date: 02-08-2021
1 Resumen
Iniciaremos expandiendo los ingresos promedios (multiplicación del ingreso promedio mensual comunal y los habitantes de la misma comuna) obtenidos de la CASEN 2017 sobre la categoría de respuesta: “Trabajó por un pago o especie” del campo P17 del CENSO de personas del 2017, que fue la categoría de respuesta que más alto correlacionó con los ingresos expandidos, ambos a nivel comunal y ambos a nivel URBANO.
Seguiremos con un análisis sobre todas las zonas Chile comenzando en éste artículo a nivel urbano. En un segundo artículo haremos la publicación a nivel rural.
Como una tercera parte, y ya construída nuestra tabla de trabajo, haremos el análisis por región. Ensayaremos diferentes modelos dentro del análisis de regresión cuya variable independiente será: “frecuencia de población que posee la variable Censal respecto a la zona” y la dependiente: “ingreso expandido por zona por proporción de población zonal respecto al total comunal (multipob)”. Lo anterior para elegir el que posea el mayor coeficiente de determinación y así construir una tabla de valores predichos (estimación del ingreso e ingreso estimado por zona).
1.1 Variable CENSO
Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “Trabajó por un pago o especie” del campo P17 del Censo de personas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver aquí).
1.1.1 Lectura de la tabla censal de personas
Leemos la tabla Censo 2017 de personas que ya tiene integrada la clave zonal:
tabla_con_clave <-
readRDS("../../../ds_correlaciones_censo_casen/corre_censo_casen_2017/censos_con_clave/censo_personas_con_clave_17")
abc <- head(tabla_con_clave,50)
kbl(abc) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")| REGION | PROVINCIA | COMUNA | DC | AREA | ZC_LOC | ID_ZONA_LOC | NVIV | NHOGAR | PERSONAN | P07 | P08 | P09 | P10 | P10COMUNA | P10PAIS | P11 | P11COMUNA | P11PAIS | P12 | P12COMUNA | P12PAIS | P12A_LLEGADA | P12A_TRAMO | P13 | P14 | P15 | P15A | P16 | P16A | P16A_OTRO | P17 | P18 | P19 | P20 | P21M | P21A | P10PAIS_GRUPO | P11PAIS_GRUPO | P12PAIS_GRUPO | ESCOLARIDAD | P16A_GRUPO | REGION_15R | PROVINCIA_15R | COMUNA_15R | P10COMUNA_15R | P11COMUNA_15R | P12COMUNA_15R | clave |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 1 | 1 | 1 | 1 | 1 | 73 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 6 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 1 | 1 | 1 | 78 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 2 | 2 | 2 | 78 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 1 | 1 | 3 | 1965 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 3 | 5 | 2 | 52 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 2 | 1 | 4 | 1995 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 4 | 11 | 1 | 44 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 3 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 1 | 1 | 1 | 39 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 2 | 2 | 2 | 35 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 2 | 2 | 11 | 2004 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 3 | 5 | 1 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 4 | 5 | 1 | 12 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 6 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 10 | 1 | 1 | 1 | 2 | 65 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 9 | 1992 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 1 | 1 | 1 | 50 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 2 | 4 | 2 | 43 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 3 | 2002 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 3 | 5 | 1 | 15 | 3 | 15201 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 1 | 7 | 2 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 15201 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 1 | 1 | 1 | 75 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 2 | 16 | 2 | 58 | 4 | 98 | 68 | 6 | 98 | 998 | 5 | 98 | 998 | 9999 | 1 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 4 | 4 | 99 | 9999 | 68 | 68 | 68 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 3 | 2 | 2 | 70 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 5 | 4 | 99 | 9999 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 1 | 1 | 2 | 43 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | I | 3 | 3 | 9 | 2008 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 2 | 4 | 1 | 55 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 3 | 5 | 2 | 13 | 2 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 4 | 5 | 1 | 8 | 2 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 5 | 15 | 2 | 29 | 2 | 98 | 998 | 4 | 98 | 998 | 3 | 98 | 998 | 2015 | 1 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 5 | 5 | 11 | 2014 | 998 | 604 | 604 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 6 | 15 | 1 | 4 | 2 | 98 | 998 | 1 | 98 | 998 | 5 | 98 | 998 | 2015 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 7 | 15 | 2 | 2 | 2 | 98 | 998 | 1 | 98 | 998 | 3 | 98 | 998 | 2015 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 8 | 15 | 1 | 16 | 2 | 98 | 998 | 6 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 68 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 18 | 1 | 1 | 1 | 2 | 74 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 12 | 1976 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 19 | 1 | 1 | 1 | 1 | 68 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 1 | 1 | 1 | 74 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 2 | 2 | 2 | 65 | 1 | 98 | 998 | 3 | 997 | 998 | 3 | 98 | 998 | 9999 | 2 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 9 | 1982 | 998 | 998 | 604 | 2 | 2 | 15 | 152 | 15202 | 98 | 997 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 1 | 1 | 2 | 76 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 6 | 98 | 8 | 6 | 3 | 1981 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 2 | 5 | 2 | 36 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | A | 0 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 1 | 1 | 2 | 31 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 1 | A | 2 | 2 | 4 | 2008 | 998 | 998 | 68 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 2 | 4 | 1 | 35 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 1 | F | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 3 | 5 | 1 | 11 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 1 | 5 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 4 | 5 | 1 | 8 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 5 | 15 | 2 | 74 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 6 | 6 | 99 | 9999 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 1 | 1 | 1 | 41 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 2 | 2 | 2 | 47 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | A | 2 | 1 | 4 | 1996 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 3 | 14 | 1 | 88 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 4 | 14 | 1 | 65 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 1 | 1 | 2 | 59 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 8 | 8 | 2 | 1998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 2 | 2 | 1 | 56 | 1 | 98 | 998 | 99 | 99 | 999 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 999 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 99 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 3 | 5 | 2 | 36 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 7 | 2010 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 4 | 12 | 2 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 5 | 12 | 2 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 6 | 5 | 1 | 24 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 7 | 11 | 2 | 24 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 1 | N | 2 | 2 | 11 | 2015 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 8 | 12 | 1 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 9 | 12 | 2 | 1 | 1 | 98 | 998 | 1 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 38 | 1 | 1 | 1 | 1 | 19 | 1 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 1 | 8 | 2 | 1 | 2 | 98 | 1 | A | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012006 |
| 15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 1 | 1 | 1 | 21 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 7 | 2 | 1 | 2 | 98 | 1 | F | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
Cuantas personas hay en Chile?
length(tabla_con_clave$clave)## [1] 17574003
Cuántas zonas hay en Chile?
length(unique(tabla_con_clave$clave))## [1] 15500
1.1.2 Filtro a nivel urbano:
tabla_con_clave_u <- filter(tabla_con_clave, tabla_con_clave$AREA ==1)Cuantas personas hay en Chile urbanas?
length(tabla_con_clave_u$clave)## [1] 15424263
Cuantas zonas hay en el nivel urbano?
length(unique(tabla_con_clave_u$clave))## [1] 5169
1.1.3 Cálculo de respuestas censales
Obtenemos las respuestas a la pregunta P17 por zona eliminando los campos innecesarios. Despleguemos los primeros 1000 registros:
tabla_con_clave_f <- tabla_con_clave_u[,-c(1,2,4:31,33:48),drop=F]
abc <- head(tabla_con_clave_f,1000)
kbl(abc) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")| COMUNA | P17 | clave |
|---|---|---|
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 3 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 99 | 15201011001 |
| 15201 | 99 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 3 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 3 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 4 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 99 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 4 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 4 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 4 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 3 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 4 | 15201011001 |
| 15201 | 99 | 15201011001 |
| 15201 | 99 | 15201011001 |
| 15201 | 99 | 15201011001 |
| 15201 | 99 | 15201011001 |
| 15201 | 99 | 15201011001 |
| 15201 | 99 | 15201011001 |
| 15201 | 99 | 15201011001 |
| 15201 | 99 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 4 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 99 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 99 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 3 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 4 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 4 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 99 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 99 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 2 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 99 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 99 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 2 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 4 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 4 | 15201011001 |
| 15201 | 99 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 2 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 99 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 99 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 3 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 99 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 3 | 15201011001 |
| 15201 | 3 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 4 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 99 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 3 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 3 | 15201011001 |
| 15201 | 3 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 4 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 3 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 3 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 3 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 4 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 4 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 99 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 2 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 2 | 15201011001 |
| 15201 | 2 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 4 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 2 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 3 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 4 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 2 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 4 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 2 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 2 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 3 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 3 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 3 | 15201011001 |
| 15201 | 3 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 2 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 2 | 15201011001 |
| 15201 | 3 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 2 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 98 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 7 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 2 | 15201011001 |
| 15201 | 3 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 4 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 4 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 4 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 4 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 4 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 4 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 2 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 4 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 4 | 15201011001 |
| 15201 | 2 | 15201011001 |
| 15201 | 3 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 3 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 5 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 8 | 15201011001 |
| 15201 | 6 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
| 15201 | 1 | 15201011001 |
nrow(tabla_con_clave_f)## [1] 15424263
Vemos que el número total de registros coincide con el total de personas urbanas.
Modifiquemos la tabla para poder trabajarla un poco mejor:
- Agregamos un cero a los códigos comunales de cuatro dígitos.
- Renombramos la columna clave por código.
