- cbind(my_summary_data,cadena)
comuna_corr names(comuna_corr)[3] <- "código"
<- comuna_corr[,-c(1),drop=FALSE]
comuna_corr = merge( comuna_corr, df_2017, by = "código", all.x = TRUE)
df_2017_2 $ingresos_expandidos <- df_2017_2$personas*df_2017_2$promedio_i
df_2017_2<- na.omit(df_2017_2) df_2017_2
Veamos los primeros 10 registros:
head(df_2017_2,10)
## código personas comuna promedio_i año ingresos_expandidos
## 1 01101 191468 Iquique 375676.9 2017 71930106513
## 2 01107 108375 Alto Hospicio 311571.7 2017 33766585496
## 3 01401 15711 Pozo Almonte 316138.5 2017 4966851883
## 7 01405 9296 Pica 330061.1 2017 3068247619
## 8 02101 361873 Antofagasta 368221.4 2017 133249367039
## 9 02102 13467 Mejillones 369770.7 2017 4979702302
## 11 02104 13317 Taltal 383666.2 2017 5109282942
## 12 02201 165731 Calama 434325.1 2017 71981127235
## 14 02203 10996 San Pedro de Atacama 442861.0 2017 4869699464
## 15 02301 25186 Tocopilla 286187.2 2017 7207910819
Guardemos como rds:
saveRDS(df_2017_2, "Ingresos_expandidos_urbano_17.rds")
De cuántas comunas disponemos del valor del ingreso promedio?
nrow(df_2017_2)
## [1] 312
#df_2017_2$código <- as.numeric(df_2017_2$código)
head(df_2017_2,10)
## código personas comuna promedio_i año ingresos_expandidos
## 1 01101 191468 Iquique 375676.9 2017 71930106513
## 2 01107 108375 Alto Hospicio 311571.7 2017 33766585496
## 3 01401 15711 Pozo Almonte 316138.5 2017 4966851883
## 7 01405 9296 Pica 330061.1 2017 3068247619
## 8 02101 361873 Antofagasta 368221.4 2017 133249367039
## 9 02102 13467 Mejillones 369770.7 2017 4979702302
## 11 02104 13317 Taltal 383666.2 2017 5109282942
## 12 02201 165731 Calama 434325.1 2017 71981127235
## 14 02203 10996 San Pedro de Atacama 442861.0 2017 4869699464
## 15 02301 25186 Tocopilla 286187.2 2017 7207910819
Unimos nuestra tabla de frecuencias por zona con la de ingresos expandidos:
= merge( x = trabajo003, y = df_2017_2, by = "código", all.x = TRUE)
comunas_censo_casen_666 head(comunas_censo_casen_666,10)
## código clave Freq personas comuna promedio_i año ingresos_expandidos
## 1 01101 1101011001 1255 191468 Iquique 375676.9 2017 71930106513
## 2 01101 1101011002 621 191468 Iquique 375676.9 2017 71930106513
## 3 01101 1101041001 713 191468 Iquique 375676.9 2017 71930106513
## 4 01101 1101041002 1084 191468 Iquique 375676.9 2017 71930106513
## 5 01101 1101041003 1691 191468 Iquique 375676.9 2017 71930106513
## 6 01101 1101021005 1927 191468 Iquique 375676.9 2017 71930106513
## 7 01101 1101041005 1840 191468 Iquique 375676.9 2017 71930106513
## 8 01101 1101041006 1102 191468 Iquique 375676.9 2017 71930106513
## 9 01101 1101051001 1515 191468 Iquique 375676.9 2017 71930106513
## 10 01101 1101041004 2403 191468 Iquique 375676.9 2017 71930106513
Cuantas zonas tenemos?
nrow(comunas_censo_casen_666)
## [1] 5165
<- readRDS("../../../../archivos_grandes/tabla_de_prop_pob.rds")
tabla_de_prop_pob names(tabla_de_prop_pob)[1] <- "clave"
head(tabla_de_prop_pob,10)
## clave Freq p código
## 1 1101011001 2491 0.0130100069 01101
## 2 1101011002 1475 0.0077036372 01101
## 3 1101021001 1003 0.0052384733 01101
## 4 1101021002 54 0.0002820315 01101
## 5 1101021003 2895 0.0151200201 01101
## 6 1101021004 2398 0.0125242860 01101
## 7 1101021005 4525 0.0236331920 01101
## 8 1101031001 2725 0.0142321432 01101
## 9 1101031002 3554 0.0185618485 01101
## 10 1101031003 5246 0.0273988343 01101
nrow(tabla_de_prop_pob)
## [1] 15500
= merge( x = comunas_censo_casen_666, y = tabla_de_prop_pob, by = "clave", all.x = TRUE) comunas_censo_casen_6666
nrow(comunas_censo_casen_6666)
## [1] 5165
head(comunas_censo_casen_6666,10)
## clave código.x Freq.x personas comuna promedio_i año
## 1 10101011001 10101 320 245902 Puerto Montt 304409.6 2017
## 2 10101011002 10101 1309 245902 Puerto Montt 304409.6 2017
## 3 10101021001 10101 1828 245902 Puerto Montt 304409.6 2017
## 4 10101021002 10101 581 245902 Puerto Montt 304409.6 2017
## 5 10101021003 10101 1050 245902 Puerto Montt 304409.6 2017
## 6 10101021004 10101 1457 245902 Puerto Montt 304409.6 2017
## 7 10101021005 10101 1165 245902 Puerto Montt 304409.6 2017
## 8 10101031001 10101 2012 245902 Puerto Montt 304409.6 2017
## 9 10101031002 10101 2166 245902 Puerto Montt 304409.6 2017
## 10 10101031003 10101 1663 245902 Puerto Montt 304409.6 2017
## ingresos_expandidos Freq.y p código.y
## 1 74854925754 584 0.002374930 10101
## 2 74854925754 2941 0.011960049 10101
## 3 74854925754 3953 0.016075510 10101
## 4 74854925754 1107 0.004501793 10101
## 5 74854925754 2294 0.009328920 10101
## 6 74854925754 3391 0.013790046 10101
## 7 74854925754 2564 0.010426918 10101
## 8 74854925754 4530 0.018421973 10101
## 9 74854925754 4740 0.019275972 10101
## 10 74854925754 4107 0.016701776 10101
$multipob <- comunas_censo_casen_6666$ingresos_expandidos*comunas_censo_casen_6666$p comunas_censo_casen_6666
head(comunas_censo_casen_6666,10)
## clave código.x Freq.x personas comuna promedio_i año
## 1 10101011001 10101 320 245902 Puerto Montt 304409.6 2017
## 2 10101011002 10101 1309 245902 Puerto Montt 304409.6 2017
## 3 10101021001 10101 1828 245902 Puerto Montt 304409.6 2017
## 4 10101021002 10101 581 245902 Puerto Montt 304409.6 2017
## 5 10101021003 10101 1050 245902 Puerto Montt 304409.6 2017
## 6 10101021004 10101 1457 245902 Puerto Montt 304409.6 2017
## 7 10101021005 10101 1165 245902 Puerto Montt 304409.6 2017
## 8 10101031001 10101 2012 245902 Puerto Montt 304409.6 2017
## 9 10101031002 10101 2166 245902 Puerto Montt 304409.6 2017
## 10 10101031003 10101 1663 245902 Puerto Montt 304409.6 2017
## ingresos_expandidos Freq.y p código.y multipob
## 1 74854925754 584 0.002374930 10101 177775198
## 2 74854925754 2941 0.011960049 10101 895268589
## 3 74854925754 3953 0.016075510 10101 1203331089
## 4 74854925754 1107 0.004501793 10101 336981411
## 5 74854925754 2294 0.009328920 10101 698315588
## 6 74854925754 3391 0.013790046 10101 1032252903
## 7 74854925754 2564 0.010426918 10101 780506176
## 8 74854925754 4530 0.018421973 10101 1378975420
## 9 74854925754 4740 0.019275972 10101 1442901433
## 10 74854925754 4107 0.016701776 10101 1250210165
saveRDS(comunas_censo_casen_6666, "tabla_de_trabajo_2017_urbana.rds")
write_xlsx(comunas_censo_casen_6666, "tabla_de_trabajo_2017_urbana.xlsx")
2 Desaparecen 4 zonas
Porque no tienen categoría de respuesta 1 a la pregunta P17
<-
tabla_original readRDS("../../../ds_correlaciones_censo_casen/corre_censo_casen_2017/censos_con_clave/censo_personas_con_clave_17")
<- readRDS("tabla_de_trabajo_2017_urbana.rds") tabla_de_trabajo
<- filter(tabla_original , tabla_original $AREA ==1)
tabla_con_clave_u <- unique(tabla_con_clave_u$clave)
unicos_001 length(unicos_001)
## [1] 5169
<- tabla_de_trabajo$clave
unicos_002 length(unicos_002)
## [1] 5165
Identifiquemos los que fueron excluídos:
<- setdiff(unicos_001 ,unicos_002)
ddd <- unique(ddd)
ttt ttt
## [1] "9113991999" "16303991999" "7303991999" "6204991999"
#9113991999
<- filter(tabla_original, tabla_original$clave == "9113991999")
tabla_original_1 tabla_original_1
## REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV NHOGAR PERSONAN P07
## 1 9 91 9113 99 1 999 232 1 1 1 1
## 2 9 91 9113 99 1 999 232 1 1 2 5
## 3 9 91 9113 99 1 999 232 1 1 3 5
## P08 P09 P10 P10COMUNA P10PAIS P11 P11COMUNA P11PAIS P12 P12COMUNA P12PAIS
## 1 2 39 1 98 998 2 98 998 1 98 998
## 2 1 12 1 98 998 2 98 998 1 98 998
## 3 2 7 1 98 998 2 98 998 1 98 998
## P12A_LLEGADA P12A_TRAMO P13 P14 P15 P15A P16 P16A P16A_OTRO P17 P18 P19 P20
## 1 9998 98 2 4 7 1 2 98 98 6 98 2 2
## 2 9998 98 1 6 5 2 2 98 98 98 98 98 98
## 3 9998 98 1 1 5 2 2 98 98 98 98 98 98
## P21M P21A P10PAIS_GRUPO P11PAIS_GRUPO P12PAIS_GRUPO ESCOLARIDAD P16A_GRUPO
## 1 10 2009 998 998 998 12 98
## 2 98 9998 998 998 998 6 98
## 3 98 9998 998 998 998 1 98
## REGION_15R PROVINCIA_15R COMUNA_15R P10COMUNA_15R P11COMUNA_15R P12COMUNA_15R
## 1 9 91 9113 98 98 98
## 2 9 91 9113 98 98 98
## 3 9 91 9113 98 98 98
## clave
## 1 9113991999
## 2 9113991999
## 3 9113991999
Hay solamente 4 zonas que no poseen el valor 1 de respuesta a la pregunta P17.
2.1 Diagrama de dispersión loess
scatter.smooth(x=comunas_censo_casen_6666$Freq.x, y=comunas_censo_casen_6666$multipob, main="multi_pob ~ Freq.x",
xlab = "Freq.x",
ylab = "multi_pob",
col = 2)
3 Análisis de regresión
Aplicaremos un análisis de regresión donde:
\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]
\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]
3.1 Outliers
Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.
3.2 Modelo lineal
Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.
<- lm( multipob~(Freq.x) , data=tabla_de_trabajo)
linearMod summary(linearMod)
##
## Call:
## lm(formula = multipob ~ (Freq.x), data = tabla_de_trabajo)
##
## Residuals:
## Min 1Q Median 3Q Max
## -850547865 -78144039 -6002220 58511371 2933901395
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3897469 4656177 -0.837 0.403
## Freq.x 753444 3165 238.083 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 162300000 on 5143 degrees of freedom
## (20 observations deleted due to missingness)
## Multiple R-squared: 0.9168, Adjusted R-squared: 0.9168
## F-statistic: 5.668e+04 on 1 and 5143 DF, p-value: < 2.2e-16
3.3 Gráfica de la recta de regresión lineal
ggplot(tabla_de_trabajo, aes(x = Freq.x , y = multipob)) +
geom_point() +
stat_smooth(method = "lm", col = "red")
Si bien obtenemos nuestro modelo lineal da cuenta del 0.9168 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.
4 Modelos alternativos
### 8.1 Modelo cuadrático
<- lm( multipob~(Freq.x^2) , data=tabla_de_trabajo)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "cuadrático"
modelo <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
sintaxis <- cbind(modelo,dato,sintaxis)
modelos1
### 8.2 Modelo cúbico
<- lm( multipob~(Freq.x^3) , data=tabla_de_trabajo)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "cúbico"
modelo <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
sintaxis <- cbind(modelo,dato,sintaxis)
modelos2
### 8.3 Modelo logarítmico
<- lm( multipob~log(Freq.x) , data=tabla_de_trabajo)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "logarítmico"
modelo <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis <- cbind(modelo,dato,sintaxis)
modelos3
### 8.5 Modelo con raíz cuadrada
<- lm( multipob~sqrt(Freq.x) , data=tabla_de_trabajo)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "raíz cuadrada"
modelo <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis <- cbind(modelo,dato,sintaxis)
modelos5
### 8.6 Modelo raíz-raíz
<- lm( sqrt(multipob)~sqrt(Freq.x) , data=tabla_de_trabajo)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "raíz-raíz"
modelo <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis <- cbind(modelo,dato,sintaxis)
modelos6
### 8.7 Modelo log-raíz
<- lm( log(multipob)~sqrt(Freq.x) , data=tabla_de_trabajo)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "log-raíz"
modelo <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis <- cbind(modelo,dato,sintaxis)
modelos7
### 8.8 Modelo raíz-log
<- lm( sqrt(multipob)~log(Freq.x) , data=tabla_de_trabajo)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "raíz-log"
modelo <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis <- cbind(modelo,dato,sintaxis)
modelos8
### 8.9 Modelo log-log
<- lm( log(multipob)~log(Freq.x) , data=tabla_de_trabajo)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "log-log"
modelo <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis <- cbind(modelo,dato,sintaxis)
modelos9
<- rbind(modelos1, modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind <<- modelos_bind[order(modelos_bind$dato, decreasing = T ),]
modelos_bind
<<- tabla_de_trabajo
h_y_m_comuna_corr_01
kbl(modelos_bind) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
modelo | dato | sintaxis | |
---|---|---|---|
8 | log-log | 0.982633689397265 | linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) |
5 | raíz-raíz | 0.956016832106656 | linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) |
1 | cuadrático | 0.916799197009415 | linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01) |
2 | cúbico | 0.916799197009415 | linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01) |
4 | raíz cuadrada | 0.858216862956833 | linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) |
6 | log-raíz | 0.825833185026114 | linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) |
7 | raíz-log | 0.804952865180797 | linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) |
3 | logarítmico | 0.585652425658201 | linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01) |
5 Elección del modelo.
Elegimos el modelo log-log (8) pues tiene el más alto \(R^2\)
<- h_y_m_comuna_corr_01
h_y_m_comuna_corr <- 8
metodo switch (metodo,
case = linearMod <- lm( multipob~(Freq.x^2) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multipob~(Freq.x^3) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multipob~log(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multipob~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( sqrt(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( log(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( sqrt(multipob)~log(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( log(multipob)~log(Freq.x) , data=h_y_m_comuna_corr)
)summary(linearMod)
##
## Call:
## lm(formula = log(multipob) ~ log(Freq.x), data = h_y_m_comuna_corr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.99023 -0.09645 -0.00222 0.09395 1.53885
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.270794 0.013259 1000.9 <2e-16 ***
## log(Freq.x) 1.033996 0.001917 539.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1618 on 5143 degrees of freedom
## (20 observations deleted due to missingness)
## Multiple R-squared: 0.9826, Adjusted R-squared: 0.9826
## F-statistic: 2.911e+05 on 1 and 5143 DF, p-value: < 2.2e-16
5.1 Modelo log-log (log-log)
Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.9826).
5.1.1 Diagrama de dispersión sobre log-log
Desplegamos una curva suavizada por loess en el diagrama de dispersión.
head(tabla_de_trabajo,10)
## clave código.x Freq.x personas comuna promedio_i año
## 1 10101011001 10101 320 245902 Puerto Montt 304409.6 2017
## 2 10101011002 10101 1309 245902 Puerto Montt 304409.6 2017
## 3 10101021001 10101 1828 245902 Puerto Montt 304409.6 2017
## 4 10101021002 10101 581 245902 Puerto Montt 304409.6 2017
## 5 10101021003 10101 1050 245902 Puerto Montt 304409.6 2017
## 6 10101021004 10101 1457 245902 Puerto Montt 304409.6 2017
## 7 10101021005 10101 1165 245902 Puerto Montt 304409.6 2017
## 8 10101031001 10101 2012 245902 Puerto Montt 304409.6 2017
## 9 10101031002 10101 2166 245902 Puerto Montt 304409.6 2017
## 10 10101031003 10101 1663 245902 Puerto Montt 304409.6 2017
## ingresos_expandidos Freq.y p código.y multipob
## 1 74854925754 584 0.002374930 10101 177775198
## 2 74854925754 2941 0.011960049 10101 895268589
## 3 74854925754 3953 0.016075510 10101 1203331089
## 4 74854925754 1107 0.004501793 10101 336981411
## 5 74854925754 2294 0.009328920 10101 698315588
## 6 74854925754 3391 0.013790046 10101 1032252903
## 7 74854925754 2564 0.010426918 10101 780506176
## 8 74854925754 4530 0.018421973 10101 1378975420
## 9 74854925754 4740 0.019275972 10101 1442901433
## 10 74854925754 4107 0.016701776 10101 1250210165
scatter.smooth(x=log(tabla_de_trabajo$Freq.x), y=log(tabla_de_trabajo$multipob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")
ggplot(tabla_de_trabajo, aes(x = log(Freq.x) , y = log(multipob))) + geom_point() + stat_smooth(method=lm , color="blue", level = 0.9, fill="green", se=TRUE)
5.1.2 Análisis de residuos
par(mfrow = c (2,2))
plot(linearMod)
5.1.3 Modelo log-log
\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]
<- lm( log(multipob)~log(Freq.x) , data=tabla_de_trabajo)
linearMod <- linearMod$coefficients[1]
aa <- linearMod$coefficients[2] bb
6 Aplicación la regresión a los valores de la variable a nivel de zona
Esta nueva variable se llamará: est_ing
$est_ing <- exp(aa+bb*log(tabla_de_trabajo$Freq.x)) tabla_de_trabajo
7 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona
\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]
$ing_medio_zona <- tabla_de_trabajo$est_ing /(tabla_de_trabajo$personas * tabla_de_trabajo$p)
tabla_de_trabajowrite_xlsx(tabla_de_trabajo, "tabla_de_trabajo_2.xlsx")
write.dbf(tabla_de_trabajo, "tabla_de_trabajo_2.dbf")
<- tabla_de_trabajo[c(1:100),]
r3_100 kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
clave | código.x | Freq.x | personas | comuna | promedio_i | año | ingresos_expandidos | Freq.y | p | código.y | multipob | est_ing | ing_medio_zona |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10101011001 | 10101 | 320 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 584 | 0.0023749 | 10101 | 177775197.6 | 225812484 | 386665.2 |
10101011002 | 10101 | 1309 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2941 | 0.0119600 | 10101 | 895268589.3 | 969027564 | 329489.1 |
10101021001 | 10101 | 1828 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3953 | 0.0160755 | 10101 | 1203331089.2 | 1368684549 | 346239.5 |
10101021002 | 10101 | 581 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 1107 | 0.0045018 | 10101 | 336981410.5 | 418388755 | 377948.3 |
10101021003 | 10101 | 1050 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2294 | 0.0093289 | 10101 | 698315587.8 | 771490596 | 336308.0 |
10101021004 | 10101 | 1457 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3391 | 0.0137900 | 10101 | 1032252902.5 | 1082524004 | 319234.4 |
10101021005 | 10101 | 1165 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2564 | 0.0104269 | 10101 | 780506175.8 | 859016955 | 335030.0 |
10101031001 | 10101 | 2012 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 4530 | 0.0184220 | 10101 | 1378975419.7 | 1511371232 | 333636.0 |
10101031002 | 10101 | 2166 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 4740 | 0.0192760 | 10101 | 1442901432.6 | 1631137384 | 344121.8 |
10101031003 | 10101 | 1663 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 4107 | 0.0167018 | 10101 | 1250210165.3 | 1241145581 | 302202.5 |
10101031004 | 10101 | 1172 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2856 | 0.0116144 | 10101 | 869393774.6 | 864354445 | 302645.1 |
10101031005 | 10101 | 2657 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 5690 | 0.0231393 | 10101 | 1732090538.3 | 2014838451 | 354101.7 |
10101031006 | 10101 | 1233 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2460 | 0.0100040 | 10101 | 748847578.9 | 910912070 | 370289.5 |
10101031007 | 10101 | 1038 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2292 | 0.0093208 | 10101 | 697706768.7 | 762375593 | 332624.6 |
10101031008 | 10101 | 1616 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3585 | 0.0145790 | 10101 | 1091308362.0 | 1204893190 | 336092.9 |
10101031009 | 10101 | 1995 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 4436 | 0.0180397 | 10101 | 1350360918.8 | 1498168966 | 337729.7 |
10101031010 | 10101 | 1531 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3566 | 0.0145017 | 10101 | 1085524579.9 | 1139422061 | 319523.9 |
10101031011 | 10101 | 1232 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2757 | 0.0112118 | 10101 | 839257225.7 | 910148187 | 330122.7 |
10101031012 | 10101 | 837 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 1849 | 0.0075193 | 10101 | 562853322.5 | 610266318 | 330052.1 |
10101031013 | 10101 | 1642 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3945 | 0.0160430 | 10101 | 1200895812.6 | 1224943339 | 310505.3 |
10101031014 | 10101 | 1030 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2265 | 0.0092110 | 10101 | 689487709.9 | 756300911 | 333907.7 |
10101031015 | 10101 | 873 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 1930 | 0.0078487 | 10101 | 587510498.9 | 637426237 | 330272.7 |
10101031016 | 10101 | 1285 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3071 | 0.0124887 | 10101 | 934841835.3 | 950662583 | 309561.2 |
10101031017 | 10101 | 1457 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3885 | 0.0157990 | 10101 | 1182631237.5 | 1082524004 | 278642.0 |
10101041001 | 10101 | 1843 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 4342 | 0.0176574 | 10101 | 1321746417.8 | 1380298976 | 317894.7 |
10101041002 | 10101 | 895 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2169 | 0.0088206 | 10101 | 660264389.7 | 654042823 | 301541.2 |
10101041003 | 10101 | 2559 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 5202 | 0.0211548 | 10101 | 1583538660.8 | 1938046089 | 372557.9 |
10101051001 | 10101 | 1148 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2463 | 0.0100162 | 10101 | 749760807.7 | 846059032 | 343507.5 |
10101051002 | 10101 | 814 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 1913 | 0.0077795 | 10101 | 582335536.0 | 592934824 | 309950.2 |
10101051003 | 10101 | 1329 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3272 | 0.0133061 | 10101 | 996028161.9 | 984340471 | 300837.6 |
10101051004 | 10101 | 1712 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3633 | 0.0147742 | 10101 | 1105920022.1 | 1278977722 | 352044.5 |
10101061001 | 10101 | 3383 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 6787 | 0.0276004 | 10101 | 2066027852.9 | 2586528264 | 381100.4 |
10101061002 | 10101 | 1254 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2729 | 0.0110979 | 10101 | 830733757.3 | 926958434 | 339669.6 |
10101061003 | 10101 | 1559 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3668 | 0.0149165 | 10101 | 1116574357.5 | 1160975700 | 316514.6 |
10101061004 | 10101 | 1184 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2995 | 0.0121796 | 10101 | 911706706.9 | 873506946 | 291655.1 |
10101061005 | 10101 | 1216 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2571 | 0.0104554 | 10101 | 782637042.9 | 897928952 | 349252.8 |
10101061006 | 10101 | 1991 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 4130 | 0.0167953 | 10101 | 1257211585.8 | 1495063105 | 362000.8 |
10101061007 | 10101 | 340 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 817 | 0.0033225 | 10101 | 248702630.9 | 240420763 | 294272.7 |
10101061008 | 10101 | 1008 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2109 | 0.0085766 | 10101 | 641999814.6 | 739603843 | 350689.4 |
10101061009 | 10101 | 68 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 168 | 0.0006832 | 10101 | 51140810.3 | 45523920 | 270975.7 |
10101061010 | 10101 | 610 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 1543 | 0.0062749 | 10101 | 469703989.6 | 440000177 | 285158.9 |
10101071001 | 10101 | 909 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2352 | 0.0095648 | 10101 | 715971343.8 | 664624269 | 282578.3 |
10101071002 | 10101 | 1583 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3919 | 0.0159372 | 10101 | 1192981163.4 | 1179460734 | 300959.6 |
10101071003 | 10101 | 1915 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 4978 | 0.0202438 | 10101 | 1515350913.8 | 1436092528 | 288487.9 |
10101071004 | 10101 | 1419 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3443 | 0.0140015 | 10101 | 1048082200.9 | 1053343936 | 305937.8 |
10101071005 | 10101 | 1186 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2751 | 0.0111874 | 10101 | 837430768.2 | 875032670 | 318078.0 |
10101071006 | 10101 | 1741 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 4214 | 0.0171369 | 10101 | 1282781990.9 | 1301385588 | 308824.3 |
10101071007 | 10101 | 987 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2345 | 0.0095363 | 10101 | 713840476.7 | 723677283 | 308604.4 |
10101071008 | 10101 | 2104 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 5480 | 0.0222853 | 10101 | 1668164525.4 | 1582883822 | 288847.4 |
10101071009 | 10101 | 1509 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3549 | 0.0144326 | 10101 | 1080349616.9 | 1122496446 | 316285.3 |
10101071010 | 10101 | 1442 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3521 | 0.0143187 | 10101 | 1071826148.6 | 1071002427 | 304175.6 |
10101071011 | 10101 | 1301 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3094 | 0.0125822 | 10101 | 941843255.8 | 962904621 | 311216.7 |
10101071012 | 10101 | 1066 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2621 | 0.0106587 | 10101 | 797857522.1 | 783649437 | 298988.7 |
10101071013 | 10101 | 41 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 84 | 0.0003416 | 10101 | 25570405.1 | 26980176 | 321192.6 |
10101071014 | 10101 | 350 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 875 | 0.0035583 | 10101 | 266358386.8 | 247735976 | 283126.8 |