codigos <- tabla_con_clave_f$COMUNA
rango <- seq(1:nrow(tabla_con_clave_f))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(tabla_con_clave_f,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE]
names(comuna_corr)[3] <- "código"
abc <- head(comuna_corr,50)
kbl(abc) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")| P17 | clave | código |
|---|---|---|
| 1 | 15201011001 | 15201 |
| 1 | 15201011001 | 15201 |
| 1 | 15201011001 | 15201 |
| 1 | 15201011001 | 15201 |
| 1 | 15201011001 | 15201 |
| 3 | 15201011001 | 15201 |
| 5 | 15201011001 | 15201 |
| 98 | 15201011001 | 15201 |
| 1 | 15201011001 | 15201 |
| 1 | 15201011001 | 15201 |
| 1 | 15201011001 | 15201 |
| 6 | 15201011001 | 15201 |
| 1 | 15201011001 | 15201 |
| 8 | 15201011001 | 15201 |
| 6 | 15201011001 | 15201 |
| 1 | 15201011001 | 15201 |
| 1 | 15201011001 | 15201 |
| 1 | 15201011001 | 15201 |
| 99 | 15201011001 | 15201 |
| 99 | 15201011001 | 15201 |
| 1 | 15201011001 | 15201 |
| 1 | 15201011001 | 15201 |
| 1 | 15201011001 | 15201 |
| 1 | 15201011001 | 15201 |
| 6 | 15201011001 | 15201 |
| 1 | 15201011001 | 15201 |
| 98 | 15201011001 | 15201 |
| 98 | 15201011001 | 15201 |
| 3 | 15201011001 | 15201 |
| 98 | 15201011001 | 15201 |
| 98 | 15201011001 | 15201 |
| 1 | 15201011001 | 15201 |
| 1 | 15201011001 | 15201 |
| 1 | 15201011001 | 15201 |
| 1 | 15201011001 | 15201 |
| 1 | 15201011001 | 15201 |
| 5 | 15201011001 | 15201 |
| 5 | 15201011001 | 15201 |
| 98 | 15201011001 | 15201 |
| 98 | 15201011001 | 15201 |
| 1 | 15201011001 | 15201 |
| 3 | 15201011001 | 15201 |
| 1 | 15201011001 | 15201 |
| 1 | 15201011001 | 15201 |
| 1 | 15201011001 | 15201 |
| 1 | 15201011001 | 15201 |
| 1 | 15201011001 | 15201 |
| 1 | 15201011001 | 15201 |
| 1 | 15201011001 | 15201 |
| 1 | 15201011001 | 15201 |
tabla_con_clave_f <- comuna_corr
Obtenemos la cuenta de las respuestas 1:
claves_con_1 <- filter(tabla_con_clave_f, tabla_con_clave_f$P17 == 1)
head(claves_con_1,10)## P17 clave código
## 1 1 15201011001 15201
## 2 1 15201011001 15201
## 3 1 15201011001 15201
## 4 1 15201011001 15201
## 5 1 15201011001 15201
## 6 1 15201011001 15201
## 7 1 15201011001 15201
## 8 1 15201011001 15201
## 9 1 15201011001 15201
## 10 1 15201011001 15201
1.1.3.1 Tabla de contingencia:
con4 <- xtabs(~P17+clave, data=claves_con_1)
con4 <- as.data.frame(con4)
abc <- head(con4,50)
kbl(abc) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")| P17 | clave | Freq |
|---|---|---|
| 1 | 10101011001 | 320 |
| 1 | 10101011002 | 1309 |
| 1 | 10101021001 | 1828 |
| 1 | 10101021002 | 581 |
| 1 | 10101021003 | 1050 |
| 1 | 10101021004 | 1457 |
| 1 | 10101021005 | 1165 |
| 1 | 10101031001 | 2012 |
| 1 | 10101031002 | 2166 |
| 1 | 10101031003 | 1663 |
| 1 | 10101031004 | 1172 |
| 1 | 10101031005 | 2657 |
| 1 | 10101031006 | 1233 |
| 1 | 10101031007 | 1038 |
| 1 | 10101031008 | 1616 |
| 1 | 10101031009 | 1995 |
| 1 | 10101031010 | 1531 |
| 1 | 10101031011 | 1232 |
| 1 | 10101031012 | 837 |
| 1 | 10101031013 | 1642 |
| 1 | 10101031014 | 1030 |
| 1 | 10101031015 | 873 |
| 1 | 10101031016 | 1285 |
| 1 | 10101031017 | 1457 |
| 1 | 10101041001 | 1843 |
| 1 | 10101041002 | 895 |
| 1 | 10101041003 | 2559 |
| 1 | 10101051001 | 1148 |
| 1 | 10101051002 | 814 |
| 1 | 10101051003 | 1329 |
| 1 | 10101051004 | 1712 |
| 1 | 10101061001 | 3383 |
| 1 | 10101061002 | 1254 |
| 1 | 10101061003 | 1559 |
| 1 | 10101061004 | 1184 |
| 1 | 10101061005 | 1216 |
| 1 | 10101061006 | 1991 |
| 1 | 10101061007 | 340 |
| 1 | 10101061008 | 1008 |
| 1 | 10101061009 | 68 |
| 1 | 10101061010 | 610 |
| 1 | 10101071001 | 909 |
| 1 | 10101071002 | 1583 |
| 1 | 10101071003 | 1915 |
| 1 | 10101071004 | 1419 |
| 1 | 10101071005 | 1186 |
| 1 | 10101071006 | 1741 |
| 1 | 10101071007 | 987 |
| 1 | 10101071008 | 2104 |
| 1 | 10101071009 | 1509 |
nrow(con4)## [1] 5165
No perdemos ni una zona a excepción de 4. Más adelante veremos porqué.
A la tabla de frecuencias por zona le añadimos el campo comunal:
trabajo_001 = merge( x = con4, y =claves_con_1, by = "clave", all.x = TRUE)
head(trabajo_001,10)## clave P17.x Freq P17.y código
## 1 10101011001 1 320 1 10101
## 2 10101011001 1 320 1 10101
## 3 10101011001 1 320 1 10101
## 4 10101011001 1 320 1 10101
## 5 10101011001 1 320 1 10101
## 6 10101011001 1 320 1 10101
## 7 10101011001 1 320 1 10101
## 8 10101011001 1 320 1 10101
## 9 10101011001 1 320 1 10101
## 10 10101011001 1 320 1 10101
Eliminamos los registros repetidos y renombramos COMUNA como código:
trabajo003 <- unique(trabajo_001)
trabajo003 <- trabajo003[,-c(2,4)]
# trabajo003$código <- as.numeric(trabajo003$código)
head(trabajo003,10)## clave Freq código
## 1 10101011001 320 10101
## 321 10101011002 1309 10101
## 1630 10101021001 1828 10101
## 3458 10101021002 581 10101
## 4039 10101021003 1050 10101
## 5089 10101021004 1457 10101
## 6546 10101021005 1165 10101
## 7711 10101031001 2012 10101
## 9723 10101031002 2166 10101
## 11889 10101031003 1663 10101
nrow(trabajo003)## [1] 5165
Calculamos los ingresos expandidos a nivel urbano:
x <- import("../../../../archivos_grandes/Microdato_Censo2017-Personas.csv")
casen_2017 <- readRDS(file = "../../../../archivos_grandes/casen_2017_c.rds")
casen_2017_u <- filter(casen_2017, casen_2017$zona == "Urbano")
casen_2017_u <- casen_2017_u[!is.na(casen_2017_u$ytotcor),]
Q <- quantile(casen_2017_u$ytotcor, probs=c(.25, .75), na.rm = FALSE)
iqr <- IQR(casen_2017_u$ytotcor)
casen_2017_sin_o <- subset(casen_2017_u, casen_2017_u$ytotcor >
(Q[1] - 1.5*iqr) &
casen_2017_u$ytotcor < (Q[2]+1.5*iqr))
casen_2017_sin_o <- data.frame(lapply(casen_2017_sin_o, as.character),
stringsAsFactors=FALSE)
b <- as.numeric(casen_2017_sin_o$ytotcor)
a <- casen_2017_sin_o$comuna
promedios_grupales <-aggregate(b, by=list(a), FUN = mean , na.rm=TRUE )
names(promedios_grupales)[1] <- "comuna"
names(promedios_grupales)[2] <- "promedio_i"
promedios_grupales$año <- "2017"
codigos_comunales <- readRDS(file = "../../../../archivos_grandes/codigos_comunales_2011-2017.rds")
names(codigos_comunales)[1] <- "código"
names(codigos_comunales)[2] <- "comuna"
df_2017 = merge( promedios_grupales, codigos_comunales,
by = "comuna",
all.x = TRUE)
my_summary_data <- x %>%
group_by(x$COMUNA) %>%
summarise(Count = n())
names(my_summary_data)[1] <- "comuna"
names(my_summary_data)[2] <- "personas"
# recogemos el campo Comuna:
codigos <- my_summary_data$comuna
# construimos una secuencia llamada rango del 1 al total de filas del
# dataset:
rango <- seq(1:nrow(my_summary_data))
# Creamos un string que agrega un cero a todos los registros:
cadena <- paste("0",codigos[rango], sep = "")
# El string cadena tiene o 5 o 6 digitos, los cuales siempre deben ser
# siempre 5
# agregandole un cero al inicio de los que tienen 4.
# Para ello extraemos un substring de la cadena sobre todas las filas
#(rangos)
# comenzando desde el primero o el segundo y llegando siempre al 6.
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(my_summary_data,cadena)
names(comuna_corr)[3] <- "código"
comuna_corr <- comuna_corr[,-c(1),drop=FALSE]
df_2017_2 = merge( comuna_corr, df_2017, by = "código", all.x = TRUE)
df_2017_2$ingresos_expandidos <- df_2017_2$personas*df_2017_2$promedio_i
df_2017_2 <- na.omit(df_2017_2)Veamos los primeros 10 registros:
head(df_2017_2,10)## código personas comuna promedio_i año ingresos_expandidos
## 1 01101 191468 Iquique 375676.9 2017 71930106513
## 2 01107 108375 Alto Hospicio 311571.7 2017 33766585496
## 3 01401 15711 Pozo Almonte 316138.5 2017 4966851883
## 7 01405 9296 Pica 330061.1 2017 3068247619
## 8 02101 361873 Antofagasta 368221.4 2017 133249367039
## 9 02102 13467 Mejillones 369770.7 2017 4979702302
## 11 02104 13317 Taltal 383666.2 2017 5109282942
## 12 02201 165731 Calama 434325.1 2017 71981127235
## 14 02203 10996 San Pedro de Atacama 442861.0 2017 4869699464
## 15 02301 25186 Tocopilla 286187.2 2017 7207910819
Guardemos como rds:
saveRDS(df_2017_2, "Ingresos_expandidos_urbano_17.rds")De cuántas comunas disponemos del valor del ingreso promedio?
nrow(df_2017_2)## [1] 312
#df_2017_2$código <- as.numeric(df_2017_2$código)
head(df_2017_2,10)## código personas comuna promedio_i año ingresos_expandidos
## 1 01101 191468 Iquique 375676.9 2017 71930106513
## 2 01107 108375 Alto Hospicio 311571.7 2017 33766585496
## 3 01401 15711 Pozo Almonte 316138.5 2017 4966851883
## 7 01405 9296 Pica 330061.1 2017 3068247619
## 8 02101 361873 Antofagasta 368221.4 2017 133249367039
## 9 02102 13467 Mejillones 369770.7 2017 4979702302
## 11 02104 13317 Taltal 383666.2 2017 5109282942
## 12 02201 165731 Calama 434325.1 2017 71981127235
## 14 02203 10996 San Pedro de Atacama 442861.0 2017 4869699464
## 15 02301 25186 Tocopilla 286187.2 2017 7207910819
Unimos nuestra tabla de frecuencias por zona con la de ingresos expandidos:
comunas_censo_casen_666 = merge( x = trabajo003, y = df_2017_2, by = "código", all.x = TRUE)
head(comunas_censo_casen_666,10)## código clave Freq personas comuna promedio_i año ingresos_expandidos
## 1 01101 1101011001 1255 191468 Iquique 375676.9 2017 71930106513
## 2 01101 1101011002 621 191468 Iquique 375676.9 2017 71930106513
## 3 01101 1101041001 713 191468 Iquique 375676.9 2017 71930106513
## 4 01101 1101041002 1084 191468 Iquique 375676.9 2017 71930106513
## 5 01101 1101041003 1691 191468 Iquique 375676.9 2017 71930106513
## 6 01101 1101021005 1927 191468 Iquique 375676.9 2017 71930106513
## 7 01101 1101041005 1840 191468 Iquique 375676.9 2017 71930106513
## 8 01101 1101041006 1102 191468 Iquique 375676.9 2017 71930106513
## 9 01101 1101051001 1515 191468 Iquique 375676.9 2017 71930106513
## 10 01101 1101041004 2403 191468 Iquique 375676.9 2017 71930106513
Cuantas zonas tenemos?