10101131001 | 10101 | 282 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 604 | 0.0024563 | 10101 | 183863389.3 | 198143878 | 328052.8 |
10101151001 | 10101 | 1757 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3973 | 0.0161568 | 10101 | 1209419280.9 | 1313753995 | 330670.5 |
10101151002 | 10101 | 2237 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 4655 | 0.0189303 | 10101 | 1417026617.9 | 1686453130 | 362288.5 |
10101151003 | 10101 | 248 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 592 | 0.0024075 | 10101 | 180210474.3 | 173494747 | 293065.5 |
10101151004 | 10101 | 143 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 325 | 0.0013217 | 10101 | 98933115.1 | 98184214 | 302105.3 |
10101151005 | 10101 | 179 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 384 | 0.0015616 | 10101 | 116893280.6 | 123843685 | 322509.6 |
10101161001 | 10101 | 342 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 739 | 0.0030053 | 10101 | 224958683.3 | 241883227 | 327311.5 |
10101161002 | 10101 | 2677 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 6507 | 0.0264618 | 10101 | 1980793169.2 | 2030522314 | 312052.0 |
10101161003 | 10101 | 1242 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2841 | 0.0115534 | 10101 | 864827630.8 | 917787954 | 323051.0 |
10101161004 | 10101 | 491 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 1224 | 0.0049776 | 10101 | 372597332.0 | 351560784 | 287222.9 |
10101161005 | 10101 | 70 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 188 | 0.0007645 | 10101 | 57229002.0 | 46909063 | 249516.3 |
10101161006 | 10101 | 190 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 435 | 0.0017690 | 10101 | 132418169.4 | 131720981 | 302806.9 |
10101171001 | 10101 | 735 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 1747 | 0.0071045 | 10101 | 531803544.9 | 533534615 | 305400.5 |
10101171002 | 10101 | 1196 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2902 | 0.0118014 | 10101 | 883396615.5 | 882662601 | 304156.7 |
10101171003 | 10101 | 1335 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2873 | 0.0116835 | 10101 | 874568737.5 | 988935876 | 344217.2 |
10101171004 | 10101 | 2230 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 4707 | 0.0191418 | 10101 | 1432855916.3 | 1680996781 | 357127.0 |
10101171005 | 10101 | 1799 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3782 | 0.0153801 | 10101 | 1151277050.2 | 1346239200 | 355959.6 |
10101171006 | 10101 | 1635 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3515 | 0.0142943 | 10101 | 1069999691.0 | 1219544153 | 346954.2 |
10101181001 | 10101 | 1384 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3155 | 0.0128303 | 10101 | 960412240.5 | 1026491036 | 325353.7 |
10101181002 | 10101 | 1039 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2282 | 0.0092801 | 10101 | 694662672.8 | 763135040 | 334415.0 |
10101181003 | 10101 | 601 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 1312 | 0.0053355 | 10101 | 399385375.4 | 433289366 | 330251.0 |
10101181004 | 10101 | 645 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 1466 | 0.0059617 | 10101 | 446264451.5 | 466129355 | 317960.0 |
10101991999 | 10101 | 763 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 1400 | 0.0056933 | 10101 | 426173418.9 | 554564165 | 396117.3 |
10102051001 | 10102 | 1243 | 33985 | Calbuco | 280878.2 | 2017 | 9545646863 | 3082 | 0.0906871 | 10102 | 865666724.5 | 918552046 | 298037.7 |
10102051002 | 10102 | 1603 | 33985 | Calbuco | 280878.2 | 2017 | 9545646863 | 3879 | 0.1141386 | 10102 | 1089526678.9 | 1194872215 | 308036.1 |
10102141001 | 10102 | 1473 | 33985 | Calbuco | 280878.2 | 2017 | 9545646863 | 3356 | 0.0987494 | 10102 | 942627361.2 | 1094818130 | 326227.1 |
10102141002 | 10102 | 2318 | 33985 | Calbuco | 280878.2 | 2017 | 9545646863 | 5586 | 0.1643666 | 10102 | 1568985828.3 | 1749632662 | 313217.4 |
10102991999 | 10102 | 51 | 33985 | Calbuco | 280878.2 | 2017 | 9545646863 | 93 | 0.0027365 | 10102 | 26121676.0 | 33810647 | 363555.3 |
10104011001 | 10104 | 1160 | 12261 | Fresia | 223666.2 | 2017 | 2742371891 | 2769 | 0.2258380 | 10104 | 619331846.2 | 855205130 | 308849.8 |
10104011002 | 10104 | 1735 | 12261 | Fresia | 223666.2 | 2017 | 2742371891 | 4559 | 0.3718294 | 10104 | 1019694433.8 | 1296748430 | 284437.0 |
10104991999 | 10104 | 3 | 12261 | Fresia | 223666.2 | 2017 | 2742371891 | 3 | 0.0002447 | 10104 | 670998.8 | 1806234 | 602078.0 |
10105011001 | 10105 | 1420 | 18428 | Frutillar | 281543.9 | 2017 | 5188291726 | 3426 | 0.1859127 | 10105 | 964569538.4 | 1054111495 | 307679.9 |
10105011002 | 10105 | 1299 | 18428 | Frutillar | 281543.9 | 2017 | 5188291726 | 3126 | 0.1696332 | 10105 | 880106356.4 | 961374085 | 307541.3 |
10105011003 | 10105 | 1345 | 18428 | Frutillar | 281543.9 | 2017 | 5188291726 | 3037 | 0.1648036 | 10105 | 855048945.8 | 996596444 | 328151.6 |
10105011004 | 10105 | 1396 | 18428 | Frutillar | 281543.9 | 2017 | 5188291726 | 3287 | 0.1783699 | 10105 | 925434930.8 | 1035695173 | 315088.3 |
10105991999 | 10105 | 37 | 18428 | Frutillar | 281543.9 | 2017 | 5188291726 | 76 | 0.0041242 | 10105 | 21397339.4 | 24263141 | 319251.9 |
10106011001 | 10106 | 2144 | 17068 | Los Muermos | 233220.1 | 2017 | 3980600731 | 5180 | 0.3034919 | 10106 | 1208080137.5 | 1614009706 | 311584.9 |
10106011002 | 10106 | 1105 | 17068 | Los Muermos | 233220.1 | 2017 | 3980600731 | 2748 | 0.1610030 | 10106 | 640888845.2 | 813312435 | 295965.2 |
10106991999 | 10106 | 79 | 17068 | Los Muermos | 233220.1 | 2017 | 3980600731 | 178 | 0.0104289 | 10106 | 41513178.5 | 53158363 | 298642.5 |
10107011001 | 10107 | 1772 | 17591 | Llanquihue | 251391.8 | 2017 | 4422233283 | 4286 | 0.2436473 | 10107 | 1077465286.3 | 1325352856 | 309228.4 |
10107011002 | 10107 | 455 | 17591 | Llanquihue | 251391.8 | 2017 | 4422233283 | 1159 | 0.0658860 | 10107 | 291363104.7 | 324942166 | 280364.3 |
10107011003 | 10107 | 1362 | 17591 | Llanquihue | 251391.8 | 2017 | 4422233283 | 3146 | 0.1788415 | 10107 | 790878625.9 | 1009623846 | 320923.0 |
10107021001 | 10107 | 937 | 17591 | Llanquihue | 251391.8 | 2017 | 4422233283 | 2292 | 0.1302939 | 10107 | 576190022.4 | 685803705 | 299216.3 |
10107021002 | 10107 | 1283 | 17591 | Llanquihue | 251391.8 | 2017 | 4422233283 | 3221 | 0.1831050 | 10107 | 809733011.4 | 949132691 | 294670.2 |
10107991999 | 10107 | 58 | 17591 | Llanquihue | 251391.8 | 2017 | 4422233283 | 118 | 0.0067080 | 10107 | 29664233.3 | 38619820 | 327286.6 |
7.1 Estadísticos
<- readRDS("Ingresos_expandidos_urbano_17.rds")
ingresos kbl(ingresos) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | personas | comuna | promedio_i | año | ingresos_expandidos | |
---|---|---|---|---|---|---|
1 | 01101 | 191468 | Iquique | 375676.9 | 2017 | 71930106513 |
2 | 01107 | 108375 | Alto Hospicio | 311571.7 | 2017 | 33766585496 |
3 | 01401 | 15711 | Pozo Almonte | 316138.5 | 2017 | 4966851883 |
7 | 01405 | 9296 | Pica | 330061.1 | 2017 | 3068247619 |
8 | 02101 | 361873 | Antofagasta | 368221.4 | 2017 | 133249367039 |
9 | 02102 | 13467 | Mejillones | 369770.7 | 2017 | 4979702302 |
11 | 02104 | 13317 | Taltal | 383666.2 | 2017 | 5109282942 |
12 | 02201 | 165731 | Calama | 434325.1 | 2017 | 71981127235 |
14 | 02203 | 10996 | San Pedro de Atacama | 442861.0 | 2017 | 4869699464 |
15 | 02301 | 25186 | Tocopilla | 286187.2 | 2017 | 7207910819 |
16 | 02302 | 6457 | María Elena | 477748.0 | 2017 | 3084818966 |
17 | 03101 | 153937 | Copiapó | 343121.0 | 2017 | 52819016037 |
18 | 03102 | 17662 | Caldera | 318653.2 | 2017 | 5628052276 |
19 | 03103 | 14019 | Tierra Amarilla | 333194.9 | 2017 | 4671058718 |
20 | 03201 | 12219 | Chañaral | 286389.3 | 2017 | 3499391196 |
21 | 03202 | 13925 | Diego de Almagro | 351583.9 | 2017 | 4895805596 |
22 | 03301 | 51917 | Vallenar | 315981.5 | 2017 | 16404810756 |
24 | 03303 | 7041 | Freirina | 289049.9 | 2017 | 2035200054 |
25 | 03304 | 10149 | Huasco | 337414.8 | 2017 | 3424422750 |
26 | 04101 | 221054 | La Serena | 279340.1 | 2017 | 61749247282 |
27 | 04102 | 227730 | Coquimbo | 269078.6 | 2017 | 61277269093 |
28 | 04103 | 11044 | Andacollo | 258539.7 | 2017 | 2855312920 |
29 | 04104 | 4241 | La Higuera | 214257.0 | 2017 | 908664019 |
31 | 04106 | 27771 | Vicuña | 254177.0 | 2017 | 7058750373 |
32 | 04201 | 30848 | Illapel | 282139.3 | 2017 | 8703433491 |
33 | 04202 | 9093 | Canela | 233397.3 | 2017 | 2122281844 |
34 | 04203 | 21382 | Los Vilos | 285214.0 | 2017 | 6098444926 |
35 | 04204 | 29347 | Salamanca | 262056.9 | 2017 | 7690585032 |
36 | 04301 | 111272 | Ovalle | 280373.5 | 2017 | 31197719080 |
37 | 04302 | 13322 | Combarbalá | 234537.3 | 2017 | 3124505460 |
38 | 04303 | 30751 | Monte Patria | 225369.1 | 2017 | 6930326684 |
39 | 04304 | 10956 | Punitaqui | 212496.1 | 2017 | 2328107498 |
41 | 05101 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 |
42 | 05102 | 26867 | Casablanca | 348088.6 | 2017 | 9352095757 |
43 | 05103 | 42152 | Concón | 333932.4 | 2017 | 14075920021 |
45 | 05105 | 18546 | Puchuncaví | 296035.5 | 2017 | 5490274928 |
46 | 05107 | 31923 | Quintero | 308224.7 | 2017 | 9839456903 |
47 | 05109 | 334248 | Viña del Mar | 354715.9 | 2017 | 118563074323 |
49 | 05301 | 66708 | Los Andes | 355446.2 | 2017 | 23711104774 |
50 | 05302 | 14832 | Calle Larga | 246387.3 | 2017 | 3654416747 |
51 | 05303 | 10207 | Rinconada | 279807.9 | 2017 | 2855998928 |
52 | 05304 | 18855 | San Esteban | 219571.6 | 2017 | 4140022481 |
53 | 05401 | 35390 | La Ligua | 259482.3 | 2017 | 9183080280 |
54 | 05402 | 19388 | Cabildo | 262745.9 | 2017 | 5094117762 |
55 | 05403 | 6356 | Papudo | 302317.1 | 2017 | 1921527704 |
56 | 05404 | 9826 | Petorca | 237510.8 | 2017 | 2333781007 |
57 | 05405 | 7339 | Zapallar | 294389.2 | 2017 | 2160521991 |
58 | 05501 | 90517 | Quillota | 288694.2 | 2017 | 26131733924 |
59 | 05502 | 50554 | Calera | 282823.6 | 2017 | 14297866792 |
60 | 05503 | 17988 | Hijuelas | 268449.7 | 2017 | 4828872604 |
61 | 05504 | 22098 | La Cruz | 335544.3 | 2017 | 7414857001 |
62 | 05506 | 22120 | Nogales | 259917.8 | 2017 | 5749381300 |
63 | 05601 | 91350 | San Antonio | 246603.6 | 2017 | 22527241144 |
64 | 05602 | 13817 | Algarrobo | 390710.4 | 2017 | 5398446270 |
65 | 05603 | 22738 | Cartagena | 244949.4 | 2017 | 5569658994 |
66 | 05604 | 15955 | El Quisco | 270498.2 | 2017 | 4315799297 |
67 | 05605 | 13286 | El Tabo | 287271.0 | 2017 | 3816682340 |
68 | 05606 | 10900 | Santo Domingo | 404470.9 | 2017 | 4408732520 |
69 | 05701 | 76844 | San Felipe | 302021.4 | 2017 | 23208536043 |
70 | 05702 | 13998 | Catemu | 233238.3 | 2017 | 3264869972 |
71 | 05703 | 24608 | Llaillay | 295663.4 | 2017 | 7275684301 |
72 | 05704 | 7273 | Panquehue | 328043.3 | 2017 | 2385858928 |
73 | 05705 | 16754 | Putaendo | 309628.4 | 2017 | 5187514898 |
74 | 05706 | 15241 | Santa María | 256403.4 | 2017 | 3907844674 |