nrow(comunas_censo_casen_666)## [1] 5165
tabla_de_prop_pob <- readRDS("../../../../archivos_grandes/tabla_de_prop_pob.rds")
names(tabla_de_prop_pob)[1] <- "clave"
head(tabla_de_prop_pob,10)## clave Freq p código
## 1 1101011001 2491 0.0130100069 01101
## 2 1101011002 1475 0.0077036372 01101
## 3 1101021001 1003 0.0052384733 01101
## 4 1101021002 54 0.0002820315 01101
## 5 1101021003 2895 0.0151200201 01101
## 6 1101021004 2398 0.0125242860 01101
## 7 1101021005 4525 0.0236331920 01101
## 8 1101031001 2725 0.0142321432 01101
## 9 1101031002 3554 0.0185618485 01101
## 10 1101031003 5246 0.0273988343 01101
nrow(tabla_de_prop_pob)## [1] 15500
comunas_censo_casen_6666 = merge( x = comunas_censo_casen_666, y = tabla_de_prop_pob, by = "clave", all.x = TRUE)nrow(comunas_censo_casen_6666)## [1] 5165
head(comunas_censo_casen_6666,10)## clave código.x Freq.x personas comuna promedio_i año
## 1 10101011001 10101 320 245902 Puerto Montt 304409.6 2017
## 2 10101011002 10101 1309 245902 Puerto Montt 304409.6 2017
## 3 10101021001 10101 1828 245902 Puerto Montt 304409.6 2017
## 4 10101021002 10101 581 245902 Puerto Montt 304409.6 2017
## 5 10101021003 10101 1050 245902 Puerto Montt 304409.6 2017
## 6 10101021004 10101 1457 245902 Puerto Montt 304409.6 2017
## 7 10101021005 10101 1165 245902 Puerto Montt 304409.6 2017
## 8 10101031001 10101 2012 245902 Puerto Montt 304409.6 2017
## 9 10101031002 10101 2166 245902 Puerto Montt 304409.6 2017
## 10 10101031003 10101 1663 245902 Puerto Montt 304409.6 2017
## ingresos_expandidos Freq.y p código.y
## 1 74854925754 584 0.002374930 10101
## 2 74854925754 2941 0.011960049 10101
## 3 74854925754 3953 0.016075510 10101
## 4 74854925754 1107 0.004501793 10101
## 5 74854925754 2294 0.009328920 10101
## 6 74854925754 3391 0.013790046 10101
## 7 74854925754 2564 0.010426918 10101
## 8 74854925754 4530 0.018421973 10101
## 9 74854925754 4740 0.019275972 10101
## 10 74854925754 4107 0.016701776 10101
comunas_censo_casen_6666$multipob <- comunas_censo_casen_6666$ingresos_expandidos*comunas_censo_casen_6666$phead(comunas_censo_casen_6666,10)## clave código.x Freq.x personas comuna promedio_i año
## 1 10101011001 10101 320 245902 Puerto Montt 304409.6 2017
## 2 10101011002 10101 1309 245902 Puerto Montt 304409.6 2017
## 3 10101021001 10101 1828 245902 Puerto Montt 304409.6 2017
## 4 10101021002 10101 581 245902 Puerto Montt 304409.6 2017
## 5 10101021003 10101 1050 245902 Puerto Montt 304409.6 2017
## 6 10101021004 10101 1457 245902 Puerto Montt 304409.6 2017
## 7 10101021005 10101 1165 245902 Puerto Montt 304409.6 2017
## 8 10101031001 10101 2012 245902 Puerto Montt 304409.6 2017
## 9 10101031002 10101 2166 245902 Puerto Montt 304409.6 2017
## 10 10101031003 10101 1663 245902 Puerto Montt 304409.6 2017
## ingresos_expandidos Freq.y p código.y multipob
## 1 74854925754 584 0.002374930 10101 177775198
## 2 74854925754 2941 0.011960049 10101 895268589
## 3 74854925754 3953 0.016075510 10101 1203331089
## 4 74854925754 1107 0.004501793 10101 336981411
## 5 74854925754 2294 0.009328920 10101 698315588
## 6 74854925754 3391 0.013790046 10101 1032252903
## 7 74854925754 2564 0.010426918 10101 780506176
## 8 74854925754 4530 0.018421973 10101 1378975420
## 9 74854925754 4740 0.019275972 10101 1442901433
## 10 74854925754 4107 0.016701776 10101 1250210165
saveRDS(comunas_censo_casen_6666, "tabla_de_trabajo_2017_urbana.rds")
write_xlsx(comunas_censo_casen_6666, "tabla_de_trabajo_2017_urbana.xlsx")2 Desaparecen 4 zonas
Porque no tienen categoría de respuesta 1 a la pregunta P17
tabla_original <-
readRDS("../../../ds_correlaciones_censo_casen/corre_censo_casen_2017/censos_con_clave/censo_personas_con_clave_17")
tabla_de_trabajo <- readRDS("tabla_de_trabajo_2017_urbana.rds")tabla_con_clave_u <- filter(tabla_original , tabla_original $AREA ==1)
unicos_001 <- unique(tabla_con_clave_u$clave)
length(unicos_001)## [1] 5169
unicos_002 <- tabla_de_trabajo$clave
length(unicos_002)## [1] 5165
Identifiquemos los que fueron excluídos:
ddd <- setdiff(unicos_001 ,unicos_002)
ttt <- unique(ddd)
ttt## [1] "9113991999" "16303991999" "7303991999" "6204991999"
#9113991999
tabla_original_1 <- filter(tabla_original, tabla_original$clave == "9113991999")
tabla_original_1## REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV NHOGAR PERSONAN P07
## 1 9 91 9113 99 1 999 232 1 1 1 1
## 2 9 91 9113 99 1 999 232 1 1 2 5
## 3 9 91 9113 99 1 999 232 1 1 3 5
## P08 P09 P10 P10COMUNA P10PAIS P11 P11COMUNA P11PAIS P12 P12COMUNA P12PAIS
## 1 2 39 1 98 998 2 98 998 1 98 998
## 2 1 12 1 98 998 2 98 998 1 98 998
## 3 2 7 1 98 998 2 98 998 1 98 998
## P12A_LLEGADA P12A_TRAMO P13 P14 P15 P15A P16 P16A P16A_OTRO P17 P18 P19 P20
## 1 9998 98 2 4 7 1 2 98 98 6 98 2 2
## 2 9998 98 1 6 5 2 2 98 98 98 98 98 98
## 3 9998 98 1 1 5 2 2 98 98 98 98 98 98
## P21M P21A P10PAIS_GRUPO P11PAIS_GRUPO P12PAIS_GRUPO ESCOLARIDAD P16A_GRUPO
## 1 10 2009 998 998 998 12 98
## 2 98 9998 998 998 998 6 98
## 3 98 9998 998 998 998 1 98
## REGION_15R PROVINCIA_15R COMUNA_15R P10COMUNA_15R P11COMUNA_15R P12COMUNA_15R
## 1 9 91 9113 98 98 98
## 2 9 91 9113 98 98 98
## 3 9 91 9113 98 98 98
## clave
## 1 9113991999
## 2 9113991999
## 3 9113991999
Hay solamente 4 zonas que no poseen el valor 1 de respuesta a la pregunta P17.
2.1 Diagrama de dispersión loess
scatter.smooth(x=comunas_censo_casen_6666$Freq.x, y=comunas_censo_casen_6666$multipob, main="multi_pob ~ Freq.x",
xlab = "Freq.x",
ylab = "multi_pob",
col = 2) 3 Análisis de regresión
Aplicaremos un análisis de regresión donde:
\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]
\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]
3.1 Outliers
Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.
3.2 Modelo lineal
Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.
linearMod <- lm( multipob~(Freq.x) , data=tabla_de_trabajo)
summary(linearMod) ##
## Call:
## lm(formula = multipob ~ (Freq.x), data = tabla_de_trabajo)
##
## Residuals:
## Min 1Q Median 3Q Max
## -850547865 -78144039 -6002220 58511371 2933901395
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3897469 4656177 -0.837 0.403
## Freq.x 753444 3165 238.083 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 162300000 on 5143 degrees of freedom
## (20 observations deleted due to missingness)
## Multiple R-squared: 0.9168, Adjusted R-squared: 0.9168
## F-statistic: 5.668e+04 on 1 and 5143 DF, p-value: < 2.2e-16
3.3 Gráfica de la recta de regresión lineal
ggplot(tabla_de_trabajo, aes(x = Freq.x , y = multipob)) +
geom_point() +
stat_smooth(method = "lm", col = "red")Si bien obtenemos nuestro modelo lineal da cuenta del 0.9168 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.
4 Modelos alternativos
### 8.1 Modelo cuadrático
linearMod <- lm( multipob~(Freq.x^2) , data=tabla_de_trabajo)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,dato,sintaxis)
### 8.2 Modelo cúbico
linearMod <- lm( multipob~(Freq.x^3) , data=tabla_de_trabajo)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,dato,sintaxis)
### 8.3 Modelo logarítmico
linearMod <- lm( multipob~log(Freq.x) , data=tabla_de_trabajo)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,dato,sintaxis)
### 8.5 Modelo con raíz cuadrada
linearMod <- lm( multipob~sqrt(Freq.x) , data=tabla_de_trabajo)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,dato,sintaxis)
### 8.6 Modelo raíz-raíz
linearMod <- lm( sqrt(multipob)~sqrt(Freq.x) , data=tabla_de_trabajo)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,dato,sintaxis)
### 8.7 Modelo log-raíz
linearMod <- lm( log(multipob)~sqrt(Freq.x) , data=tabla_de_trabajo)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,dato,sintaxis)
### 8.8 Modelo raíz-log
linearMod <- lm( sqrt(multipob)~log(Freq.x) , data=tabla_de_trabajo)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,dato,sintaxis)
### 8.9 Modelo log-log
linearMod <- lm( log(multipob)~log(Freq.x) , data=tabla_de_trabajo)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,dato,sintaxis)
modelos_bind <- rbind(modelos1, modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind <<- modelos_bind[order(modelos_bind$dato, decreasing = T ),]
h_y_m_comuna_corr_01 <<- tabla_de_trabajo
kbl(modelos_bind) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")| modelo | dato | sintaxis | |
|---|---|---|---|
| 8 | log-log | 0.982633689397265 | linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) |
| 5 | raíz-raíz | 0.956016832106656 | linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) |
| 1 | cuadrático | 0.916799197009415 | linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01) |
| 2 | cúbico | 0.916799197009415 | linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01) |
| 4 | raíz cuadrada | 0.858216862956833 | linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) |
| 6 | log-raíz | 0.825833185026114 | linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) |
| 7 | raíz-log | 0.804952865180797 | linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) |
| 3 | logarítmico | 0.585652425658201 | linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01) |
5 Elección del modelo.
Elegimos el modelo log-log (8) pues tiene el más alto \(R^2\)
h_y_m_comuna_corr <- h_y_m_comuna_corr_01
metodo <- 8
switch (metodo,
case = linearMod <- lm( multipob~(Freq.x^2) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multipob~(Freq.x^3) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multipob~log(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multipob~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( sqrt(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( log(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( sqrt(multipob)~log(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( log(multipob)~log(Freq.x) , data=h_y_m_comuna_corr)
)
summary(linearMod)##
## Call:
## lm(formula = log(multipob) ~ log(Freq.x), data = h_y_m_comuna_corr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.99023 -0.09645 -0.00222 0.09395 1.53885
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.270794 0.013259 1000.9 <2e-16 ***
## log(Freq.x) 1.033996 0.001917 539.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1618 on 5143 degrees of freedom
## (20 observations deleted due to missingness)
## Multiple R-squared: 0.9826, Adjusted R-squared: 0.9826
## F-statistic: 2.911e+05 on 1 and 5143 DF, p-value: < 2.2e-16
5.1 Modelo log-log (log-log)
Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.9826).
5.1.1 Diagrama de dispersión sobre log-log
Desplegamos una curva suavizada por loess en el diagrama de dispersión.
head(tabla_de_trabajo,10)## clave código.x Freq.x personas comuna promedio_i año
## 1 10101011001 10101 320 245902 Puerto Montt 304409.6 2017
## 2 10101011002 10101 1309 245902 Puerto Montt 304409.6 2017
## 3 10101021001 10101 1828 245902 Puerto Montt 304409.6 2017
## 4 10101021002 10101 581 245902 Puerto Montt 304409.6 2017
## 5 10101021003 10101 1050 245902 Puerto Montt 304409.6 2017
## 6 10101021004 10101 1457 245902 Puerto Montt 304409.6 2017
## 7 10101021005 10101 1165 245902 Puerto Montt 304409.6 2017
## 8 10101031001 10101 2012 245902 Puerto Montt 304409.6 2017
## 9 10101031002 10101 2166 245902 Puerto Montt 304409.6 2017
## 10 10101031003 10101 1663 245902 Puerto Montt 304409.6 2017
## ingresos_expandidos Freq.y p código.y multipob
## 1 74854925754 584 0.002374930 10101 177775198
## 2 74854925754 2941 0.011960049 10101 895268589
## 3 74854925754 3953 0.016075510 10101 1203331089
## 4 74854925754 1107 0.004501793 10101 336981411
## 5 74854925754 2294 0.009328920 10101 698315588
## 6 74854925754 3391 0.013790046 10101 1032252903
## 7 74854925754 2564 0.010426918 10101 780506176
## 8 74854925754 4530 0.018421973 10101 1378975420
## 9 74854925754 4740 0.019275972 10101 1442901433
## 10 74854925754 4107 0.016701776 10101 1250210165
scatter.smooth(x=log(tabla_de_trabajo$Freq.x), y=log(tabla_de_trabajo$multipob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")ggplot(tabla_de_trabajo, aes(x = log(Freq.x) , y = log(multipob))) + geom_point() + stat_smooth(method=lm , color="blue", level = 0.9, fill="green", se=TRUE) 5.1.2 Análisis de residuos
par(mfrow = c (2,2))
plot(linearMod)5.1.3 Modelo log-log
\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]
linearMod <- lm( log(multipob)~log(Freq.x) , data=tabla_de_trabajo)
aa <- linearMod$coefficients[1]
bb <- linearMod$coefficients[2]6 Aplicación la regresión a los valores de la variable a nivel de zona
Esta nueva variable se llamará: est_ing
tabla_de_trabajo$est_ing <- exp(aa+bb*log(tabla_de_trabajo$Freq.x))7 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona
\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]
tabla_de_trabajo$ing_medio_zona <- tabla_de_trabajo$est_ing /(tabla_de_trabajo$personas * tabla_de_trabajo$p)
write_xlsx(tabla_de_trabajo, "tabla_de_trabajo_2.xlsx")
write.dbf(tabla_de_trabajo, "tabla_de_trabajo_2.dbf")
r3_100 <- tabla_de_trabajo[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")| clave | código.x | Freq.x | personas | comuna | promedio_i | año | ingresos_expandidos | Freq.y | p | código.y | multipob | est_ing | ing_medio_zona |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 10101011001 | 10101 | 320 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 584 | 0.0023749 | 10101 | 177775197.6 | 225812484 | 386665.2 |
| 10101011002 | 10101 | 1309 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2941 | 0.0119600 | 10101 | 895268589.3 | 969027564 | 329489.1 |
| 10101021001 | 10101 | 1828 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3953 | 0.0160755 | 10101 | 1203331089.2 | 1368684549 | 346239.5 |
| 10101021002 | 10101 | 581 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 1107 | 0.0045018 | 10101 | 336981410.5 | 418388755 | 377948.3 |
| 10101021003 | 10101 | 1050 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2294 | 0.0093289 | 10101 | 698315587.8 | 771490596 | 336308.0 |
| 10101021004 | 10101 | 1457 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3391 | 0.0137900 | 10101 | 1032252902.5 | 1082524004 | 319234.4 |
| 10101021005 | 10101 | 1165 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2564 | 0.0104269 | 10101 | 780506175.8 | 859016955 | 335030.0 |
| 10101031001 | 10101 | 2012 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 4530 | 0.0184220 | 10101 | 1378975419.7 | 1511371232 | 333636.0 |
| 10101031002 | 10101 | 2166 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 4740 | 0.0192760 | 10101 | 1442901432.6 | 1631137384 | 344121.8 |
| 10101031003 | 10101 | 1663 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 4107 | 0.0167018 | 10101 | 1250210165.3 | 1241145581 | 302202.5 |
| 10101031004 | 10101 | 1172 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2856 | 0.0116144 | 10101 | 869393774.6 | 864354445 | 302645.1 |
| 10101031005 | 10101 | 2657 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 5690 | 0.0231393 | 10101 | 1732090538.3 | 2014838451 | 354101.7 |
| 10101031006 | 10101 | 1233 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2460 | 0.0100040 | 10101 | 748847578.9 | 910912070 | 370289.5 |
| 10101031007 | 10101 | 1038 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2292 | 0.0093208 | 10101 | 697706768.7 | 762375593 | 332624.6 |
| 10101031008 | 10101 | 1616 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3585 | 0.0145790 | 10101 | 1091308362.0 | 1204893190 | 336092.9 |
| 10101031009 | 10101 | 1995 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 4436 | 0.0180397 | 10101 | 1350360918.8 | 1498168966 | 337729.7 |
| 10101031010 | 10101 | 1531 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3566 | 0.0145017 | 10101 | 1085524579.9 | 1139422061 | 319523.9 |
| 10101031011 | 10101 | 1232 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2757 | 0.0112118 | 10101 | 839257225.7 | 910148187 | 330122.7 |
| 10101031012 | 10101 | 837 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 1849 | 0.0075193 | 10101 | 562853322.5 | 610266318 | 330052.1 |
| 10101031013 | 10101 | 1642 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3945 | 0.0160430 | 10101 | 1200895812.6 | 1224943339 | 310505.3 |
| 10101031014 | 10101 | 1030 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2265 | 0.0092110 | 10101 | 689487709.9 | 756300911 | 333907.7 |
| 10101031015 | 10101 | 873 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 1930 | 0.0078487 | 10101 | 587510498.9 | 637426237 | 330272.7 |
| 10101031016 | 10101 | 1285 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3071 | 0.0124887 | 10101 | 934841835.3 | 950662583 | 309561.2 |
| 10101031017 | 10101 | 1457 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3885 | 0.0157990 | 10101 | 1182631237.5 | 1082524004 | 278642.0 |
| 10101041001 | 10101 | 1843 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 4342 | 0.0176574 | 10101 | 1321746417.8 | 1380298976 | 317894.7 |
| 10101041002 | 10101 | 895 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2169 | 0.0088206 | 10101 | 660264389.7 | 654042823 | 301541.2 |
| 10101041003 | 10101 | 2559 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 5202 | 0.0211548 | 10101 | 1583538660.8 | 1938046089 | 372557.9 |
| 10101051001 | 10101 | 1148 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2463 | 0.0100162 | 10101 | 749760807.7 | 846059032 | 343507.5 |
| 10101051002 | 10101 | 814 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 1913 | 0.0077795 | 10101 | 582335536.0 | 592934824 | 309950.2 |
| 10101051003 | 10101 | 1329 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3272 | 0.0133061 | 10101 | 996028161.9 | 984340471 | 300837.6 |
| 10101051004 | 10101 | 1712 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3633 | 0.0147742 | 10101 | 1105920022.1 | 1278977722 | 352044.5 |
| 10101061001 | 10101 | 3383 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 6787 | 0.0276004 | 10101 | 2066027852.9 | 2586528264 | 381100.4 |
| 10101061002 | 10101 | 1254 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2729 | 0.0110979 | 10101 | 830733757.3 | 926958434 | 339669.6 |
| 10101061003 | 10101 | 1559 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3668 | 0.0149165 | 10101 | 1116574357.5 | 1160975700 | 316514.6 |
| 10101061004 | 10101 | 1184 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2995 | 0.0121796 | 10101 | 911706706.9 | 873506946 | 291655.1 |
| 10101061005 | 10101 | 1216 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2571 | 0.0104554 | 10101 | 782637042.9 | 897928952 | 349252.8 |
| 10101061006 | 10101 | 1991 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 4130 | 0.0167953 | 10101 | 1257211585.8 | 1495063105 | 362000.8 |
| 10101061007 | 10101 | 340 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 817 | 0.0033225 | 10101 | 248702630.9 | 240420763 | 294272.7 |
| 10101061008 | 10101 | 1008 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2109 | 0.0085766 | 10101 | 641999814.6 | 739603843 | 350689.4 |
| 10101061009 | 10101 | 68 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 168 | 0.0006832 | 10101 | 51140810.3 | 45523920 | 270975.7 |
| 10101061010 | 10101 | 610 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 1543 | 0.0062749 | 10101 | 469703989.6 | 440000177 | 285158.9 |
| 10101071001 | 10101 | 909 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2352 | 0.0095648 | 10101 | 715971343.8 | 664624269 | 282578.3 |
| 10101071002 | 10101 | 1583 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3919 | 0.0159372 | 10101 | 1192981163.4 | 1179460734 | 300959.6 |
| 10101071003 | 10101 | 1915 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 4978 | 0.0202438 | 10101 | 1515350913.8 | 1436092528 | 288487.9 |