75 | 05801 | 151708 | Quilpué | 344393.1 | 2017 | 52247193426 |
76 | 05802 | 46121 | Limache | 307380.7 | 2017 | 14176705125 |
77 | 05803 | 17516 | Olmué | 293997.6 | 2017 | 5149662271 |
78 | 05804 | 126548 | Villa Alemana | 361923.3 | 2017 | 45800670899 |
79 | 06101 | 241774 | Rancagua | 318384.5 | 2017 | 76977097284 |
80 | 06102 | 12988 | Codegua | 289405.7 | 2017 | 3758801352 |
81 | 06103 | 7359 | Coinco | 224485.0 | 2017 | 1651985453 |
82 | 06104 | 19597 | Coltauco | 278925.9 | 2017 | 5466110795 |
83 | 06105 | 20887 | Doñihue | 306532.0 | 2017 | 6402533884 |
84 | 06106 | 33437 | Graneros | 311834.8 | 2017 | 10426820415 |
85 | 06107 | 24640 | Las Cabras | 279810.6 | 2017 | 6894533314 |
86 | 06108 | 52505 | Machalí | 316199.2 | 2017 | 16602037093 |
87 | 06109 | 13407 | Malloa | 213596.6 | 2017 | 2863689033 |
88 | 06110 | 25343 | Mostazal | 291701.8 | 2017 | 7392597596 |
89 | 06111 | 13608 | Olivar | 297914.9 | 2017 | 4054025678 |
90 | 06112 | 14313 | Peumo | 248687.4 | 2017 | 3559462966 |
91 | 06113 | 19714 | Pichidegua | 234187.0 | 2017 | 4616762518 |
92 | 06114 | 13002 | Quinta de Tilcoco | 210835.7 | 2017 | 2741286093 |
93 | 06115 | 58825 | Rengo | 293650.2 | 2017 | 17273974762 |
94 | 06116 | 27968 | Requínoa | 288865.3 | 2017 | 8078983811 |
95 | 06117 | 46766 | San Vicente | 285655.7 | 2017 | 13358975033 |
96 | 06201 | 16394 | Pichilemu | 344227.1 | 2017 | 5643258336 |
97 | 06202 | 3041 | La Estrella | 293280.7 | 2017 | 891866686 |
98 | 06203 | 6294 | Litueche | 298955.7 | 2017 | 1881627117 |
99 | 06204 | 7308 | Marchihue | 336379.3 | 2017 | 2458260033 |
100 | 06205 | 6641 | Navidad | 236383.5 | 2017 | 1569822543 |
101 | 06206 | 6188 | Paredones | 238518.3 | 2017 | 1475951353 |
102 | 06301 | 73973 | San Fernando | 324998.7 | 2017 | 24041131495 |
103 | 06302 | 15037 | Chépica | 245508.7 | 2017 | 3691714537 |
104 | 06303 | 35399 | Chimbarongo | 260706.7 | 2017 | 9228754903 |
105 | 06304 | 6811 | Lolol | 236668.2 | 2017 | 1611947197 |
106 | 06305 | 17833 | Nancagua | 245992.6 | 2017 | 4386786331 |
107 | 06306 | 12482 | Palmilla | 246745.0 | 2017 | 3079870843 |
108 | 06307 | 11007 | Peralillo | 265630.7 | 2017 | 2923796850 |
109 | 06308 | 8738 | Placilla | 240573.8 | 2017 | 2102134220 |
111 | 06310 | 37855 | Santa Cruz | 300976.4 | 2017 | 11393463346 |
112 | 07101 | 220357 | Talca | 307377.4 | 2017 | 67732753814 |
113 | 07102 | 46068 | Constitución | 280736.9 | 2017 | 12932986800 |
114 | 07103 | 9448 | Curepto | 281855.5 | 2017 | 2662971120 |
115 | 07104 | 4142 | Empedrado | 209235.2 | 2017 | 866652110 |
116 | 07105 | 49721 | Maule | 245019.7 | 2017 | 12182624190 |
117 | 07106 | 8422 | Pelarco | 216777.5 | 2017 | 1825700105 |
118 | 07107 | 8245 | Pencahue | 233692.6 | 2017 | 1926795579 |
119 | 07108 | 13906 | Río Claro | 224864.2 | 2017 | 3126961590 |
120 | 07109 | 43269 | San Clemente | 247003.5 | 2017 | 10687595452 |
121 | 07110 | 9191 | San Rafael | 249688.5 | 2017 | 2294886656 |
122 | 07201 | 40441 | Cauquenes | 235303.7 | 2017 | 9515918892 |
123 | 07202 | 8928 | Chanco | 250327.3 | 2017 | 2234922252 |
124 | 07203 | 7571 | Pelluhue | 202735.2 | 2017 | 1534908448 |
125 | 07301 | 149136 | Curicó | 282406.9 | 2017 | 42117028333 |
126 | 07302 | 9657 | Hualañé | 303280.6 | 2017 | 2928781043 |
127 | 07303 | 6653 | Licantén | 261799.2 | 2017 | 1741750148 |
128 | 07304 | 45976 | Molina | 261223.2 | 2017 | 12009998195 |
129 | 07305 | 10484 | Rauco | 271406.8 | 2017 | 2845428741 |
130 | 07306 | 15187 | Romeral | 269017.0 | 2017 | 4085560646 |
131 | 07307 | 18544 | Sagrada Familia | 248654.3 | 2017 | 4611045339 |
132 | 07308 | 28921 | Teno | 262087.1 | 2017 | 7579820261 |
133 | 07309 | 4322 | Vichuquén | 218281.8 | 2017 | 943414066 |
134 | 07401 | 93602 | Linares | 270205.2 | 2017 | 25291751487 |
135 | 07402 | 20765 | Colbún | 200983.0 | 2017 | 4173410967 |
136 | 07403 | 30534 | Longaví | 216067.2 | 2017 | 6597394825 |
137 | 07404 | 41637 | Parral | 266374.6 | 2017 | 11091040324 |
138 | 07405 | 19974 | Retiro | 225715.0 | 2017 | 4508431050 |
139 | 07406 | 45547 | San Javier | 278559.1 | 2017 | 12687530322 |
140 | 07407 | 16221 | Villa Alegre | 262111.0 | 2017 | 4251702731 |
141 | 07408 | 18081 | Yerbas Buenas | 244050.7 | 2017 | 4412680158 |
142 | 08101 | 223574 | Concepción | 323059.6 | 2017 | 72227728923 |
143 | 08102 | 116262 | Coronel | 277633.4 | 2017 | 32278209118 |
144 | 08103 | 85938 | Chiguayante | 298370.0 | 2017 | 25641323296 |
145 | 08104 | 10624 | Florida | 232450.3 | 2017 | 2469551785 |
146 | 08105 | 24333 | Hualqui | 232273.3 | 2017 | 5651905803 |
147 | 08106 | 43535 | Lota | 283449.0 | 2017 | 12339953990 |
148 | 08107 | 47367 | Penco | 265193.8 | 2017 | 12561435651 |
149 | 08108 | 131808 | San Pedro de la Paz | 274394.0 | 2017 | 36167321662 |
150 | 08109 | 13749 | Santa Juana | 260550.2 | 2017 | 3582304723 |
151 | 08110 | 151749 | Talcahuano | 320279.6 | 2017 | 48602104064 |
152 | 08111 | 54946 | Tomé | 275421.3 | 2017 | 15133299927 |
153 | 08112 | 91773 | Hualpén | 287452.1 | 2017 | 26380344663 |
154 | 08201 | 25522 | Lebu | 256023.5 | 2017 | 6534231082 |
155 | 08202 | 36257 | Arauco | 316263.6 | 2017 | 11466769473 |
156 | 08203 | 34537 | Cañete | 241126.1 | 2017 | 8327773342 |
157 | 08204 | 6031 | Contulmo | 213011.2 | 2017 | 1284670805 |
158 | 08205 | 32288 | Curanilahue | 262911.9 | 2017 | 8488900056 |
159 | 08206 | 21035 | Los Álamos | 230097.8 | 2017 | 4840107033 |
160 | 08207 | 10417 | Tirúa | 221347.3 | 2017 | 2305775206 |
161 | 08301 | 202331 | Los Ángeles | 298724.4 | 2017 | 60441208918 |
162 | 08302 | 4073 | Antuco | 191980.2 | 2017 | 781935233 |
163 | 08303 | 28573 | Cabrero | 225166.5 | 2017 | 6433682620 |
164 | 08304 | 22389 | Laja | 224428.0 | 2017 | 5024717382 |
165 | 08305 | 29627 | Mulchén | 246376.9 | 2017 | 7299407611 |
166 | 08306 | 26315 | Nacimiento | 292529.0 | 2017 | 7697899431 |
167 | 08307 | 9737 | Negrete | 196781.4 | 2017 | 1916060576 |
168 | 08308 | 3988 | Quilaco | 196761.0 | 2017 | 784682868 |
169 | 08309 | 9587 | Quilleco | 201931.6 | 2017 | 1935917806 |
170 | 08310 | 3412 | San Rosendo | 206738.0 | 2017 | 705390056 |
171 | 08311 | 13773 | Santa Bárbara | 250849.5 | 2017 | 3454949584 |
172 | 08312 | 14134 | Tucapel | 214733.9 | 2017 | 3035048397 |
173 | 08313 | 21198 | Yumbel | 221417.8 | 2017 | 4693613938 |
174 | 08314 | 5923 | Alto Biobío | 251792.7 | 2017 | 1491367928 |
175 | 09101 | 282415 | Temuco | 294512.7 | 2017 | 83174794799 |
176 | 09102 | 24533 | Carahue | 237416.7 | 2017 | 5824543339 |
177 | 09103 | 17526 | Cunco | 247099.1 | 2017 | 4330659433 |
178 | 09104 | 7489 | Curarrehue | 204180.7 | 2017 | 1529109215 |
179 | 09105 | 24606 | Freire | 305541.7 | 2017 | 7518158340 |
180 | 09106 | 11996 | Galvarino | 244269.6 | 2017 | 2930258102 |
181 | 09107 | 14414 | Gorbea | 254627.9 | 2017 | 3670206245 |
182 | 09108 | 38013 | Lautaro | 296417.7 | 2017 | 11267725602 |
183 | 09109 | 23612 | Loncoche | 213841.9 | 2017 | 5049235445 |
184 | 09110 | 6138 | Melipeuco | 211980.8 | 2017 | 1301137941 |
185 | 09111 | 32510 | Nueva Imperial | 242015.9 | 2017 | 7867935676 |
186 | 09112 | 76126 | Padre Las Casas | 278372.7 | 2017 | 21191399108 |
187 | 09113 | 6905 | Perquenco | 260596.6 | 2017 | 1799419624 |
188 | 09114 | 24837 | Pitrufquén | 249811.8 | 2017 | 6204576082 |
189 | 09115 | 28523 | Pucón | 260967.9 | 2017 | 7443587942 |
190 | 09116 | 12450 | Saavedra | 229431.4 | 2017 | 2856420491 |
191 | 09117 | 15045 | Teodoro Schmidt | 224680.1 | 2017 | 3380311968 |
192 | 09118 | 9722 | Toltén | 219705.4 | 2017 | 2135976054 |
193 | 09119 | 28151 | Vilcún | 172649.0 | 2017 | 4860243131 |
194 | 09120 | 55478 | Villarrica | 246047.7 | 2017 | 13650235814 |
195 | 09121 | 11611 | Cholchol | 253226.0 | 2017 | 2940207311 |
196 | 09201 | 53262 | Angol | 268414.6 | 2017 | 14296297282 |
197 | 09202 | 24598 | Collipulli | 247911.8 | 2017 | 6098134776 |
198 | 09203 | 17413 | Curacautín | 234574.3 | 2017 | 4084643011 |
199 | 09204 | 7733 | Ercilla | 268071.3 | 2017 | 2072995481 |
200 | 09205 | 10251 | Lonquimay | 250560.5 | 2017 | 2568496128 |
201 | 09206 | 7265 | Los Sauces | 212950.7 | 2017 | 1547086780 |
202 | 09207 | 9548 | Lumaco | 282522.6 | 2017 | 2697526159 |
203 | 09208 | 11779 | Purén | 234139.4 | 2017 | 2757928013 |
204 | 09209 | 10250 | Renaico | 266020.9 | 2017 | 2726714090 |
205 | 09210 | 18843 | Traiguén | 258102.0 | 2017 | 4863416659 |
206 | 09211 | 34182 | Victoria | 225959.9 | 2017 | 7723760970 |
207 | 10101 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 |
208 | 10102 | 33985 | Calbuco | 280878.2 | 2017 | 9545646863 |
210 | 10104 | 12261 | Fresia | 223666.2 | 2017 | 2742371891 |
211 | 10105 | 18428 | Frutillar | 281543.9 | 2017 | 5188291726 |
212 | 10106 | 17068 | Los Muermos | 233220.1 | 2017 | 3980600731 |
213 | 10107 | 17591 | Llanquihue | 251391.8 | 2017 | 4422233283 |
214 | 10108 | 14216 | Maullín | 269082.7 | 2017 | 3825279050 |
215 | 10109 | 44578 | Puerto Varas | 312276.5 | 2017 | 13920663786 |
216 | 10201 | 43807 | Castro | 349368.8 | 2017 | 15304799118 |
217 | 10202 | 38991 | Ancud | 229798.1 | 2017 | 8960055930 |
218 | 10203 | 14858 | Chonchi | 239577.2 | 2017 | 3559637517 |
220 | 10205 | 13762 | Dalcahue | 325358.2 | 2017 | 4477578923 |
222 | 10207 | 5385 | Queilén | 183406.6 | 2017 | 987644627 |
223 | 10208 | 27192 | Quellón | 241965.8 | 2017 | 6579532876 |
224 | 10209 | 8352 | Quemchi | 308051.3 | 2017 | 2572844097 |
225 | 10210 | 8088 | Quinchao | 370474.4 | 2017 | 2996397098 |
226 | 10301 | 161460 | Osorno | 271587.3 | 2017 | 43850482486 |
227 | 10302 | 8999 | Puerto Octay | 262148.9 | 2017 | 2359078294 |
228 | 10303 | 20369 | Purranque | 302471.6 | 2017 | 6161043438 |
229 | 10304 | 11667 | Puyehue | 230541.3 | 2017 | 2689725003 |
230 | 10305 | 14085 | Río Negro | 276657.1 | 2017 | 3896715111 |
231 | 10306 | 7512 | San Juan de la Costa | 222910.5 | 2017 | 1674503801 |
232 | 10307 | 10030 | San Pablo | 195712.4 | 2017 | 1962995435 |
237 | 11101 | 57818 | Coyhaique | 327100.3 | 2017 | 18912283227 |
239 | 11201 | 23959 | Aysén | 307831.4 | 2017 | 7375332218 |
240 | 11202 | 6517 | Cisnes | 251971.0 | 2017 | 1642095149 |
242 | 11301 | 3490 | Cochrane | 350724.8 | 2017 | 1224029692 |
245 | 11401 | 4865 | Chile Chico | 333445.3 | 2017 | 1622211456 |
247 | 12101 | 131592 | Punta Arenas | 391758.4 | 2017 | 51552266922 |
253 | 12301 | 6801 | Porvenir | 446255.2 | 2017 | 3034981682 |
256 | 12401 | 21477 | Natales | 336808.6 | 2017 | 7233637635 |
258 | 13101 | 404495 | Santiago | 450851.7 | 2017 | 182367246208 |
259 | 13102 | 80832 | Cerrillos | 276766.5 | 2017 | 22371586546 |
260 | 13103 | 132622 | Cerro Navia | 270634.1 | 2017 | 35892031153 |
261 | 13104 | 126955 | Conchalí | 310325.3 | 2017 | 39397353402 |
262 | 13105 | 162505 | El Bosque | 281653.9 | 2017 | 45770170398 |
263 | 13106 | 147041 | Estación Central | 340680.2 | 2017 | 50093952387 |
264 | 13107 | 98671 | Huechuraba | 315250.1 | 2017 | 31106038806 |
265 | 13108 | 100281 | Independencia | 376152.6 | 2017 | 37720956327 |
266 | 13109 | 90119 | La Cisterna | 367262.4 | 2017 | 33097323323 |
267 | 13110 | 366916 | La Florida | 349483.5 | 2017 | 128231071590 |
268 | 13111 | 116571 | La Granja | 306768.3 | 2017 | 35760286668 |
269 | 13112 | 177335 | La Pintana | 232647.0 | 2017 | 41256447003 |
270 | 13113 | 92787 | La Reina | 434408.5 | 2017 | 40307459856 |
271 | 13114 | 294838 | Las Condes | 456515.7 | 2017 | 134598169599 |
272 | 13115 | 105833 | Lo Barnechea | 349308.7 | 2017 | 36968385127 |
273 | 13116 | 98804 | Lo Espejo | 264154.1 | 2017 | 26099479542 |
274 | 13117 | 96249 | Lo Prado | 305431.2 | 2017 | 29397444939 |
275 | 13118 | 116534 | Macul | 345701.4 | 2017 | 40285970358 |
276 | 13119 | 521627 | Maipú | 358559.2 | 2017 | 187034167391 |
277 | 13120 | 208237 | Ñuñoa | 426460.1 | 2017 | 88804766896 |
278 | 13121 | 101174 | Pedro Aguirre Cerda | 316863.2 | 2017 | 32058321741 |
279 | 13122 | 241599 | Peñalolén | 321570.6 | 2017 | 77691132095 |
280 | 13123 | 142079 | Providencia | 516122.3 | 2017 | 73330144381 |
281 | 13124 | 230293 | Pudahuel | 320572.7 | 2017 | 73825647438 |
282 | 13125 | 210410 | Quilicura | 383485.8 | 2017 | 80689241762 |
283 | 13126 | 110026 | Quinta Normal | 311731.1 | 2017 | 34298531093 |
284 | 13127 | 157851 | Recoleta | 344997.0 | 2017 | 54458123369 |
285 | 13128 | 147151 | Renca | 294000.5 | 2017 | 43262464632 |
286 | 13129 | 94492 | San Joaquín | 336046.8 | 2017 | 31753732439 |
287 | 13130 | 107954 | San Miguel | 351632.1 | 2017 | 37960091353 |
288 | 13131 | 82900 | San Ramón | 281439.6 | 2017 | 23331343432 |
289 | 13132 | 85384 | Vitacura | 496933.1 | 2017 | 42430139879 |
290 | 13201 | 568106 | Puente Alto | 328342.7 | 2017 | 186533464474 |
291 | 13202 | 26521 | Pirque | 332454.5 | 2017 | 8817024774 |
292 | 13203 | 18189 | San José de Maipo | 381218.4 | 2017 | 6933981276 |
293 | 13301 | 146207 | Colina | 300609.0 | 2017 | 43951136523 |
294 | 13302 | 102034 | Lampa | 372624.0 | 2017 | 38020316317 |
295 | 13303 | 19312 | Tiltil | 327523.1 | 2017 | 6325126322 |
296 | 13401 | 301313 | San Bernardo | 286991.8 | 2017 | 86474375157 |
297 | 13402 | 96614 | Buin | 314979.3 | 2017 | 30431412042 |
298 | 13403 | 25392 | Calera de Tango | 307306.5 | 2017 | 7803125477 |
299 | 13404 | 72759 | Paine | 330137.7 | 2017 | 24020488982 |
300 | 13501 | 123627 | Melipilla | 291641.9 | 2017 | 36054817558 |
301 | 13502 | 6444 | Alhué | 349434.5 | 2017 | 2251756129 |
302 | 13503 | 32579 | Curacaví | 269095.1 | 2017 | 8766848005 |
303 | 13504 | 13590 | María Pinto | 253962.5 | 2017 | 3451350898 |
305 | 13601 | 74237 | Talagante | 394670.6 | 2017 | 29299162746 |
306 | 13602 | 35923 | El Monte | 297691.7 | 2017 | 10693979408 |
307 | 13603 | 36219 | Isla de Maipo | 229284.1 | 2017 | 8304441408 |
308 | 13604 | 63250 | Padre Hurtado | 277563.2 | 2017 | 17555873230 |
309 | 13605 | 90201 | Peñaflor | 351564.7 | 2017 | 31711490484 |
310 | 14101 | 166080 | Valdivia | 308754.5 | 2017 | 51277944139 |
311 | 14102 | 5302 | Corral | 222523.9 | 2017 | 1179821617 |
312 | 14103 | 16752 | Lanco | 267286.0 | 2017 | 4477574931 |
313 | 14104 | 19634 | Los Lagos | 211843.1 | 2017 | 4159328181 |
314 | 14105 | 7095 | Máfil | 315022.1 | 2017 | 2235081533 |
315 | 14106 | 21278 | Mariquina | 251064.3 | 2017 | 5342147079 |
316 | 14107 | 20188 | Paillaco | 223306.5 | 2017 | 4508111622 |
317 | 14108 | 34539 | Panguipulli | 287752.5 | 2017 | 9938682028 |
318 | 14201 | 38036 | La Unión | 247291.7 | 2017 | 9405987850 |
319 | 14202 | 14665 | Futrono | 247331.7 | 2017 | 3627119212 |
320 | 14203 | 9896 | Lago Ranco | 247154.2 | 2017 | 2445838259 |
321 | 14204 | 31372 | Río Bueno | 267934.4 | 2017 | 8405637271 |
322 | 15101 | 221364 | Arica | 310013.3 | 2017 | 68625788545 |
324 | 15201 | 2765 | Putre | 283661.5 | 2017 | 784324030 |
326 | 16101 | 184739 | Chillán | 275879.2 | 2017 | 50965643906 |
327 | 16102 | 21493 | Bulnes | 224694.9 | 2017 | 4829367278 |
328 | 16103 | 30907 | Chillán Viejo | 259577.5 | 2017 | 8022762560 |
329 | 16104 | 12044 | El Carmen | 215566.5 | 2017 | 2596282563 |
330 | 16105 | 8448 | Pemuco | 262037.4 | 2017 | 2213691761 |
331 | 16106 | 10827 | Pinto | 175602.5 | 2017 | 1901248804 |
332 | 16107 | 17485 | Quillón | 256072.4 | 2017 | 4477425886 |
333 | 16108 | 16079 | San Ignacio | 203331.5 | 2017 | 3269367252 |
334 | 16109 | 17787 | Yungay | 258601.1 | 2017 | 4599738091 |
335 | 16201 | 11594 | Quirihue | 252923.7 | 2017 | 2932397811 |
336 | 16202 | 5012 | Cobquecura | 259487.2 | 2017 | 1300549630 |
337 | 16203 | 15995 | Coelemu | 296882.1 | 2017 | 4748629723 |
338 | 16204 | 5213 | Ninhue | 301493.8 | 2017 | 1571687052 |
339 | 16205 | 4862 | Portezuelo | 196869.9 | 2017 | 957181342 |
340 | 16206 | 5755 | Ránquil | 286762.9 | 2017 | 1650320432 |
341 | 16207 | 5401 | Treguaco | 218702.4 | 2017 | 1181211462 |
342 | 16301 | 53024 | San Carlos | 252551.6 | 2017 | 13391296803 |
343 | 16302 | 26881 | Coihueco | 213580.4 | 2017 | 5741254097 |
344 | 16303 | 11152 | Ñiquén | 236681.5 | 2017 | 2639471976 |
345 | 16304 | 4308 | San Fabián | 259592.5 | 2017 | 1118324609 |
346 | 16305 | 11603 | San Nicolás | 266207.1 | 2017 | 3088800683 |
7.1.1 Promedio
<- tabla_de_trabajo %>%
t_de_c group_by(código.y) %>%
summarize(mean = mean(ing_medio_zona, na.rm = TRUE))
names(t_de_c)[1] <- "código"
<- merge( x = ingresos, y = t_de_c, by = "código", all.x = TRUE) estadisticos_finales
7.1.2 Desviación standard
<- tabla_de_trabajo %>%
t_de_c_2 group_by(código.y) %>%
summarize(sd = sd(ing_medio_zona, na.rm = TRUE))
names(t_de_c_2)[1] <- "código"
<- merge( x = estadisticos_finales, y = t_de_c_2, by = "código", all.x = TRUE) estadisticos_finales
7.1.3 Mínimo
<- tabla_de_trabajo %>%
t_de_c_3 group_by(código.y) %>%
summarize(min = min(ing_medio_zona, na.rm = TRUE))
names(t_de_c_3)[1] <- "código"
<- merge( x = estadisticos_finales, y = t_de_c_3, by = "código", all.x = TRUE) estadisticos_finales
7.1.4 Máximo
<- tabla_de_trabajo %>%
t_de_c_4 group_by(código.y) %>%
summarize(max = max(ing_medio_zona, na.rm = TRUE))
names(t_de_c_4)[1] <- "código"
<- merge( x = estadisticos_finales, y = t_de_c_4, by = "código", all.x = TRUE) estadisticos_finales
7.1.5 Mediana
<- tabla_de_trabajo %>%
t_de_c_5 group_by(código.y) %>%
summarize(median = median(ing_medio_zona, na.rm = TRUE))
names(t_de_c_5)[1] <- "código"
<- merge( x = estadisticos_finales, y = t_de_c_5, by = "código", all.x = TRUE)
estadisticos_finales kbl(estadisticos_finales) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | personas | comuna | promedio_i | año | ingresos_expandidos | mean | sd | min | max | median |
---|---|---|---|---|---|---|---|---|---|---|
01101 | 191468 | Iquique | 375676.9 | 2017 | 71930106513 | 336932.5 | 30379.201 | 287239.14 | 404791.9 | 330193.5 |
01107 | 108375 | Alto Hospicio | 311571.7 | 2017 | 33766585496 | 287355.9 | 13224.968 | 268365.43 | 325896.6 | 284302.9 |
01401 | 15711 | Pozo Almonte | 316138.5 | 2017 | 4966851883 | 404223.4 | 217202.815 | 260413.30 | 654078.0 | 298178.9 |
01405 | 9296 | Pica | 330061.1 | 2017 | 3068247619 | 305865.5 | 19913.032 | 291784.88 | 319946.2 | 305865.5 |
02101 | 361873 | Antofagasta | 368221.4 | 2017 | 133249367039 | 316433.3 | 35863.939 | 263943.86 | 459458.1 | 306122.7 |
02102 | 13467 | Mejillones | 369770.7 | 2017 | 4979702302 | 439311.2 | 72542.396 | 377530.10 | 519188.7 | 421214.7 |
02104 | 13317 | Taltal | 383666.2 | 2017 | 5109282942 | 324585.5 | 39014.970 | 289770.48 | 379173.0 | 314699.3 |
02201 | 165731 | Calama | 434325.1 | 2017 | 71981127235 | 312175.4 | 47419.462 | 244061.27 | 553019.5 | 304505.4 |
02203 | 10996 | San Pedro de Atacama | 442861.0 | 2017 | 4869699464 | 377684.1 | 25754.958 | 359472.63 | 395895.6 | 377684.1 |
02301 | 25186 | Tocopilla | 286187.2 | 2017 | 7207910819 | 282459.8 | 67548.694 | 231307.27 | 476934.1 | 255506.8 |
02302 | 6457 | María Elena | 477748.0 | 2017 | 3084818966 | 364409.8 | 23849.594 | 344634.52 | 390895.8 | 357699.0 |
03101 | 153937 | Copiapó | 343121.0 | 2017 | 52819016037 | 294190.3 | 32048.528 | 246016.17 | 396376.8 | 287619.5 |
03102 | 17662 | Caldera | 318653.2 | 2017 | 5628052276 | 333036.6 | 38246.203 | 297260.93 | 396426.7 | 324567.0 |
03103 | 14019 | Tierra Amarilla | 333194.9 | 2017 | 4671058718 | 278189.4 | 92142.116 | 226469.17 | 415905.0 | 235191.7 |
03201 | 12219 | Chañaral | 286389.3 | 2017 | 3499391196 | 256025.0 | 67923.871 | 118767.14 | 324874.6 | 270558.5 |
03202 | 13925 | Diego de Almagro | 351583.9 | 2017 | 4895805596 | 315058.6 | 54526.666 | 250393.26 | 401415.5 | 303361.4 |
03301 | 51917 | Vallenar | 315981.5 | 2017 | 16404810756 | 278400.9 | 39223.506 | 234014.36 | 343600.5 | 259078.4 |
03303 | 7041 | Freirina | 289049.9 | 2017 | 2035200054 | 390884.2 | 234843.652 | 241720.41 | 661588.9 | 269343.2 |
03304 | 10149 | Huasco | 337414.8 | 2017 | 3424422750 | 311636.7 | 40859.835 | 272211.41 | 379345.8 | 298448.7 |
04101 | 221054 | La Serena | 279340.1 | 2017 | 61749247282 | 282492.2 | 23765.052 | 240651.67 | 386556.6 | 280354.4 |
04102 | 227730 | Coquimbo | 269078.6 | 2017 | 61277269093 | 286925.6 | 20722.703 | 246807.05 | 338325.4 | 286053.3 |
04103 | 11044 | Andacollo | 258539.7 | 2017 | 2855312920 | 256551.7 | 4914.570 | 252752.69 | 262102.1 | 254800.4 |
04104 | 4241 | La Higuera | 214257.0 | 2017 | 908664019 | 231254.3 | 16320.050 | 219714.33 | 242794.4 | 231254.3 |
04106 | 27771 | Vicuña | 254177.0 | 2017 | 7058750373 | 287777.1 | 43439.033 | 257521.05 | 382890.6 | 267819.2 |
04201 | 30848 | Illapel | 282139.3 | 2017 | 8703433491 | 287112.2 | 33893.073 | 257095.70 | 354536.2 | 274326.4 |
04202 | 9093 | Canela | 233397.3 | 2017 | 2122281844 | 234142.4 | 76111.371 | 180323.54 | 287961.3 | 234142.4 |
04203 | 21382 | Los Vilos | 285214.0 | 2017 | 6098444926 | 338040.5 | 46966.082 | 297974.03 | 438023.5 | 335335.6 |
04204 | 29347 | Salamanca | 262056.9 | 2017 | 7690585032 | 304302.8 | 41409.818 | 242849.26 | 369610.5 | 297046.3 |
04301 | 111272 | Ovalle | 280373.5 | 2017 | 31197719080 | 284137.0 | 50989.002 | 60175.86 | 365477.2 | 289736.0 |
04302 | 13322 | Combarbalá | 234537.3 | 2017 | 3124505460 | 297031.7 | 21921.280 | 273496.12 | 316867.9 | 300731.2 |
04303 | 30751 | Monte Patria | 225369.1 | 2017 | 6930326684 | 261347.9 | 25270.346 | 217361.36 | 285252.9 | 272774.5 |
04304 | 10956 | Punitaqui | 212496.1 | 2017 | 2328107498 | 258995.4 | 30208.768 | 237724.16 | 293573.1 | 245689.1 |
05101 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 302170.4 | 29821.003 | 223199.50 | 454453.1 | 299214.3 |
05102 | 26867 | Casablanca | 348088.6 | 2017 | 9352095757 | 316917.2 | 37785.292 | 255893.67 | 386685.6 | 317050.8 |