| 10101071004 | 10101 | 1419 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3443 | 0.0140015 | 10101 | 1048082200.9 | 1053343936 | 305937.8 |
| 10101071005 | 10101 | 1186 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2751 | 0.0111874 | 10101 | 837430768.2 | 875032670 | 318078.0 |
| 10101071006 | 10101 | 1741 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 4214 | 0.0171369 | 10101 | 1282781990.9 | 1301385588 | 308824.3 |
| 10101071007 | 10101 | 987 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2345 | 0.0095363 | 10101 | 713840476.7 | 723677283 | 308604.4 |
| 10101071008 | 10101 | 2104 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 5480 | 0.0222853 | 10101 | 1668164525.4 | 1582883822 | 288847.4 |
| 10101071009 | 10101 | 1509 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3549 | 0.0144326 | 10101 | 1080349616.9 | 1122496446 | 316285.3 |
| 10101071010 | 10101 | 1442 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3521 | 0.0143187 | 10101 | 1071826148.6 | 1071002427 | 304175.6 |
| 10101071011 | 10101 | 1301 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3094 | 0.0125822 | 10101 | 941843255.8 | 962904621 | 311216.7 |
| 10101071012 | 10101 | 1066 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2621 | 0.0106587 | 10101 | 797857522.1 | 783649437 | 298988.7 |
| 10101071013 | 10101 | 41 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 84 | 0.0003416 | 10101 | 25570405.1 | 26980176 | 321192.6 |
| 10101071014 | 10101 | 350 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 875 | 0.0035583 | 10101 | 266358386.8 | 247735976 | 283126.8 |
| 10101131001 | 10101 | 282 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 604 | 0.0024563 | 10101 | 183863389.3 | 198143878 | 328052.8 |
| 10101151001 | 10101 | 1757 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3973 | 0.0161568 | 10101 | 1209419280.9 | 1313753995 | 330670.5 |
| 10101151002 | 10101 | 2237 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 4655 | 0.0189303 | 10101 | 1417026617.9 | 1686453130 | 362288.5 |
| 10101151003 | 10101 | 248 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 592 | 0.0024075 | 10101 | 180210474.3 | 173494747 | 293065.5 |
| 10101151004 | 10101 | 143 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 325 | 0.0013217 | 10101 | 98933115.1 | 98184214 | 302105.3 |
| 10101151005 | 10101 | 179 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 384 | 0.0015616 | 10101 | 116893280.6 | 123843685 | 322509.6 |
| 10101161001 | 10101 | 342 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 739 | 0.0030053 | 10101 | 224958683.3 | 241883227 | 327311.5 |
| 10101161002 | 10101 | 2677 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 6507 | 0.0264618 | 10101 | 1980793169.2 | 2030522314 | 312052.0 |
| 10101161003 | 10101 | 1242 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2841 | 0.0115534 | 10101 | 864827630.8 | 917787954 | 323051.0 |
| 10101161004 | 10101 | 491 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 1224 | 0.0049776 | 10101 | 372597332.0 | 351560784 | 287222.9 |
| 10101161005 | 10101 | 70 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 188 | 0.0007645 | 10101 | 57229002.0 | 46909063 | 249516.3 |
| 10101161006 | 10101 | 190 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 435 | 0.0017690 | 10101 | 132418169.4 | 131720981 | 302806.9 |
| 10101171001 | 10101 | 735 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 1747 | 0.0071045 | 10101 | 531803544.9 | 533534615 | 305400.5 |
| 10101171002 | 10101 | 1196 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2902 | 0.0118014 | 10101 | 883396615.5 | 882662601 | 304156.7 |
| 10101171003 | 10101 | 1335 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2873 | 0.0116835 | 10101 | 874568737.5 | 988935876 | 344217.2 |
| 10101171004 | 10101 | 2230 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 4707 | 0.0191418 | 10101 | 1432855916.3 | 1680996781 | 357127.0 |
| 10101171005 | 10101 | 1799 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3782 | 0.0153801 | 10101 | 1151277050.2 | 1346239200 | 355959.6 |
| 10101171006 | 10101 | 1635 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3515 | 0.0142943 | 10101 | 1069999691.0 | 1219544153 | 346954.2 |
| 10101181001 | 10101 | 1384 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3155 | 0.0128303 | 10101 | 960412240.5 | 1026491036 | 325353.7 |
| 10101181002 | 10101 | 1039 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2282 | 0.0092801 | 10101 | 694662672.8 | 763135040 | 334415.0 |
| 10101181003 | 10101 | 601 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 1312 | 0.0053355 | 10101 | 399385375.4 | 433289366 | 330251.0 |
| 10101181004 | 10101 | 645 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 1466 | 0.0059617 | 10101 | 446264451.5 | 466129355 | 317960.0 |
| 10101991999 | 10101 | 763 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 1400 | 0.0056933 | 10101 | 426173418.9 | 554564165 | 396117.3 |
| 10102051001 | 10102 | 1243 | 33985 | Calbuco | 280878.2 | 2017 | 9545646863 | 3082 | 0.0906871 | 10102 | 865666724.5 | 918552046 | 298037.7 |
| 10102051002 | 10102 | 1603 | 33985 | Calbuco | 280878.2 | 2017 | 9545646863 | 3879 | 0.1141386 | 10102 | 1089526678.9 | 1194872215 | 308036.1 |
| 10102141001 | 10102 | 1473 | 33985 | Calbuco | 280878.2 | 2017 | 9545646863 | 3356 | 0.0987494 | 10102 | 942627361.2 | 1094818130 | 326227.1 |
| 10102141002 | 10102 | 2318 | 33985 | Calbuco | 280878.2 | 2017 | 9545646863 | 5586 | 0.1643666 | 10102 | 1568985828.3 | 1749632662 | 313217.4 |
| 10102991999 | 10102 | 51 | 33985 | Calbuco | 280878.2 | 2017 | 9545646863 | 93 | 0.0027365 | 10102 | 26121676.0 | 33810647 | 363555.3 |
| 10104011001 | 10104 | 1160 | 12261 | Fresia | 223666.2 | 2017 | 2742371891 | 2769 | 0.2258380 | 10104 | 619331846.2 | 855205130 | 308849.8 |
| 10104011002 | 10104 | 1735 | 12261 | Fresia | 223666.2 | 2017 | 2742371891 | 4559 | 0.3718294 | 10104 | 1019694433.8 | 1296748430 | 284437.0 |
| 10104991999 | 10104 | 3 | 12261 | Fresia | 223666.2 | 2017 | 2742371891 | 3 | 0.0002447 | 10104 | 670998.8 | 1806234 | 602078.0 |
| 10105011001 | 10105 | 1420 | 18428 | Frutillar | 281543.9 | 2017 | 5188291726 | 3426 | 0.1859127 | 10105 | 964569538.4 | 1054111495 | 307679.9 |
| 10105011002 | 10105 | 1299 | 18428 | Frutillar | 281543.9 | 2017 | 5188291726 | 3126 | 0.1696332 | 10105 | 880106356.4 | 961374085 | 307541.3 |
| 10105011003 | 10105 | 1345 | 18428 | Frutillar | 281543.9 | 2017 | 5188291726 | 3037 | 0.1648036 | 10105 | 855048945.8 | 996596444 | 328151.6 |
| 10105011004 | 10105 | 1396 | 18428 | Frutillar | 281543.9 | 2017 | 5188291726 | 3287 | 0.1783699 | 10105 | 925434930.8 | 1035695173 | 315088.3 |
| 10105991999 | 10105 | 37 | 18428 | Frutillar | 281543.9 | 2017 | 5188291726 | 76 | 0.0041242 | 10105 | 21397339.4 | 24263141 | 319251.9 |
| 10106011001 | 10106 | 2144 | 17068 | Los Muermos | 233220.1 | 2017 | 3980600731 | 5180 | 0.3034919 | 10106 | 1208080137.5 | 1614009706 | 311584.9 |
| 10106011002 | 10106 | 1105 | 17068 | Los Muermos | 233220.1 | 2017 | 3980600731 | 2748 | 0.1610030 | 10106 | 640888845.2 | 813312435 | 295965.2 |
| 10106991999 | 10106 | 79 | 17068 | Los Muermos | 233220.1 | 2017 | 3980600731 | 178 | 0.0104289 | 10106 | 41513178.5 | 53158363 | 298642.5 |
| 10107011001 | 10107 | 1772 | 17591 | Llanquihue | 251391.8 | 2017 | 4422233283 | 4286 | 0.2436473 | 10107 | 1077465286.3 | 1325352856 | 309228.4 |
| 10107011002 | 10107 | 455 | 17591 | Llanquihue | 251391.8 | 2017 | 4422233283 | 1159 | 0.0658860 | 10107 | 291363104.7 | 324942166 | 280364.3 |
| 10107011003 | 10107 | 1362 | 17591 | Llanquihue | 251391.8 | 2017 | 4422233283 | 3146 | 0.1788415 | 10107 | 790878625.9 | 1009623846 | 320923.0 |
| 10107021001 | 10107 | 937 | 17591 | Llanquihue | 251391.8 | 2017 | 4422233283 | 2292 | 0.1302939 | 10107 | 576190022.4 | 685803705 | 299216.3 |
| 10107021002 | 10107 | 1283 | 17591 | Llanquihue | 251391.8 | 2017 | 4422233283 | 3221 | 0.1831050 | 10107 | 809733011.4 | 949132691 | 294670.2 |
| 10107991999 | 10107 | 58 | 17591 | Llanquihue | 251391.8 | 2017 | 4422233283 | 118 | 0.0067080 | 10107 | 29664233.3 | 38619820 | 327286.6 |
7.1 Estadísticos
ingresos <- readRDS("Ingresos_expandidos_urbano_17.rds")
kbl(ingresos) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")| código | personas | comuna | promedio_i | año | ingresos_expandidos | |
|---|---|---|---|---|---|---|
| 1 | 01101 | 191468 | Iquique | 375676.9 | 2017 | 71930106513 |
| 2 | 01107 | 108375 | Alto Hospicio | 311571.7 | 2017 | 33766585496 |
| 3 | 01401 | 15711 | Pozo Almonte | 316138.5 | 2017 | 4966851883 |
| 7 | 01405 | 9296 | Pica | 330061.1 | 2017 | 3068247619 |
| 8 | 02101 | 361873 | Antofagasta | 368221.4 | 2017 | 133249367039 |
| 9 | 02102 | 13467 | Mejillones | 369770.7 | 2017 | 4979702302 |
| 11 | 02104 | 13317 | Taltal | 383666.2 | 2017 | 5109282942 |
| 12 | 02201 | 165731 | Calama | 434325.1 | 2017 | 71981127235 |
| 14 | 02203 | 10996 | San Pedro de Atacama | 442861.0 | 2017 | 4869699464 |
| 15 | 02301 | 25186 | Tocopilla | 286187.2 | 2017 | 7207910819 |
| 16 | 02302 | 6457 | María Elena | 477748.0 | 2017 | 3084818966 |