05103 | 42152 | Concón | 333932.4 | 2017 | 14075920021 | 319879.6 | 19339.641 | 291740.62 | 352321.0 | 318512.7 |
05105 | 18546 | Puchuncaví | 296035.5 | 2017 | 5490274928 | 288714.5 | 39644.175 | 193093.04 | 346074.8 | 290227.1 |
05107 | 31923 | Quintero | 308224.7 | 2017 | 9839456903 | 286112.8 | 56974.301 | 215054.40 | 415282.0 | 286169.9 |
05109 | 334248 | Viña del Mar | 354715.9 | 2017 | 118563074323 | 309752.7 | 18252.407 | 246149.66 | 350475.0 | 310744.3 |
05301 | 66708 | Los Andes | 355446.2 | 2017 | 23711104774 | 304312.8 | 37640.068 | 251789.51 | 429650.3 | 297699.8 |
05302 | 14832 | Calle Larga | 246387.3 | 2017 | 3654416747 | 294230.3 | 27888.188 | 256819.97 | 351556.8 | 292327.0 |
05303 | 10207 | Rinconada | 279807.9 | 2017 | 2855998928 | 293129.1 | 31863.591 | 238687.95 | 328933.7 | 303490.3 |
05304 | 18855 | San Esteban | 219571.6 | 2017 | 4140022481 | 288947.8 | 13727.706 | 270468.84 | 306305.7 | 285014.7 |
05401 | 35390 | La Ligua | 259482.3 | 2017 | 9183080280 | 297433.4 | 43734.939 | 176938.32 | 331647.7 | 301720.1 |
05402 | 19388 | Cabildo | 262745.9 | 2017 | 5094117762 | 261878.3 | 18676.693 | 235561.61 | 277375.5 | 272934.0 |
05403 | 6356 | Papudo | 302317.1 | 2017 | 1921527704 | 317023.7 | 14650.982 | 301038.98 | 333094.3 | 324556.0 |
05404 | 9826 | Petorca | 237510.8 | 2017 | 2333781007 | 284712.6 | 19680.635 | 261620.74 | 307904.3 | 284662.7 |
05405 | 7339 | Zapallar | 294389.2 | 2017 | 2160521991 | 298253.3 | 72726.232 | 169667.34 | 372978.5 | 316239.6 |
05501 | 90517 | Quillota | 288694.2 | 2017 | 26131733924 | 305119.2 | 40928.375 | 249307.49 | 486283.7 | 298560.2 |
05502 | 50554 | Calera | 282823.6 | 2017 | 14297866792 | 283973.5 | 47275.393 | 196272.23 | 445860.2 | 274964.1 |
05503 | 17988 | Hijuelas | 268449.7 | 2017 | 4828872604 | 279500.9 | 48213.452 | 193335.31 | 303046.0 | 300817.4 |
05504 | 22098 | La Cruz | 335544.3 | 2017 | 7414857001 | 296860.8 | 20533.257 | 267715.43 | 319231.5 | 303582.6 |
05506 | 22120 | Nogales | 259917.8 | 2017 | 5749381300 | 258843.6 | 14645.694 | 239429.03 | 279399.2 | 262879.2 |
05601 | 91350 | San Antonio | 246603.6 | 2017 | 22527241144 | 311419.1 | 27907.777 | 281031.53 | 399154.5 | 307300.9 |
05602 | 13817 | Algarrobo | 390710.4 | 2017 | 5398446270 | 281941.1 | 32275.299 | 233374.16 | 337725.1 | 285617.5 |
05603 | 22738 | Cartagena | 244949.4 | 2017 | 5569658994 | 265487.4 | 27402.143 | 213297.44 | 305831.0 | 263935.1 |
05604 | 15955 | El Quisco | 270498.2 | 2017 | 4315799297 | 267425.0 | 25467.544 | 217506.89 | 306418.1 | 265788.3 |
05605 | 13286 | El Tabo | 287271.0 | 2017 | 3816682340 | 259243.4 | 31856.527 | 218161.27 | 314666.9 | 259479.4 |
05606 | 10900 | Santo Domingo | 404470.9 | 2017 | 4408732520 | 290626.6 | 41616.420 | 215082.33 | 341685.7 | 297339.8 |
05701 | 76844 | San Felipe | 302021.4 | 2017 | 23208536043 | 308061.5 | 34133.274 | 231134.24 | 402113.0 | 310686.5 |
05702 | 13998 | Catemu | 233238.3 | 2017 | 3264869972 | 310834.7 | 30287.536 | 291104.21 | 345707.3 | 295692.6 |
05703 | 24608 | Llaillay | 295663.4 | 2017 | 7275684301 | 295956.0 | 28310.994 | 235338.01 | 324628.9 | 298428.4 |
05704 | 7273 | Panquehue | 328043.3 | 2017 | 2385858928 | 302700.9 | 19562.426 | 283022.01 | 322144.7 | 302936.0 |
05705 | 16754 | Putaendo | 309628.4 | 2017 | 5187514898 | 313331.4 | 43810.674 | 275807.13 | 361475.9 | 302711.2 |
05706 | 15241 | Santa María | 256403.4 | 2017 | 3907844674 | 306559.3 | 28421.152 | 258033.41 | 345899.7 | 311837.8 |
05801 | 151708 | Quilpué | 344393.1 | 2017 | 52247193426 | 298298.2 | 15249.379 | 266063.91 | 342110.7 | 296250.4 |
05802 | 46121 | Limache | 307380.7 | 2017 | 14176705125 | 294288.0 | 13121.522 | 276725.39 | 326649.6 | 292740.7 |
05803 | 17516 | Olmué | 293997.6 | 2017 | 5149662271 | 290245.3 | 14171.915 | 275867.51 | 313625.7 | 287083.0 |
05804 | 126548 | Villa Alemana | 361923.3 | 2017 | 45800670899 | 296526.2 | 19609.725 | 265056.98 | 373987.3 | 298298.3 |
06101 | 241774 | Rancagua | 318384.5 | 2017 | 76977097284 | 302505.4 | 29222.661 | 230727.50 | 406352.3 | 301332.2 |
06102 | 12988 | Codegua | 289405.7 | 2017 | 3758801352 | 311046.2 | 25781.799 | 283822.85 | 334113.2 | 313124.5 |
06103 | 7359 | Coinco | 224485.0 | 2017 | 1651985453 | 292125.0 | 52176.270 | 252617.84 | 368960.3 | 273460.9 |
06104 | 19597 | Coltauco | 278925.9 | 2017 | 5466110795 | 274798.2 | 26559.579 | 212445.07 | 303606.9 | 280331.6 |
06105 | 20887 | Doñihue | 306532.0 | 2017 | 6402533884 | 271845.8 | 58023.565 | 156650.00 | 308908.9 | 292993.3 |
06106 | 33437 | Graneros | 311834.8 | 2017 | 10426820415 | 304668.8 | 14883.148 | 278913.20 | 325275.2 | 309697.3 |
06107 | 24640 | Las Cabras | 279810.6 | 2017 | 6894533314 | 298699.7 | 18073.359 | 279212.37 | 319548.1 | 303554.9 |
06108 | 52505 | Machalí | 316199.2 | 2017 | 16602037093 | 304567.5 | 23841.121 | 262517.44 | 363900.1 | 302208.4 |
06109 | 13407 | Malloa | 213596.6 | 2017 | 2863689033 | 259140.0 | 76554.414 | 145001.48 | 306744.3 | 292407.2 |
06110 | 25343 | Mostazal | 291701.8 | 2017 | 7392597596 | 298661.2 | 11969.901 | 277518.52 | 312387.7 | 299063.8 |
06111 | 13608 | Olivar | 297914.9 | 2017 | 4054025678 | 297071.2 | 34660.679 | 243198.09 | 328487.8 | 309688.0 |
06112 | 14313 | Peumo | 248687.4 | 2017 | 3559462966 | 308154.5 | 19584.660 | 269962.31 | 330122.4 | 310233.3 |
06113 | 19714 | Pichidegua | 234187.0 | 2017 | 4616762518 | 310757.2 | 61025.584 | 240137.15 | 389205.1 | 306843.2 |
06114 | 13002 | Quinta de Tilcoco | 210835.7 | 2017 | 2741286093 | 315599.1 | 15572.896 | 294126.65 | 329766.0 | 319251.9 |
06115 | 58825 | Rengo | 293650.2 | 2017 | 17273974762 | 298321.6 | 34594.690 | 199197.56 | 334776.3 | 304436.9 |
06116 | 27968 | Requínoa | 288865.3 | 2017 | 8078983811 | 318634.5 | 21560.582 | 285249.50 | 357518.7 | 319399.3 |
06117 | 46766 | San Vicente | 285655.7 | 2017 | 13358975033 | 298777.1 | 24280.672 | 262261.97 | 342153.5 | 296366.8 |
06201 | 16394 | Pichilemu | 344227.1 | 2017 | 5643258336 | 303759.3 | 34211.726 | 223166.43 | 333618.2 | 313136.8 |
06202 | 3041 | La Estrella | 293280.7 | 2017 | 891866686 | 236400.4 | 129257.528 | 145001.48 | 327799.2 | 236400.4 |
06203 | 6294 | Litueche | 298955.7 | 2017 | 1881627117 | 319277.5 | 16913.720 | 300830.21 | 334055.1 | 322947.2 |
06204 | 7308 | Marchihue | 336379.3 | 2017 | 2458260033 | 313662.5 | 11317.603 | 305659.79 | 321665.3 | 313662.5 |
06205 | 6641 | Navidad | 236383.5 | 2017 | 1569822543 | NA | NA | NA | NA | NA |
06206 | 6188 | Paredones | 238518.3 | 2017 | 1475951353 | 439597.5 | 198567.556 | 299188.99 | 580005.9 | 439597.5 |
06301 | 73973 | San Fernando | 324998.7 | 2017 | 24041131495 | 310093.9 | 19446.932 | 259200.72 | 339240.2 | 310731.8 |
06302 | 15037 | Chépica | 245508.7 | 2017 | 3691714537 | 270656.8 | 20386.617 | 246573.61 | 296155.3 | 269949.2 |
06303 | 35399 | Chimbarongo | 260706.7 | 2017 | 9228754903 | 296635.3 | 35327.054 | 203947.27 | 340681.3 | 305670.1 |
06304 | 6811 | Lolol | 236668.2 | 2017 | 1611947197 | 307398.5 | 11823.738 | 299037.87 | 315759.2 | 307398.5 |
06305 | 17833 | Nancagua | 245992.6 | 2017 | 4386786331 | 278648.0 | 54436.525 | 197945.23 | 317207.3 | 299719.8 |
06306 | 12482 | Palmilla | 246745.0 | 2017 | 3079870843 | 319520.0 | 39939.360 | 287619.11 | 364313.2 | 306627.8 |
06307 | 11007 | Peralillo | 265630.7 | 2017 | 2923796850 | 288996.9 | 14793.731 | 276770.36 | 309491.9 | 284862.6 |
06308 | 8738 | Placilla | 240573.8 | 2017 | 2102134220 | 319928.5 | 26713.853 | 301038.98 | 338818.1 | 319928.5 |
06310 | 37855 | Santa Cruz | 300976.4 | 2017 | 11393463346 | 326091.3 | 21246.123 | 288548.29 | 355406.5 | 327814.1 |
07101 | 220357 | Talca | 307377.4 | 2017 | 67732753814 | 296681.1 | 29808.239 | 185058.02 | 376683.5 | 295195.6 |
07102 | 46068 | Constitución | 280736.9 | 2017 | 12932986800 | 311162.9 | 28491.828 | 257524.87 | 359735.7 | 304458.3 |
07103 | 9448 | Curepto | 281855.5 | 2017 | 2662971120 | 282559.7 | 20798.632 | 267852.84 | 297266.5 | 282559.7 |
07104 | 4142 | Empedrado | 209235.2 | 2017 | 866652110 | 315700.4 | 85134.346 | 226360.87 | 395890.5 | 324850.0 |
07105 | 49721 | Maule | 245019.7 | 2017 | 12182624190 | 301160.4 | 26170.230 | 264664.99 | 348925.2 | 296372.3 |
07106 | 8422 | Pelarco | 216777.5 | 2017 | 1825700105 | 332375.8 | 40829.732 | 303504.82 | 361246.8 | 332375.8 |
07107 | 8245 | Pencahue | 233692.6 | 2017 | 1926795579 | 295650.8 | 50463.574 | 237534.28 | 328373.4 | 321044.6 |
07108 | 13906 | Río Claro | 224864.2 | 2017 | 3126961590 | 292710.2 | 41555.961 | 263325.69 | 322094.7 | 292710.2 |
07109 | 43269 | San Clemente | 247003.5 | 2017 | 10687595452 | 277295.5 | 64529.235 | 231214.90 | 445505.2 | 256072.2 |
07110 | 9191 | San Rafael | 249688.5 | 2017 | 2294886656 | 333009.1 | 70543.216 | 283127.48 | 382890.6 | 333009.1 |
07201 | 40441 | Cauquenes | 235303.7 | 2017 | 9515918892 | 273011.3 | 23874.033 | 240565.51 | 334929.9 | 270848.7 |
07202 | 8928 | Chanco | 250327.3 | 2017 | 2234922252 | 266348.0 | 35105.386 | 229502.69 | 299406.4 | 270135.0 |
07203 | 7571 | Pelluhue | 202735.2 | 2017 | 1534908448 | 261387.9 | 21799.268 | 239664.05 | 292407.1 | 252895.9 |
07301 | 149136 | Curicó | 282406.9 | 2017 | 42117028333 | 323388.3 | 22314.394 | 276793.86 | 363944.1 | 325424.3 |
07302 | 9657 | Hualañé | 303280.6 | 2017 | 2928781043 | 251434.9 | 56793.080 | 193335.31 | 306824.4 | 254144.9 |
07303 | 6653 | Licantén | 261799.2 | 2017 | 1741750148 | 318432.3 | 13919.583 | 308589.67 | 328274.9 | 318432.3 |
07304 | 45976 | Molina | 261223.2 | 2017 | 12009998195 | 303505.4 | 25884.602 | 235574.33 | 337106.4 | 311008.9 |
07305 | 10484 | Rauco | 271406.8 | 2017 | 2845428741 | 311255.5 | 31088.888 | 276438.36 | 336236.7 | 321091.3 |
07306 | 15187 | Romeral | 269017.0 | 2017 | 4085560646 | 305806.0 | 49584.771 | 248578.00 | 335957.4 | 332882.7 |
07307 | 18544 | Sagrada Familia | 248654.3 | 2017 | 4611045339 | 310147.7 | 22190.858 | 280594.84 | 342794.9 | 307258.6 |
07308 | 28921 | Teno | 262087.1 | 2017 | 7579820261 | 315374.3 | 40599.780 | 263294.74 | 370095.0 | 313983.9 |
07309 | 4322 | Vichuquén | 218281.8 | 2017 | 943414066 | 307408.4 | 44044.239 | 276264.45 | 338552.4 | 307408.4 |
07401 | 93602 | Linares | 270205.2 | 2017 | 25291751487 | 294027.2 | 30360.299 | 233518.83 | 356071.2 | 287440.6 |
07402 | 20765 | Colbún | 200983.0 | 2017 | 4173410967 | 260833.6 | 29441.815 | 238510.59 | 311657.1 | 254990.2 |
07403 | 30534 | Longaví | 216067.2 | 2017 | 6597394825 | 265474.8 | 30319.178 | 212443.15 | 289587.0 | 275304.9 |
07404 | 41637 | Parral | 266374.6 | 2017 | 11091040324 | 271569.3 | 32754.481 | 208329.98 | 321470.1 | 281437.3 |
07405 | 19974 | Retiro | 225715.0 | 2017 | 4508431050 | 260096.9 | 32629.221 | 216885.53 | 308130.4 | 260514.9 |
07406 | 45547 | San Javier | 278559.1 | 2017 | 12687530322 | 270224.2 | 21537.570 | 222956.86 | 308774.0 | 272893.0 |
07407 | 16221 | Villa Alegre | 262111.0 | 2017 | 4251702731 | 275395.3 | 20507.708 | 242334.41 | 295291.6 | 282334.0 |
07408 | 18081 | Yerbas Buenas | 244050.7 | 2017 | 4412680158 | 255841.5 | 17672.506 | 220424.31 | 276940.4 | 261476.9 |
08101 | 223574 | Concepción | 323059.6 | 2017 | 72227728923 | 304706.7 | 24280.608 | 237800.37 | 359079.5 | 301343.6 |
08102 | 116262 | Coronel | 277633.4 | 2017 | 32278209118 | 255142.1 | 21087.205 | 192736.11 | 303229.2 | 255764.7 |
08103 | 85938 | Chiguayante | 298370.0 | 2017 | 25641323296 | 298400.0 | 21465.971 | 268121.45 | 362236.9 | 295060.4 |
08104 | 10624 | Florida | 232450.3 | 2017 | 2469551785 | 282105.3 | 13842.886 | 266190.56 | 291353.2 | 288772.2 |
08105 | 24333 | Hualqui | 232273.3 | 2017 | 5651905803 | 268758.5 | 31410.240 | 197304.90 | 308130.4 | 278481.2 |
08106 | 43535 | Lota | 283449.0 | 2017 | 12339953990 | 261008.2 | 14826.101 | 247039.11 | 293702.7 | 256135.6 |
08107 | 47367 | Penco | 265193.8 | 2017 | 12561435651 | 282732.5 | 15762.852 | 250714.58 | 311213.5 | 279650.5 |
08108 | 131808 | San Pedro de la Paz | 274394.0 | 2017 | 36167321662 | 304044.5 | 23113.144 | 274447.10 | 363569.7 | 297209.0 |
08109 | 13749 | Santa Juana | 260550.2 | 2017 | 3582304723 | 233738.5 | 63083.114 | 139385.02 | 271556.7 | 262006.0 |
08110 | 151749 | Talcahuano | 320279.6 | 2017 | 48602104064 | 281151.4 | 26912.372 | 244725.41 | 365267.3 | 274214.3 |
08111 | 54946 | Tomé | 275421.3 | 2017 | 15133299927 | 274032.6 | 32604.680 | 224141.68 | 386779.3 | 271361.1 |
08112 | 91773 | Hualpén | 287452.1 | 2017 | 26380344663 | 282873.9 | 24856.704 | 240261.33 | 342543.8 | 276264.2 |
08201 | 25522 | Lebu | 256023.5 | 2017 | 6534231082 | 268978.9 | 52003.704 | 183718.60 | 387751.9 | 262402.5 |
08202 | 36257 | Arauco | 316263.6 | 2017 | 11466769473 | 302319.5 | 98678.055 | 221779.72 | 556966.8 | 278180.1 |
08203 | 34537 | Cañete | 241126.1 | 2017 | 8327773342 | 279581.0 | 38531.385 | 230653.53 | 359337.1 | 278059.0 |
08204 | 6031 | Contulmo | 213011.2 | 2017 | 1284670805 | 305825.5 | NA | 305825.51 | 305825.5 | 305825.5 |
08205 | 32288 | Curanilahue | 262911.9 | 2017 | 8488900056 | 269708.5 | 17442.456 | 238540.76 | 310201.5 | 271317.2 |
08206 | 21035 | Los Álamos | 230097.8 | 2017 | 4840107033 | 233242.2 | 46129.593 | 145863.10 | 273307.8 | 247561.0 |
08207 | 10417 | Tirúa | 221347.3 | 2017 | 2305775206 | 292778.6 | 27804.612 | 264664.99 | 320263.6 | 293407.2 |
08301 | 202331 | Los Ángeles | 298724.4 | 2017 | 60441208918 | 292288.4 | 34521.202 | 197111.74 | 347528.7 | 296461.7 |
08302 | 4073 | Antuco | 191980.2 | 2017 | 781935233 | 288752.2 | 105618.684 | 214068.46 | 363435.8 | 288752.2 |
08303 | 28573 | Cabrero | 225166.5 | 2017 | 6433682620 | 271740.7 | 42501.269 | 239047.90 | 361475.9 | 262429.1 |
08304 | 22389 | Laja | 224428.0 | 2017 | 5024717382 | 223170.1 | 16917.557 | 197744.63 | 248866.4 | 219748.7 |
08305 | 29627 | Mulchén | 246376.9 | 2017 | 7299407611 | 267441.5 | 24688.798 | 237209.22 | 319946.2 | 265765.5 |
08306 | 26315 | Nacimiento | 292529.0 | 2017 | 7697899431 | 249362.7 | 15612.947 | 228540.67 | 281547.7 | 248470.3 |
08307 | 9737 | Negrete | 196781.4 | 2017 | 1916060576 | 227345.8 | 26844.443 | 200692.65 | 254377.5 | 226967.3 |
08308 | 3988 | Quilaco | 196761.0 | 2017 | 784682868 | 229642.8 | 23115.771 | 213297.44 | 245988.1 | 229642.8 |
08309 | 9587 | Quilleco | 201931.6 | 2017 | 1935917806 | 214690.2 | 18954.032 | 187496.98 | 232574.8 | 223696.0 |
08310 | 3412 | San Rosendo | 206738.0 | 2017 | 705390056 | 242835.8 | 65661.181 | 196406.33 | 289265.3 | 242835.8 |
08311 | 13773 | Santa Bárbara | 250849.5 | 2017 | 3454949584 | 262803.9 | 6760.668 | 255125.24 | 267861.9 | 265424.6 |
08312 | 14134 | Tucapel | 214733.9 | 2017 | 3035048397 | 225121.6 | 35243.716 | 173712.92 | 254230.8 | 242007.5 |
08313 | 21198 | Yumbel | 221417.8 | 2017 | 4693613938 | 286828.1 | 66066.993 | 236904.48 | 383935.4 | 263236.2 |
08314 | 5923 | Alto Biobío | 251792.7 | 2017 | 1491367928 | NA | NA | NA | NA | NA |
09101 | 282415 | Temuco | 294512.7 | 2017 | 83174794799 | 308710.1 | 23826.178 | 256182.42 | 392002.1 | 305911.0 |
09102 | 24533 | Carahue | 237416.7 | 2017 | 5824543339 | 271817.4 | 45269.383 | 205353.31 | 326939.1 | 265185.8 |
09103 | 17526 | Cunco | 247099.1 | 2017 | 4330659433 | 246879.1 | 32647.802 | 196376.89 | 286226.0 | 252261.4 |
09104 | 7489 | Curarrehue | 204180.7 | 2017 | 1529109215 | 279439.1 | 14051.966 | 269502.85 | 289375.3 | 279439.1 |
09105 | 24606 | Freire | 305541.7 | 2017 | 7518158340 | 244377.9 | 36195.091 | 197331.75 | 282892.0 | 249473.3 |
09106 | 11996 | Galvarino | 244269.6 | 2017 | 2930258102 | 277023.4 | 3317.876 | 274677.35 | 279369.5 | 277023.4 |
09107 | 14414 | Gorbea | 254627.9 | 2017 | 3670206245 | 264719.8 | 21770.848 | 240729.64 | 301039.0 | 258426.6 |
09108 | 38013 | Lautaro | 296417.7 | 2017 | 11267725602 | 263508.8 | 16477.328 | 238296.28 | 286329.6 | 262106.3 |
09109 | 23612 | Loncoche | 213841.9 | 2017 | 5049235445 | 231962.4 | 52238.318 | 127730.02 | 268385.5 | 250823.0 |
09110 | 6138 | Melipeuco | 211980.8 | 2017 | 1301137941 | 240532.7 | 26372.155 | 221884.75 | 259180.6 | 240532.7 |
09111 | 32510 | Nueva Imperial | 242015.9 | 2017 | 7867935676 | 266922.6 | 9629.951 | 252000.13 | 279412.1 | 265894.3 |
09112 | 76126 | Padre Las Casas | 278372.7 | 2017 | 21191399108 | 296704.8 | 23112.436 | 249619.67 | 323243.2 | 304294.2 |
09113 | 6905 | Perquenco | 260596.6 | 2017 | 1799419624 | 276852.6 | NA | 276852.62 | 276852.6 | 276852.6 |
09114 | 24837 | Pitrufquén | 249811.8 | 2017 | 6204576082 | 291183.7 | 37712.428 | 268192.51 | 374994.0 | 277846.5 |
09115 | 28523 | Pucón | 260967.9 | 2017 | 7443587942 | 331611.6 | 15114.724 | 311504.77 | 356659.8 | 333006.6 |
09116 | 12450 | Saavedra | 229431.4 | 2017 | 2856420491 | 328228.1 | 39709.865 | 300148.97 | 356307.2 | 328228.1 |
09117 | 15045 | Teodoro Schmidt | 224680.1 | 2017 | 3380311968 | 253110.7 | 33071.156 | 217564.95 | 282969.8 | 258797.2 |
09118 | 9722 | Toltén | 219705.4 | 2017 | 2135976054 | 237150.7 | 81972.499 | 145001.48 | 301957.1 | 264493.6 |
09119 | 28151 | Vilcún | 172649.0 | 2017 | 4860243131 | 257646.6 | 55421.187 | 164932.88 | 324386.1 | 273609.4 |
09120 | 55478 | Villarrica | 246047.7 | 2017 | 13650235814 | 295286.4 | 22024.568 | 249715.94 | 336408.4 | 296086.8 |
09121 | 11611 | Cholchol | 253226.0 | 2017 | 2940207311 | 222869.7 | 40881.066 | 193962.40 | 251777.0 | 222869.7 |
09201 | 53262 | Angol | 268414.6 | 2017 | 14296297282 | 292721.6 | 33538.577 | 247142.56 | 382781.6 | 288640.5 |
09202 | 24598 | Collipulli | 247911.8 | 2017 | 6098134776 | 258173.4 | 38974.350 | 182540.44 | 317749.3 | 263913.0 |
09203 | 17413 | Curacautín | 234574.3 | 2017 | 4084643011 | 264813.7 | 28466.715 | 236680.12 | 325581.3 | 258773.1 |
09204 | 7733 | Ercilla | 268071.3 | 2017 | 2072995481 | 275932.3 | 26020.139 | 254056.67 | 304706.6 | 269033.6 |
09205 | 10251 | Lonquimay | 250560.5 | 2017 | 2568496128 | 340170.6 | 2697.560 | 338263.11 | 342078.0 | 340170.6 |
09206 | 7265 | Los Sauces | 212950.7 | 2017 | 1547086780 | 260090.1 | 17697.999 | 241220.44 | 276319.9 | 262730.1 |
09207 | 9548 | Lumaco | 282522.6 | 2017 | 2697526159 | 272360.7 | 11893.621 | 260738.15 | 284508.0 | 271835.8 |
09208 | 11779 | Purén | 234139.4 | 2017 | 2757928013 | 263556.4 | 16656.076 | 244648.34 | 283008.9 | 263284.2 |
09209 | 10250 | Renaico | 266020.9 | 2017 | 2726714090 | 268081.4 | 6138.245 | 261222.13 | 276142.0 | 267480.8 |
09210 | 18843 | Traiguén | 258102.0 | 2017 | 4863416659 | 268281.0 | 28770.246 | 232797.16 | 312085.3 | 262524.6 |
09211 | 34182 | Victoria | 225959.9 | 2017 | 7723760970 | 281172.8 | 21014.455 | 257461.71 | 329429.4 | 274785.3 |
10101 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 323364.6 | 28086.643 | 249516.29 | 396117.3 | 321851.1 |
10102 | 33985 | Calbuco | 280878.2 | 2017 | 9545646863 | 321814.7 | 25450.243 | 298037.65 | 363555.3 | 313217.4 |
10104 | 12261 | Fresia | 223666.2 | 2017 | 2742371891 | 398454.9 | 176764.671 | 284437.03 | 602078.0 | 308849.8 |
10105 | 18428 | Frutillar | 281543.9 | 2017 | 5188291726 | 315542.6 | 8642.835 | 307541.29 | 328151.6 | 315088.3 |
10106 | 17068 | Los Muermos | 233220.1 | 2017 | 3980600731 | 302064.2 | 8353.115 | 295965.22 | 311584.9 | 298642.5 |
10107 | 17591 | Llanquihue | 251391.8 | 2017 | 4422233283 | 305281.5 | 17405.265 | 280364.25 | 327286.6 | 304222.3 |
10108 | 14216 | Maullín | 269082.7 | 2017 | 3825279050 | 370115.0 | 101003.272 | 304184.47 | 486396.2 | 319764.5 |
10109 | 44578 | Puerto Varas | 312276.5 | 2017 | 13920663786 | 337050.7 | 39691.333 | 235338.01 | 375616.8 | 350660.4 |
10201 | 43807 | Castro | 349368.8 | 2017 | 15304799118 | 338599.5 | 16940.464 | 315366.44 | 372754.0 | 333221.7 |
10202 | 38991 | Ancud | 229798.1 | 2017 | 8960055930 | 305819.6 | 12074.189 | 288410.21 | 322404.1 | 306227.4 |
10203 | 14858 | Chonchi | 239577.2 | 2017 | 3559637517 | 305133.2 | 31157.332 | 271120.24 | 332294.4 | 311985.1 |
10205 | 13762 | Dalcahue | 325358.2 | 2017 | 4477578923 | 304228.8 | 27458.783 | 277898.24 | 332691.5 | 302096.6 |
10207 | 5385 | Queilén | 183406.6 | 2017 | 987644627 | 358690.7 | 68565.088 | 310207.88 | 407173.6 | 358690.7 |
10208 | 27192 | Quellón | 241965.8 | 2017 | 6579532876 | 342364.3 | 33297.418 | 305011.78 | 404593.8 | 336631.7 |
10209 | 8352 | Quemchi | 308051.3 | 2017 | 2572844097 | 299840.9 | 44066.592 | 248996.95 | 327004.0 | 323521.8 |
10210 | 8088 | Quinchao | 370474.4 | 2017 | 2996397098 | 252208.4 | 92111.925 | 187075.46 | 317341.4 | 252208.4 |
10301 | 161460 | Osorno | 271587.3 | 2017 | 43850482486 | 313715.1 | 28778.147 | 256448.63 | 384550.8 | 308858.3 |
10302 | 8999 | Puerto Octay | 262148.9 | 2017 | 2359078294 | 295721.6 | 1691.740 | 294525.37 | 296917.8 | 295721.6 |
10303 | 20369 | Purranque | 302471.6 | 2017 | 6161043438 | 293065.9 | 47462.524 | 251391.30 | 374994.0 | 278899.5 |
10304 | 11667 | Puyehue | 230541.3 | 2017 | 2689725003 | 252340.2 | 20938.767 | 237534.28 | 267146.2 | 252340.2 |
10305 | 14085 | Río Negro | 276657.1 | 2017 | 3896715111 | 241486.7 | 38071.388 | 197945.23 | 268504.9 | 258009.9 |
10306 | 7512 | San Juan de la Costa | 222910.5 | 2017 | 1674503801 | 270543.7 | 24552.991 | 253182.10 | 287905.3 | 270543.7 |
10307 | 10030 | San Pablo | 195712.4 | 2017 | 1962995435 | 338456.3 | 102530.029 | 265956.66 | 410956.0 | 338456.3 |
11101 | 57818 | Coyhaique | 327100.3 | 2017 | 18912283227 | 344164.9 | 31644.111 | 235625.01 | 382396.3 | 350366.5 |
11201 | 23959 | Aysén | 307831.4 | 2017 | 7375332218 | 330385.2 | 52412.484 | 285693.90 | 463767.6 | 315327.0 |
11202 | 6517 | Cisnes | 251971.0 | 2017 | 1642095149 | 350240.3 | 16273.355 | 331482.51 | 360583.6 | 358654.9 |