| 17 | 03101 | 153937 | Copiapó | 343121.0 | 2017 | 52819016037 |
| 18 | 03102 | 17662 | Caldera | 318653.2 | 2017 | 5628052276 |
| 19 | 03103 | 14019 | Tierra Amarilla | 333194.9 | 2017 | 4671058718 |
| 20 | 03201 | 12219 | Chañaral | 286389.3 | 2017 | 3499391196 |
| 21 | 03202 | 13925 | Diego de Almagro | 351583.9 | 2017 | 4895805596 |
| 22 | 03301 | 51917 | Vallenar | 315981.5 | 2017 | 16404810756 |
| 24 | 03303 | 7041 | Freirina | 289049.9 | 2017 | 2035200054 |
| 25 | 03304 | 10149 | Huasco | 337414.8 | 2017 | 3424422750 |
| 26 | 04101 | 221054 | La Serena | 279340.1 | 2017 | 61749247282 |
| 27 | 04102 | 227730 | Coquimbo | 269078.6 | 2017 | 61277269093 |
| 28 | 04103 | 11044 | Andacollo | 258539.7 | 2017 | 2855312920 |
| 29 | 04104 | 4241 | La Higuera | 214257.0 | 2017 | 908664019 |
| 31 | 04106 | 27771 | Vicuña | 254177.0 | 2017 | 7058750373 |
| 32 | 04201 | 30848 | Illapel | 282139.3 | 2017 | 8703433491 |
| 33 | 04202 | 9093 | Canela | 233397.3 | 2017 | 2122281844 |
| 34 | 04203 | 21382 | Los Vilos | 285214.0 | 2017 | 6098444926 |
| 35 | 04204 | 29347 | Salamanca | 262056.9 | 2017 | 7690585032 |
| 36 | 04301 | 111272 | Ovalle | 280373.5 | 2017 | 31197719080 |
| 37 | 04302 | 13322 | Combarbalá | 234537.3 | 2017 | 3124505460 |
| 38 | 04303 | 30751 | Monte Patria | 225369.1 | 2017 | 6930326684 |
| 39 | 04304 | 10956 | Punitaqui | 212496.1 | 2017 | 2328107498 |
| 41 | 05101 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 |
| 42 | 05102 | 26867 | Casablanca | 348088.6 | 2017 | 9352095757 |
| 43 | 05103 | 42152 | Concón | 333932.4 | 2017 | 14075920021 |
| 45 | 05105 | 18546 | Puchuncaví | 296035.5 | 2017 | 5490274928 |
| 46 | 05107 | 31923 | Quintero | 308224.7 | 2017 | 9839456903 |
| 47 | 05109 | 334248 | Viña del Mar | 354715.9 | 2017 | 118563074323 |
| 49 | 05301 | 66708 | Los Andes | 355446.2 | 2017 | 23711104774 |
| 50 | 05302 | 14832 | Calle Larga | 246387.3 | 2017 | 3654416747 |
| 51 | 05303 | 10207 | Rinconada | 279807.9 | 2017 | 2855998928 |
| 52 | 05304 | 18855 | San Esteban | 219571.6 | 2017 | 4140022481 |
| 53 | 05401 | 35390 | La Ligua | 259482.3 | 2017 | 9183080280 |
| 54 | 05402 | 19388 | Cabildo | 262745.9 | 2017 | 5094117762 |
| 55 | 05403 | 6356 | Papudo | 302317.1 | 2017 | 1921527704 |
| 56 | 05404 | 9826 | Petorca | 237510.8 | 2017 | 2333781007 |
| 57 | 05405 | 7339 | Zapallar | 294389.2 | 2017 | 2160521991 |
| 58 | 05501 | 90517 | Quillota | 288694.2 | 2017 | 26131733924 |
| 59 | 05502 | 50554 | Calera | 282823.6 | 2017 | 14297866792 |
| 60 | 05503 | 17988 | Hijuelas | 268449.7 | 2017 | 4828872604 |
| 61 | 05504 | 22098 | La Cruz | 335544.3 | 2017 | 7414857001 |
| 62 | 05506 | 22120 | Nogales | 259917.8 | 2017 | 5749381300 |
| 63 | 05601 | 91350 | San Antonio | 246603.6 | 2017 | 22527241144 |
| 64 | 05602 | 13817 | Algarrobo | 390710.4 | 2017 | 5398446270 |
| 65 | 05603 | 22738 | Cartagena | 244949.4 | 2017 | 5569658994 |
| 66 | 05604 | 15955 | El Quisco | 270498.2 | 2017 | 4315799297 |
| 67 | 05605 | 13286 | El Tabo | 287271.0 | 2017 | 3816682340 |
| 68 | 05606 | 10900 | Santo Domingo | 404470.9 | 2017 | 4408732520 |
| 69 | 05701 | 76844 | San Felipe | 302021.4 | 2017 | 23208536043 |
| 70 | 05702 | 13998 | Catemu | 233238.3 | 2017 | 3264869972 |
| 71 | 05703 | 24608 | Llaillay | 295663.4 | 2017 | 7275684301 |
| 72 | 05704 | 7273 | Panquehue | 328043.3 | 2017 | 2385858928 |
| 73 | 05705 | 16754 | Putaendo | 309628.4 | 2017 | 5187514898 |
| 74 | 05706 | 15241 | Santa María | 256403.4 | 2017 | 3907844674 |
| 75 | 05801 | 151708 | Quilpué | 344393.1 | 2017 | 52247193426 |
| 76 | 05802 | 46121 | Limache | 307380.7 | 2017 | 14176705125 |
| 77 | 05803 | 17516 | Olmué | 293997.6 | 2017 | 5149662271 |
| 78 | 05804 | 126548 | Villa Alemana | 361923.3 | 2017 | 45800670899 |
| 79 | 06101 | 241774 | Rancagua | 318384.5 | 2017 | 76977097284 |
| 80 | 06102 | 12988 | Codegua | 289405.7 | 2017 | 3758801352 |
| 81 | 06103 | 7359 | Coinco | 224485.0 | 2017 | 1651985453 |
| 82 | 06104 | 19597 | Coltauco | 278925.9 | 2017 | 5466110795 |
| 83 | 06105 | 20887 | Doñihue | 306532.0 | 2017 | 6402533884 |
| 84 | 06106 | 33437 | Graneros | 311834.8 | 2017 | 10426820415 |
| 85 | 06107 | 24640 | Las Cabras | 279810.6 | 2017 | 6894533314 |
| 86 | 06108 | 52505 | Machalí | 316199.2 | 2017 | 16602037093 |
| 87 | 06109 | 13407 | Malloa | 213596.6 | 2017 | 2863689033 |
| 88 | 06110 | 25343 | Mostazal | 291701.8 | 2017 | 7392597596 |
| 89 | 06111 | 13608 | Olivar | 297914.9 | 2017 | 4054025678 |
| 90 | 06112 | 14313 | Peumo | 248687.4 | 2017 | 3559462966 |
| 91 | 06113 | 19714 | Pichidegua | 234187.0 | 2017 | 4616762518 |
| 92 | 06114 | 13002 | Quinta de Tilcoco | 210835.7 | 2017 | 2741286093 |
| 93 | 06115 | 58825 | Rengo | 293650.2 | 2017 | 17273974762 |
| 94 | 06116 | 27968 | Requínoa | 288865.3 | 2017 | 8078983811 |
| 95 | 06117 | 46766 | San Vicente | 285655.7 | 2017 | 13358975033 |
| 96 | 06201 | 16394 | Pichilemu | 344227.1 | 2017 | 5643258336 |
| 97 | 06202 | 3041 | La Estrella | 293280.7 | 2017 | 891866686 |
| 98 | 06203 | 6294 | Litueche | 298955.7 | 2017 | 1881627117 |
| 99 | 06204 | 7308 | Marchihue | 336379.3 | 2017 | 2458260033 |
| 100 | 06205 | 6641 | Navidad | 236383.5 | 2017 | 1569822543 |
| 101 | 06206 | 6188 | Paredones | 238518.3 | 2017 | 1475951353 |
| 102 | 06301 | 73973 | San Fernando | 324998.7 | 2017 | 24041131495 |
| 103 | 06302 | 15037 | Chépica | 245508.7 | 2017 | 3691714537 |
| 104 | 06303 | 35399 | Chimbarongo | 260706.7 | 2017 | 9228754903 |
| 105 | 06304 | 6811 | Lolol | 236668.2 | 2017 | 1611947197 |
| 106 | 06305 | 17833 | Nancagua | 245992.6 | 2017 | 4386786331 |
| 107 | 06306 | 12482 | Palmilla | 246745.0 | 2017 | 3079870843 |
| 108 | 06307 | 11007 | Peralillo | 265630.7 | 2017 | 2923796850 |
| 109 | 06308 | 8738 | Placilla | 240573.8 | 2017 | 2102134220 |
| 111 | 06310 | 37855 | Santa Cruz | 300976.4 | 2017 | 11393463346 |
| 112 | 07101 | 220357 | Talca | 307377.4 | 2017 | 67732753814 |
| 113 | 07102 | 46068 | Constitución | 280736.9 | 2017 | 12932986800 |
| 114 | 07103 | 9448 | Curepto | 281855.5 | 2017 | 2662971120 |
| 115 | 07104 | 4142 | Empedrado | 209235.2 | 2017 | 866652110 |
| 116 | 07105 | 49721 | Maule | 245019.7 | 2017 | 12182624190 |
| 117 | 07106 | 8422 | Pelarco | 216777.5 | 2017 | 1825700105 |
| 118 | 07107 | 8245 | Pencahue | 233692.6 | 2017 | 1926795579 |
| 119 | 07108 | 13906 | Río Claro | 224864.2 | 2017 | 3126961590 |
| 120 | 07109 | 43269 | San Clemente | 247003.5 | 2017 | 10687595452 |
| 121 | 07110 | 9191 | San Rafael | 249688.5 | 2017 | 2294886656 |
| 122 | 07201 | 40441 | Cauquenes | 235303.7 | 2017 | 9515918892 |
| 123 | 07202 | 8928 | Chanco | 250327.3 | 2017 | 2234922252 |
| 124 | 07203 | 7571 | Pelluhue | 202735.2 | 2017 | 1534908448 |
| 125 | 07301 | 149136 | Curicó | 282406.9 | 2017 | 42117028333 |
| 126 | 07302 | 9657 | Hualañé | 303280.6 | 2017 | 2928781043 |
| 127 | 07303 | 6653 | Licantén | 261799.2 | 2017 | 1741750148 |
| 128 | 07304 | 45976 | Molina | 261223.2 | 2017 | 12009998195 |
| 129 | 07305 | 10484 | Rauco | 271406.8 | 2017 | 2845428741 |
| 130 | 07306 | 15187 | Romeral | 269017.0 | 2017 | 4085560646 |
| 131 | 07307 | 18544 | Sagrada Familia | 248654.3 | 2017 | 4611045339 |
| 132 | 07308 | 28921 | Teno | 262087.1 | 2017 | 7579820261 |
| 133 | 07309 | 4322 | Vichuquén | 218281.8 | 2017 | 943414066 |
| 134 | 07401 | 93602 | Linares | 270205.2 | 2017 | 25291751487 |
| 135 | 07402 | 20765 | Colbún | 200983.0 | 2017 | 4173410967 |
| 136 | 07403 | 30534 | Longaví | 216067.2 | 2017 | 6597394825 |
| 137 | 07404 | 41637 | Parral | 266374.6 | 2017 | 11091040324 |
| 138 | 07405 | 19974 | Retiro | 225715.0 | 2017 | 4508431050 |
| 139 | 07406 | 45547 | San Javier | 278559.1 | 2017 | 12687530322 |
| 140 | 07407 | 16221 | Villa Alegre | 262111.0 | 2017 | 4251702731 |
| 141 | 07408 | 18081 | Yerbas Buenas | 244050.7 | 2017 | 4412680158 |
| 142 | 08101 | 223574 | Concepción | 323059.6 | 2017 | 72227728923 |
| 143 | 08102 | 116262 | Coronel | 277633.4 | 2017 | 32278209118 |
| 144 | 08103 | 85938 | Chiguayante | 298370.0 | 2017 | 25641323296 |
| 145 | 08104 | 10624 | Florida | 232450.3 | 2017 | 2469551785 |
| 146 | 08105 | 24333 | Hualqui | 232273.3 | 2017 | 5651905803 |
| 147 | 08106 | 43535 | Lota | 283449.0 | 2017 | 12339953990 |
| 148 | 08107 | 47367 | Penco | 265193.8 | 2017 | 12561435651 |
| 149 | 08108 | 131808 | San Pedro de la Paz | 274394.0 | 2017 | 36167321662 |
| 150 | 08109 | 13749 | Santa Juana | 260550.2 | 2017 | 3582304723 |
| 151 | 08110 | 151749 | Talcahuano | 320279.6 | 2017 | 48602104064 |
| 152 | 08111 | 54946 | Tomé | 275421.3 | 2017 | 15133299927 |
| 153 | 08112 | 91773 | Hualpén | 287452.1 | 2017 | 26380344663 |
| 154 | 08201 | 25522 | Lebu | 256023.5 | 2017 | 6534231082 |
| 155 | 08202 | 36257 | Arauco | 316263.6 | 2017 | 11466769473 |
| 156 | 08203 | 34537 | Cañete | 241126.1 | 2017 | 8327773342 |
| 157 | 08204 | 6031 | Contulmo | 213011.2 | 2017 | 1284670805 |
| 158 | 08205 | 32288 | Curanilahue | 262911.9 | 2017 | 8488900056 |
| 159 | 08206 | 21035 | Los Álamos | 230097.8 | 2017 | 4840107033 |
| 160 | 08207 | 10417 | Tirúa | 221347.3 | 2017 | 2305775206 |
| 161 | 08301 | 202331 | Los Ángeles | 298724.4 | 2017 | 60441208918 |
| 162 | 08302 | 4073 | Antuco | 191980.2 | 2017 | 781935233 |
| 163 | 08303 | 28573 | Cabrero | 225166.5 | 2017 | 6433682620 |
| 164 | 08304 | 22389 | Laja | 224428.0 | 2017 | 5024717382 |
| 165 | 08305 | 29627 | Mulchén | 246376.9 | 2017 | 7299407611 |
| 166 | 08306 | 26315 | Nacimiento | 292529.0 | 2017 | 7697899431 |
| 167 | 08307 | 9737 | Negrete | 196781.4 | 2017 | 1916060576 |
| 168 | 08308 | 3988 | Quilaco | 196761.0 | 2017 | 784682868 |
| 169 | 08309 | 9587 | Quilleco | 201931.6 | 2017 | 1935917806 |
| 170 | 08310 | 3412 | San Rosendo | 206738.0 | 2017 | 705390056 |
| 171 | 08311 | 13773 | Santa Bárbara | 250849.5 | 2017 | 3454949584 |
| 172 | 08312 | 14134 | Tucapel | 214733.9 | 2017 | 3035048397 |
| 173 | 08313 | 21198 | Yumbel | 221417.8 | 2017 | 4693613938 |
| 174 | 08314 | 5923 | Alto Biobío | 251792.7 | 2017 | 1491367928 |
| 175 | 09101 | 282415 | Temuco | 294512.7 | 2017 | 83174794799 |
| 176 | 09102 | 24533 | Carahue | 237416.7 | 2017 | 5824543339 |
| 177 | 09103 | 17526 | Cunco | 247099.1 | 2017 | 4330659433 |
| 178 | 09104 | 7489 | Curarrehue | 204180.7 | 2017 | 1529109215 |
| 179 | 09105 | 24606 | Freire | 305541.7 | 2017 | 7518158340 |
| 180 | 09106 | 11996 | Galvarino | 244269.6 | 2017 | 2930258102 |
| 181 | 09107 | 14414 | Gorbea | 254627.9 | 2017 | 3670206245 |
| 182 | 09108 | 38013 | Lautaro | 296417.7 | 2017 | 11267725602 |
| 183 | 09109 | 23612 | Loncoche | 213841.9 | 2017 | 5049235445 |
| 184 | 09110 | 6138 | Melipeuco | 211980.8 | 2017 | 1301137941 |
| 185 | 09111 | 32510 | Nueva Imperial | 242015.9 | 2017 | 7867935676 |
| 186 | 09112 | 76126 | Padre Las Casas | 278372.7 | 2017 | 21191399108 |
| 187 | 09113 | 6905 | Perquenco | 260596.6 | 2017 | 1799419624 |
| 188 | 09114 | 24837 | Pitrufquén | 249811.8 | 2017 | 6204576082 |
| 189 | 09115 | 28523 | Pucón | 260967.9 | 2017 | 7443587942 |
| 190 | 09116 | 12450 | Saavedra | 229431.4 | 2017 | 2856420491 |
| 191 | 09117 | 15045 | Teodoro Schmidt | 224680.1 | 2017 | 3380311968 |
| 192 | 09118 | 9722 | Toltén | 219705.4 | 2017 | 2135976054 |
| 193 | 09119 | 28151 | Vilcún | 172649.0 | 2017 | 4860243131 |
| 194 | 09120 | 55478 | Villarrica | 246047.7 | 2017 | 13650235814 |
| 195 | 09121 | 11611 | Cholchol | 253226.0 | 2017 | 2940207311 |
| 196 | 09201 | 53262 | Angol | 268414.6 | 2017 | 14296297282 |
| 197 | 09202 | 24598 | Collipulli | 247911.8 | 2017 | 6098134776 |
| 198 | 09203 | 17413 | Curacautín | 234574.3 | 2017 | 4084643011 |
| 199 | 09204 | 7733 | Ercilla | 268071.3 | 2017 | 2072995481 |
| 200 | 09205 | 10251 | Lonquimay | 250560.5 | 2017 | 2568496128 |
| 201 | 09206 | 7265 | Los Sauces | 212950.7 | 2017 | 1547086780 |
| 202 | 09207 | 9548 | Lumaco | 282522.6 | 2017 | 2697526159 |
| 203 | 09208 | 11779 | Purén | 234139.4 | 2017 | 2757928013 |
| 204 | 09209 | 10250 | Renaico | 266020.9 | 2017 | 2726714090 |
| 205 | 09210 | 18843 | Traiguén | 258102.0 | 2017 | 4863416659 |
| 206 | 09211 | 34182 | Victoria | 225959.9 | 2017 | 7723760970 |
| 207 | 10101 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 |
| 208 | 10102 | 33985 | Calbuco | 280878.2 | 2017 | 9545646863 |
| 210 | 10104 | 12261 | Fresia | 223666.2 | 2017 | 2742371891 |
| 211 | 10105 | 18428 | Frutillar | 281543.9 | 2017 | 5188291726 |
| 212 | 10106 | 17068 | Los Muermos | 233220.1 | 2017 | 3980600731 |
| 213 | 10107 | 17591 | Llanquihue | 251391.8 | 2017 | 4422233283 |
| 214 | 10108 | 14216 | Maullín | 269082.7 | 2017 | 3825279050 |
| 215 | 10109 | 44578 | Puerto Varas | 312276.5 | 2017 | 13920663786 |
| 216 | 10201 | 43807 | Castro | 349368.8 | 2017 | 15304799118 |
| 217 | 10202 | 38991 | Ancud | 229798.1 | 2017 | 8960055930 |
| 218 | 10203 | 14858 | Chonchi | 239577.2 | 2017 | 3559637517 |
| 220 | 10205 | 13762 | Dalcahue | 325358.2 | 2017 | 4477578923 |
| 222 | 10207 | 5385 | Queilén | 183406.6 | 2017 | 987644627 |
| 223 | 10208 | 27192 | Quellón | 241965.8 | 2017 | 6579532876 |
| 224 | 10209 | 8352 | Quemchi | 308051.3 | 2017 | 2572844097 |
| 225 | 10210 | 8088 | Quinchao | 370474.4 | 2017 | 2996397098 |
| 226 | 10301 | 161460 | Osorno | 271587.3 | 2017 | 43850482486 |
| 227 | 10302 | 8999 | Puerto Octay | 262148.9 | 2017 | 2359078294 |
| 228 | 10303 | 20369 | Purranque | 302471.6 | 2017 | 6161043438 |
| 229 | 10304 | 11667 | Puyehue | 230541.3 | 2017 | 2689725003 |
| 230 | 10305 | 14085 | Río Negro | 276657.1 | 2017 | 3896715111 |
| 231 | 10306 | 7512 | San Juan de la Costa | 222910.5 | 2017 | 1674503801 |
| 232 | 10307 | 10030 | San Pablo | 195712.4 | 2017 | 1962995435 |
| 237 | 11101 | 57818 | Coyhaique | 327100.3 | 2017 | 18912283227 |
| 239 | 11201 | 23959 | Aysén | 307831.4 | 2017 | 7375332218 |
| 240 | 11202 | 6517 | Cisnes | 251971.0 | 2017 | 1642095149 |
| 242 | 11301 | 3490 | Cochrane | 350724.8 | 2017 | 1224029692 |
| 245 | 11401 | 4865 | Chile Chico | 333445.3 | 2017 | 1622211456 |
| 247 | 12101 | 131592 | Punta Arenas | 391758.4 | 2017 | 51552266922 |
| 253 | 12301 | 6801 | Porvenir | 446255.2 | 2017 | 3034981682 |
| 256 | 12401 | 21477 | Natales | 336808.6 | 2017 | 7233637635 |
| 258 | 13101 | 404495 | Santiago | 450851.7 | 2017 | 182367246208 |
| 259 | 13102 | 80832 | Cerrillos | 276766.5 | 2017 | 22371586546 |
| 260 | 13103 | 132622 | Cerro Navia | 270634.1 | 2017 | 35892031153 |
| 261 | 13104 | 126955 | Conchalí | 310325.3 | 2017 | 39397353402 |
| 262 | 13105 | 162505 | El Bosque | 281653.9 | 2017 | 45770170398 |
| 263 | 13106 | 147041 | Estación Central | 340680.2 | 2017 | 50093952387 |
| 264 | 13107 | 98671 | Huechuraba | 315250.1 | 2017 | 31106038806 |
| 265 | 13108 | 100281 | Independencia | 376152.6 | 2017 | 37720956327 |
| 266 | 13109 | 90119 | La Cisterna | 367262.4 | 2017 | 33097323323 |
| 267 | 13110 | 366916 | La Florida | 349483.5 | 2017 | 128231071590 |
| 268 | 13111 | 116571 | La Granja | 306768.3 | 2017 | 35760286668 |
| 269 | 13112 | 177335 | La Pintana | 232647.0 | 2017 | 41256447003 |
| 270 | 13113 | 92787 | La Reina | 434408.5 | 2017 | 40307459856 |
| 271 | 13114 | 294838 | Las Condes | 456515.7 | 2017 | 134598169599 |
| 272 | 13115 | 105833 | Lo Barnechea | 349308.7 | 2017 | 36968385127 |
| 273 | 13116 | 98804 | Lo Espejo | 264154.1 | 2017 | 26099479542 |
| 274 | 13117 | 96249 | Lo Prado | 305431.2 | 2017 | 29397444939 |
| 275 | 13118 | 116534 | Macul | 345701.4 | 2017 | 40285970358 |
| 276 | 13119 | 521627 | Maipú | 358559.2 | 2017 | 187034167391 |
| 277 | 13120 | 208237 | Ñuñoa | 426460.1 | 2017 | 88804766896 |
| 278 | 13121 | 101174 | Pedro Aguirre Cerda | 316863.2 | 2017 | 32058321741 |
| 279 | 13122 | 241599 | Peñalolén | 321570.6 | 2017 | 77691132095 |
| 280 | 13123 | 142079 | Providencia | 516122.3 | 2017 | 73330144381 |
| 281 | 13124 | 230293 | Pudahuel | 320572.7 | 2017 | 73825647438 |
| 282 | 13125 | 210410 | Quilicura | 383485.8 | 2017 | 80689241762 |
| 283 | 13126 | 110026 | Quinta Normal | 311731.1 | 2017 | 34298531093 |
| 284 | 13127 | 157851 | Recoleta | 344997.0 | 2017 | 54458123369 |
| 285 | 13128 | 147151 | Renca | 294000.5 | 2017 | 43262464632 |
| 286 | 13129 | 94492 | San Joaquín | 336046.8 | 2017 | 31753732439 |
| 287 | 13130 | 107954 | San Miguel | 351632.1 | 2017 | 37960091353 |
| 288 | 13131 | 82900 | San Ramón | 281439.6 | 2017 | 23331343432 |
| 289 | 13132 | 85384 | Vitacura | 496933.1 | 2017 | 42430139879 |
| 290 | 13201 | 568106 | Puente Alto | 328342.7 | 2017 | 186533464474 |
| 291 | 13202 | 26521 | Pirque | 332454.5 | 2017 | 8817024774 |
| 292 | 13203 | 18189 | San José de Maipo | 381218.4 | 2017 | 6933981276 |
| 293 | 13301 | 146207 | Colina | 300609.0 | 2017 | 43951136523 |
| 294 | 13302 | 102034 | Lampa | 372624.0 | 2017 | 38020316317 |
| 295 | 13303 | 19312 | Tiltil | 327523.1 | 2017 | 6325126322 |
| 296 | 13401 | 301313 | San Bernardo | 286991.8 | 2017 | 86474375157 |
| 297 | 13402 | 96614 | Buin | 314979.3 | 2017 | 30431412042 |
| 298 | 13403 | 25392 | Calera de Tango | 307306.5 | 2017 | 7803125477 |
| 299 | 13404 | 72759 | Paine | 330137.7 | 2017 | 24020488982 |
| 300 | 13501 | 123627 | Melipilla | 291641.9 | 2017 | 36054817558 |
| 301 | 13502 | 6444 | Alhué | 349434.5 | 2017 | 2251756129 |
| 302 | 13503 | 32579 | Curacaví | 269095.1 | 2017 | 8766848005 |
| 303 | 13504 | 13590 | María Pinto | 253962.5 | 2017 | 3451350898 |
| 305 | 13601 | 74237 | Talagante | 394670.6 | 2017 | 29299162746 |
| 306 | 13602 | 35923 | El Monte | 297691.7 | 2017 | 10693979408 |
| 307 | 13603 | 36219 | Isla de Maipo | 229284.1 | 2017 | 8304441408 |
| 308 | 13604 | 63250 | Padre Hurtado | 277563.2 | 2017 | 17555873230 |
| 309 | 13605 | 90201 | Peñaflor | 351564.7 | 2017 | 31711490484 |
| 310 | 14101 | 166080 | Valdivia | 308754.5 | 2017 | 51277944139 |
| 311 | 14102 | 5302 | Corral | 222523.9 | 2017 | 1179821617 |
| 312 | 14103 | 16752 | Lanco | 267286.0 | 2017 | 4477574931 |
| 313 | 14104 | 19634 | Los Lagos | 211843.1 | 2017 | 4159328181 |
| 314 | 14105 | 7095 | Máfil | 315022.1 | 2017 | 2235081533 |
| 315 | 14106 | 21278 | Mariquina | 251064.3 | 2017 | 5342147079 |
| 316 | 14107 | 20188 | Paillaco | 223306.5 | 2017 | 4508111622 |
| 317 | 14108 | 34539 | Panguipulli | 287752.5 | 2017 | 9938682028 |