11301 | 3490 | Cochrane | 350724.8 | 2017 | 1224029692 | 446971.1 | 120164.252 | 362002.10 | 531940.0 | 446971.1 |
11401 | 4865 | Chile Chico | 333445.3 | 2017 | 1622211456 | 353728.5 | 21739.468 | 338356.42 | 369100.7 | 353728.5 |
12101 | 131592 | Punta Arenas | 391758.4 | 2017 | 51552266922 | 351715.6 | 29319.890 | 316522.57 | 454638.0 | 345815.2 |
12301 | 6801 | Porvenir | 446255.2 | 2017 | 3034981682 | 400454.3 | 46627.544 | 346616.30 | 427850.5 | 426896.2 |
12401 | 21477 | Natales | 336808.6 | 2017 | 7233637635 | 338499.5 | 16960.265 | 322327.29 | 378820.0 | 334401.1 |
13101 | 404495 | Santiago | 450851.7 | 2017 | 182367246208 | 449866.5 | 48044.908 | 186563.20 | 539749.7 | 457340.8 |
13102 | 80832 | Cerrillos | 276766.5 | 2017 | 22371586546 | 326585.5 | 33485.911 | 270387.80 | 445898.9 | 322334.0 |
13103 | 132622 | Cerro Navia | 270634.1 | 2017 | 35892031153 | 322225.9 | 15491.767 | 278407.85 | 350253.6 | 324465.0 |
13104 | 126955 | Conchalí | 310325.3 | 2017 | 39397353402 | 325736.1 | 21227.453 | 266948.14 | 377656.1 | 319640.7 |
13105 | 162505 | El Bosque | 281653.9 | 2017 | 45770170398 | 322706.8 | 30311.115 | 295869.56 | 473272.2 | 317115.1 |
13106 | 147041 | Estación Central | 340680.2 | 2017 | 50093952387 | 360896.4 | 48210.583 | 294110.94 | 486934.1 | 346694.5 |
13107 | 98671 | Huechuraba | 315250.1 | 2017 | 31106038806 | 326688.6 | 27135.610 | 293575.63 | 410986.3 | 326591.7 |
13108 | 100281 | Independencia | 376152.6 | 2017 | 37720956327 | 380517.1 | 47287.575 | 318221.11 | 461557.2 | 363354.1 |
13109 | 90119 | La Cisterna | 367262.4 | 2017 | 33097323323 | 341778.4 | 17404.565 | 306765.53 | 372871.2 | 341576.6 |
13110 | 366916 | La Florida | 349483.5 | 2017 | 128231071590 | 338536.6 | 22019.622 | 285825.98 | 419345.1 | 336157.8 |
13111 | 116571 | La Granja | 306768.3 | 2017 | 35760286668 | 325307.0 | 15902.594 | 293356.18 | 354980.9 | 322067.6 |
13112 | 177335 | La Pintana | 232647.0 | 2017 | 41256447003 | 310929.5 | 30350.628 | 274264.69 | 497993.9 | 307816.6 |
13113 | 92787 | La Reina | 434408.5 | 2017 | 40307459856 | 346490.1 | 17858.449 | 294344.48 | 370921.6 | 349123.2 |
13114 | 294838 | Las Condes | 456515.7 | 2017 | 134598169599 | 369219.5 | 34154.121 | 318516.24 | 465128.3 | 359172.4 |
13115 | 105833 | Lo Barnechea | 349308.7 | 2017 | 36968385127 | 338198.3 | 31429.650 | 274239.57 | 384041.1 | 333753.9 |
13116 | 98804 | Lo Espejo | 264154.1 | 2017 | 26099479542 | 317033.7 | 13429.289 | 277571.24 | 347440.3 | 318145.2 |
13117 | 96249 | Lo Prado | 305431.2 | 2017 | 29397444939 | 329136.6 | 18551.833 | 288457.90 | 371364.6 | 327782.4 |
13118 | 116534 | Macul | 345701.4 | 2017 | 40285970358 | 354762.8 | 28906.123 | 304728.16 | 428018.3 | 353438.6 |
13119 | 521627 | Maipú | 358559.2 | 2017 | 187034167391 | 338313.3 | 19739.727 | 278211.79 | 399801.5 | 337559.1 |
13120 | 208237 | Ñuñoa | 426460.1 | 2017 | 88804766896 | 382296.2 | 33494.320 | 321678.15 | 482868.2 | 381940.3 |
13121 | 101174 | Pedro Aguirre Cerda | 316863.2 | 2017 | 32058321741 | 324390.9 | 20962.540 | 302241.91 | 417524.2 | 320184.8 |
13122 | 241599 | Peñalolén | 321570.6 | 2017 | 77691132095 | 343077.6 | 10961.811 | 316772.22 | 370749.9 | 341958.5 |
13123 | 142079 | Providencia | 516122.3 | 2017 | 73330144381 | 404163.7 | 31229.699 | 312085.27 | 469965.8 | 405631.0 |
13124 | 230293 | Pudahuel | 320572.7 | 2017 | 73825647438 | 338317.7 | 23697.537 | 296685.70 | 443868.7 | 332280.2 |
13125 | 210410 | Quilicura | 383485.8 | 2017 | 80689241762 | 343614.8 | 15489.944 | 290963.05 | 387614.3 | 345575.2 |
13126 | 110026 | Quinta Normal | 311731.1 | 2017 | 34298531093 | 351328.6 | 27540.147 | 310842.91 | 414589.6 | 344132.6 |
13127 | 157851 | Recoleta | 344997.0 | 2017 | 54458123369 | 355525.8 | 42516.727 | 305234.41 | 466310.1 | 343686.2 |
13128 | 147151 | Renca | 294000.5 | 2017 | 43262464632 | 319351.3 | 21827.160 | 215843.76 | 346588.9 | 320042.2 |
13129 | 94492 | San Joaquín | 336046.8 | 2017 | 31753732439 | 333476.6 | 20043.038 | 290326.48 | 393890.5 | 329416.2 |
13130 | 107954 | San Miguel | 351632.1 | 2017 | 37960091353 | 373225.6 | 27993.488 | 333056.20 | 418872.6 | 368890.8 |
13131 | 82900 | San Ramón | 281439.6 | 2017 | 23331343432 | 317741.0 | 14379.749 | 291856.72 | 340498.4 | 317786.2 |
13132 | 85384 | Vitacura | 496933.1 | 2017 | 42430139879 | 348352.3 | 39278.438 | 200553.47 | 428169.9 | 343005.1 |
13201 | 568106 | Puente Alto | 328342.7 | 2017 | 186533464474 | 331967.8 | 23287.400 | 235096.48 | 391765.6 | 333630.7 |
13202 | 26521 | Pirque | 332454.5 | 2017 | 8817024774 | 319421.3 | 19097.655 | 287383.75 | 335058.2 | 322241.2 |
13203 | 18189 | San José de Maipo | 381218.4 | 2017 | 6933981276 | 341712.2 | 35893.783 | 301038.93 | 404396.9 | 338323.1 |
13301 | 146207 | Colina | 300609.0 | 2017 | 43951136523 | 328631.3 | 44844.048 | 229455.56 | 557074.4 | 325596.5 |
13302 | 102034 | Lampa | 372624.0 | 2017 | 38020316317 | 323021.2 | 21785.177 | 261243.52 | 356023.3 | 319512.8 |
13303 | 19312 | Tiltil | 327523.1 | 2017 | 6325126322 | 299915.5 | 35848.414 | 235625.01 | 338575.8 | 309964.8 |
13401 | 301313 | San Bernardo | 286991.8 | 2017 | 86474375157 | 315766.5 | 17429.906 | 258702.50 | 355232.6 | 315609.1 |
13402 | 96614 | Buin | 314979.3 | 2017 | 30431412042 | 324513.3 | 21418.931 | 281347.83 | 359271.9 | 326639.1 |
13403 | 25392 | Calera de Tango | 307306.5 | 2017 | 7803125477 | 314434.4 | 53650.922 | 227120.85 | 401900.0 | 322844.9 |
13404 | 72759 | Paine | 330137.7 | 2017 | 24020488982 | 304899.8 | 20133.016 | 250241.34 | 332860.5 | 310346.7 |
13501 | 123627 | Melipilla | 291641.9 | 2017 | 36054817558 | 309278.7 | 25404.201 | 265030.59 | 369025.7 | 302818.4 |
13502 | 6444 | Alhué | 349434.5 | 2017 | 2251756129 | 370601.5 | 26873.212 | 351599.25 | 389603.7 | 370601.5 |
13503 | 32579 | Curacaví | 269095.1 | 2017 | 8766848005 | 312443.8 | 24525.290 | 271852.77 | 353645.9 | 314881.7 |
13504 | 13590 | María Pinto | 253962.5 | 2017 | 3451350898 | 320531.4 | 85161.401 | 268060.08 | 511355.4 | 286529.9 |
13601 | 74237 | Talagante | 394670.6 | 2017 | 29299162746 | 323131.9 | 20250.441 | 287674.11 | 357121.5 | 323626.4 |
13602 | 35923 | El Monte | 297691.7 | 2017 | 10693979408 | 302912.3 | 10426.084 | 288437.51 | 317574.4 | 303760.4 |
13603 | 36219 | Isla de Maipo | 229284.1 | 2017 | 8304441408 | 310069.7 | 13965.619 | 290623.19 | 328947.2 | 314928.8 |
13604 | 63250 | Padre Hurtado | 277563.2 | 2017 | 17555873230 | 323746.2 | 12757.391 | 302505.03 | 348225.4 | 324311.9 |
13605 | 90201 | Peñaflor | 351564.7 | 2017 | 31711490484 | 312376.1 | 20152.546 | 274104.59 | 360451.0 | 313182.8 |
14101 | 166080 | Valdivia | 308754.5 | 2017 | 51277944139 | 311790.9 | 20956.836 | 249305.39 | 350028.1 | 308155.6 |
14102 | 5302 | Corral | 222523.9 | 2017 | 1179821617 | 399361.9 | 174417.656 | 276030.01 | 522693.8 | 399361.9 |
14103 | 16752 | Lanco | 267286.0 | 2017 | 4477574931 | 248623.2 | 57856.754 | 147944.17 | 289039.0 | 268007.0 |
14104 | 19634 | Los Lagos | 211843.1 | 2017 | 4159328181 | 271844.6 | 20518.954 | 246995.55 | 292332.9 | 274025.0 |
14105 | 7095 | Máfil | 315022.1 | 2017 | 2235081533 | 210894.0 | 93186.083 | 145001.48 | 276786.5 | 210894.0 |
14106 | 21278 | Mariquina | 251064.3 | 2017 | 5342147079 | 259513.9 | 33008.610 | 215505.01 | 288890.4 | 266830.0 |
14107 | 20188 | Paillaco | 223306.5 | 2017 | 4508111622 | 266112.6 | 31361.995 | 227044.90 | 302017.0 | 267311.8 |
14108 | 34539 | Panguipulli | 287752.5 | 2017 | 9938682028 | 287862.1 | 26250.737 | 254583.42 | 325654.3 | 283641.8 |
14201 | 38036 | La Unión | 247291.7 | 2017 | 9405987850 | 279750.5 | 26979.607 | 247373.38 | 331829.3 | 273467.2 |
14202 | 14665 | Futrono | 247331.7 | 2017 | 3627119212 | 259492.4 | 25393.802 | 228476.13 | 286755.0 | 264665.0 |
14203 | 9896 | Lago Ranco | 247154.2 | 2017 | 2445838259 | 314247.5 | 63095.994 | 269631.89 | 358863.1 | 314247.5 |
14204 | 31372 | Río Bueno | 267934.4 | 2017 | 8405637271 | 261457.9 | 39567.878 | 175272.12 | 286877.0 | 279645.8 |
15101 | 221364 | Arica | 310013.3 | 2017 | 68625788545 | 300491.6 | 32272.782 | 263247.39 | 428284.2 | 290446.1 |
15201 | 2765 | Putre | 283661.5 | 2017 | 784324030 | 522557.6 | 126349.015 | 433215.36 | 611899.8 | 522557.6 |
16101 | 184739 | Chillán | 275879.2 | 2017 | 50965643906 | 283378.1 | 27637.463 | 222319.63 | 351037.5 | 282598.4 |
16102 | 21493 | Bulnes | 224694.9 | 2017 | 4829367278 | 258513.5 | 18998.990 | 226784.25 | 282851.4 | 260395.6 |
16103 | 30907 | Chillán Viejo | 259577.5 | 2017 | 8022762560 | 281428.8 | 23519.323 | 243606.44 | 309425.4 | 282296.6 |
16104 | 12044 | El Carmen | 215566.5 | 2017 | 2596282563 | 182974.6 | 95206.507 | 96667.65 | 285099.4 | 167156.8 |
16105 | 8448 | Pemuco | 262037.4 | 2017 | 2213691761 | 181438.1 | 71309.826 | 82857.99 | 243166.8 | 199863.9 |
16106 | 10827 | Pinto | 175602.5 | 2017 | 1901248804 | 271411.0 | 27974.535 | 236331.16 | 301417.3 | 272930.1 |
16107 | 17485 | Quillón | 256072.4 | 2017 | 4477425886 | 247251.0 | 20687.393 | 217122.66 | 277124.0 | 248488.0 |
16108 | 16079 | San Ignacio | 203331.5 | 2017 | 3269367252 | 252640.5 | 25609.994 | 231322.35 | 300954.4 | 246470.5 |
16109 | 17787 | Yungay | 258601.1 | 2017 | 4599738091 | 254386.4 | 27699.622 | 215753.18 | 291767.6 | 255205.0 |
16201 | 11594 | Quirihue | 252923.7 | 2017 | 2932397811 | 258915.4 | 38454.372 | 192976.35 | 313262.7 | 263059.9 |
16202 | 5012 | Cobquecura | 259487.2 | 2017 | 1300549630 | 331339.9 | 42618.719 | 301203.92 | 361475.9 | 331339.9 |
16203 | 15995 | Coelemu | 296882.1 | 2017 | 4748629723 | 265510.5 | 41168.591 | 206202.67 | 321605.7 | 268033.2 |
16204 | 5213 | Ninhue | 301493.8 | 2017 | 1571687052 | 234292.3 | 25429.411 | 216310.95 | 252273.6 | 234292.3 |
16205 | 4862 | Portezuelo | 196869.9 | 2017 | 957181342 | 274960.2 | 21273.655 | 259917.47 | 290003.0 | 274960.2 |
16206 | 5755 | Ránquil | 286762.9 | 2017 | 1650320432 | 167473.5 | 119664.426 | 82857.99 | 252089.0 | 167473.5 |
16207 | 5401 | Treguaco | 218702.4 | 2017 | 1181211462 | 253494.6 | NA | 253494.65 | 253494.6 | 253494.6 |
16301 | 53024 | San Carlos | 252551.6 | 2017 | 13391296803 | 273382.9 | 17517.541 | 243470.90 | 297822.8 | 274743.2 |
16302 | 26881 | Coihueco | 213580.4 | 2017 | 5741254097 | 248093.5 | 27317.634 | 200692.65 | 270026.2 | 255380.5 |
16303 | 11152 | Ñiquén | 236681.5 | 2017 | 2639471976 | 221285.6 | NA | 221285.58 | 221285.6 | 221285.6 |
16304 | 4308 | San Fabián | 259592.5 | 2017 | 1118324609 | 255083.0 | 8170.730 | 249305.39 | 260860.5 | 255083.0 |
16305 | 11603 | San Nicolás | 266207.1 | 2017 | 3088800683 | 268453.6 | 8724.779 | 262284.24 | 274622.9 | 268453.6 |
write_xlsx(estadisticos_finales, "estadisticos_finales.xlsx")
write.dbf(estadisticos_finales, "estadisticos_finales.dbf")