| 318 | 14201 | 38036 | La Unión | 247291.7 | 2017 | 9405987850 |
| 319 | 14202 | 14665 | Futrono | 247331.7 | 2017 | 3627119212 |
| 320 | 14203 | 9896 | Lago Ranco | 247154.2 | 2017 | 2445838259 |
| 321 | 14204 | 31372 | Río Bueno | 267934.4 | 2017 | 8405637271 |
| 322 | 15101 | 221364 | Arica | 310013.3 | 2017 | 68625788545 |
| 324 | 15201 | 2765 | Putre | 283661.5 | 2017 | 784324030 |
| 326 | 16101 | 184739 | Chillán | 275879.2 | 2017 | 50965643906 |
| 327 | 16102 | 21493 | Bulnes | 224694.9 | 2017 | 4829367278 |
| 328 | 16103 | 30907 | Chillán Viejo | 259577.5 | 2017 | 8022762560 |
| 329 | 16104 | 12044 | El Carmen | 215566.5 | 2017 | 2596282563 |
| 330 | 16105 | 8448 | Pemuco | 262037.4 | 2017 | 2213691761 |
| 331 | 16106 | 10827 | Pinto | 175602.5 | 2017 | 1901248804 |
| 332 | 16107 | 17485 | Quillón | 256072.4 | 2017 | 4477425886 |
| 333 | 16108 | 16079 | San Ignacio | 203331.5 | 2017 | 3269367252 |
| 334 | 16109 | 17787 | Yungay | 258601.1 | 2017 | 4599738091 |
| 335 | 16201 | 11594 | Quirihue | 252923.7 | 2017 | 2932397811 |
| 336 | 16202 | 5012 | Cobquecura | 259487.2 | 2017 | 1300549630 |
| 337 | 16203 | 15995 | Coelemu | 296882.1 | 2017 | 4748629723 |
| 338 | 16204 | 5213 | Ninhue | 301493.8 | 2017 | 1571687052 |
| 339 | 16205 | 4862 | Portezuelo | 196869.9 | 2017 | 957181342 |
| 340 | 16206 | 5755 | Ránquil | 286762.9 | 2017 | 1650320432 |
| 341 | 16207 | 5401 | Treguaco | 218702.4 | 2017 | 1181211462 |
| 342 | 16301 | 53024 | San Carlos | 252551.6 | 2017 | 13391296803 |
| 343 | 16302 | 26881 | Coihueco | 213580.4 | 2017 | 5741254097 |
| 344 | 16303 | 11152 | Ñiquén | 236681.5 | 2017 | 2639471976 |
| 345 | 16304 | 4308 | San Fabián | 259592.5 | 2017 | 1118324609 |
| 346 | 16305 | 11603 | San Nicolás | 266207.1 | 2017 | 3088800683 |
7.1.1 Promedio
t_de_c <- tabla_de_trabajo %>%
group_by(código.y) %>%
summarize(mean = mean(ing_medio_zona, na.rm = TRUE))
names(t_de_c)[1] <- "código"
estadisticos_finales <- merge( x = ingresos, y = t_de_c, by = "código", all.x = TRUE)7.1.2 Desviación standard
t_de_c_2 <- tabla_de_trabajo %>%
group_by(código.y) %>%
summarize(sd = sd(ing_medio_zona, na.rm = TRUE))
names(t_de_c_2)[1] <- "código"
estadisticos_finales <- merge( x = estadisticos_finales, y = t_de_c_2, by = "código", all.x = TRUE)7.1.3 Mínimo
t_de_c_3 <- tabla_de_trabajo %>%
group_by(código.y) %>%
summarize(min = min(ing_medio_zona, na.rm = TRUE))
names(t_de_c_3)[1] <- "código"
estadisticos_finales <- merge( x = estadisticos_finales, y = t_de_c_3, by = "código", all.x = TRUE)7.1.4 Máximo
t_de_c_4 <- tabla_de_trabajo %>%
group_by(código.y) %>%
summarize(max = max(ing_medio_zona, na.rm = TRUE))
names(t_de_c_4)[1] <- "código"
estadisticos_finales <- merge( x = estadisticos_finales, y = t_de_c_4, by = "código", all.x = TRUE)7.1.5 Mediana
t_de_c_5 <- tabla_de_trabajo %>%
group_by(código.y) %>%
summarize(median = median(ing_medio_zona, na.rm = TRUE))
names(t_de_c_5)[1] <- "código"
estadisticos_finales <- merge( x = estadisticos_finales, y = t_de_c_5, by = "código", all.x = TRUE)
kbl(estadisticos_finales) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")| código | personas | comuna | promedio_i | año | ingresos_expandidos | mean | sd | min | max | median |
|---|---|---|---|---|---|---|---|---|---|---|
| 01101 | 191468 | Iquique | 375676.9 | 2017 | 71930106513 | 336932.5 | 30379.201 | 287239.14 | 404791.9 | 330193.5 |
| 01107 | 108375 | Alto Hospicio | 311571.7 | 2017 | 33766585496 | 287355.9 | 13224.968 | 268365.43 | 325896.6 | 284302.9 |
| 01401 | 15711 | Pozo Almonte | 316138.5 | 2017 | 4966851883 | 404223.4 | 217202.815 | 260413.30 | 654078.0 | 298178.9 |
| 01405 | 9296 | Pica | 330061.1 | 2017 | 3068247619 | 305865.5 | 19913.032 | 291784.88 | 319946.2 | 305865.5 |
| 02101 | 361873 | Antofagasta | 368221.4 | 2017 | 133249367039 | 316433.3 | 35863.939 | 263943.86 | 459458.1 | 306122.7 |
| 02102 | 13467 | Mejillones | 369770.7 | 2017 | 4979702302 | 439311.2 | 72542.396 | 377530.10 | 519188.7 | 421214.7 |
| 02104 | 13317 | Taltal | 383666.2 | 2017 | 5109282942 | 324585.5 | 39014.970 | 289770.48 | 379173.0 | 314699.3 |
| 02201 | 165731 | Calama | 434325.1 | 2017 | 71981127235 | 312175.4 | 47419.462 | 244061.27 | 553019.5 | 304505.4 |
| 02203 | 10996 | San Pedro de Atacama | 442861.0 | 2017 | 4869699464 | 377684.1 | 25754.958 | 359472.63 | 395895.6 | 377684.1 |
| 02301 | 25186 | Tocopilla | 286187.2 | 2017 | 7207910819 | 282459.8 | 67548.694 | 231307.27 | 476934.1 | 255506.8 |
| 02302 | 6457 | María Elena | 477748.0 | 2017 | 3084818966 | 364409.8 | 23849.594 | 344634.52 | 390895.8 | 357699.0 |
| 03101 | 153937 | Copiapó | 343121.0 | 2017 | 52819016037 | 294190.3 | 32048.528 | 246016.17 | 396376.8 | 287619.5 |
| 03102 | 17662 | Caldera | 318653.2 | 2017 | 5628052276 | 333036.6 | 38246.203 | 297260.93 | 396426.7 | 324567.0 |
| 03103 | 14019 | Tierra Amarilla | 333194.9 | 2017 | 4671058718 | 278189.4 | 92142.116 | 226469.17 | 415905.0 | 235191.7 |
| 03201 | 12219 | Chañaral | 286389.3 | 2017 | 3499391196 | 256025.0 | 67923.871 | 118767.14 | 324874.6 | 270558.5 |
| 03202 | 13925 | Diego de Almagro | 351583.9 | 2017 | 4895805596 | 315058.6 | 54526.666 | 250393.26 | 401415.5 | 303361.4 |
| 03301 | 51917 | Vallenar | 315981.5 | 2017 | 16404810756 | 278400.9 | 39223.506 | 234014.36 | 343600.5 | 259078.4 |
| 03303 | 7041 | Freirina | 289049.9 | 2017 | 2035200054 | 390884.2 | 234843.652 | 241720.41 | 661588.9 | 269343.2 |
| 03304 | 10149 | Huasco | 337414.8 | 2017 | 3424422750 | 311636.7 | 40859.835 | 272211.41 | 379345.8 | 298448.7 |
| 04101 | 221054 | La Serena | 279340.1 | 2017 | 61749247282 | 282492.2 | 23765.052 | 240651.67 | 386556.6 | 280354.4 |
| 04102 | 227730 | Coquimbo | 269078.6 | 2017 | 61277269093 | 286925.6 | 20722.703 | 246807.05 | 338325.4 | 286053.3 |
| 04103 | 11044 | Andacollo | 258539.7 | 2017 | 2855312920 | 256551.7 | 4914.570 | 252752.69 | 262102.1 | 254800.4 |
| 04104 | 4241 | La Higuera | 214257.0 | 2017 | 908664019 | 231254.3 | 16320.050 | 219714.33 | 242794.4 | 231254.3 |
| 04106 | 27771 | Vicuña | 254177.0 | 2017 | 7058750373 | 287777.1 | 43439.033 | 257521.05 | 382890.6 | 267819.2 |
| 04201 | 30848 | Illapel | 282139.3 | 2017 | 8703433491 | 287112.2 | 33893.073 | 257095.70 | 354536.2 | 274326.4 |
| 04202 | 9093 | Canela | 233397.3 | 2017 | 2122281844 | 234142.4 | 76111.371 | 180323.54 | 287961.3 | 234142.4 |
| 04203 | 21382 | Los Vilos | 285214.0 | 2017 | 6098444926 | 338040.5 | 46966.082 | 297974.03 | 438023.5 | 335335.6 |
| 04204 | 29347 | Salamanca | 262056.9 | 2017 | 7690585032 | 304302.8 | 41409.818 | 242849.26 | 369610.5 | 297046.3 |
| 04301 | 111272 | Ovalle | 280373.5 | 2017 | 31197719080 | 284137.0 | 50989.002 | 60175.86 | 365477.2 | 289736.0 |
| 04302 | 13322 | Combarbalá | 234537.3 | 2017 | 3124505460 | 297031.7 | 21921.280 | 273496.12 | 316867.9 | 300731.2 |
| 04303 | 30751 | Monte Patria | 225369.1 | 2017 | 6930326684 | 261347.9 | 25270.346 | 217361.36 | 285252.9 | 272774.5 |
| 04304 | 10956 | Punitaqui | 212496.1 | 2017 | 2328107498 | 258995.4 | 30208.768 | 237724.16 | 293573.1 | 245689.1 |
| 05101 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 302170.4 | 29821.003 | 223199.50 | 454453.1 | 299214.3 |
| 05102 | 26867 | Casablanca | 348088.6 | 2017 | 9352095757 | 316917.2 | 37785.292 | 255893.67 | 386685.6 | 317050.8 |
| 05103 | 42152 | Concón | 333932.4 | 2017 | 14075920021 | 319879.6 | 19339.641 | 291740.62 | 352321.0 | 318512.7 |
| 05105 | 18546 | Puchuncaví | 296035.5 | 2017 | 5490274928 | 288714.5 | 39644.175 | 193093.04 | 346074.8 | 290227.1 |
| 05107 | 31923 | Quintero | 308224.7 | 2017 | 9839456903 | 286112.8 | 56974.301 | 215054.40 | 415282.0 | 286169.9 |
| 05109 | 334248 | Viña del Mar | 354715.9 | 2017 | 118563074323 | 309752.7 | 18252.407 | 246149.66 | 350475.0 | 310744.3 |
| 05301 | 66708 | Los Andes | 355446.2 | 2017 | 23711104774 | 304312.8 | 37640.068 | 251789.51 | 429650.3 | 297699.8 |
| 05302 | 14832 | Calle Larga | 246387.3 | 2017 | 3654416747 | 294230.3 | 27888.188 | 256819.97 | 351556.8 | 292327.0 |
| 05303 | 10207 | Rinconada | 279807.9 | 2017 | 2855998928 | 293129.1 | 31863.591 | 238687.95 | 328933.7 | 303490.3 |
| 05304 | 18855 | San Esteban | 219571.6 | 2017 | 4140022481 | 288947.8 | 13727.706 | 270468.84 | 306305.7 | 285014.7 |
| 05401 | 35390 | La Ligua | 259482.3 | 2017 | 9183080280 | 297433.4 | 43734.939 | 176938.32 | 331647.7 | 301720.1 |
| 05402 | 19388 | Cabildo | 262745.9 | 2017 | 5094117762 | 261878.3 | 18676.693 | 235561.61 | 277375.5 | 272934.0 |
| 05403 | 6356 | Papudo | 302317.1 | 2017 | 1921527704 | 317023.7 | 14650.982 | 301038.98 | 333094.3 | 324556.0 |
| 05404 | 9826 | Petorca | 237510.8 | 2017 | 2333781007 | 284712.6 | 19680.635 | 261620.74 | 307904.3 | 284662.7 |
| 05405 | 7339 | Zapallar | 294389.2 | 2017 | 2160521991 | 298253.3 | 72726.232 | 169667.34 | 372978.5 | 316239.6 |
| 05501 | 90517 | Quillota | 288694.2 | 2017 | 26131733924 | 305119.2 | 40928.375 | 249307.49 | 486283.7 | 298560.2 |
| 05502 | 50554 | Calera | 282823.6 | 2017 | 14297866792 | 283973.5 | 47275.393 | 196272.23 | 445860.2 | 274964.1 |
| 05503 | 17988 | Hijuelas | 268449.7 | 2017 | 4828872604 | 279500.9 | 48213.452 | 193335.31 | 303046.0 | 300817.4 |
| 05504 | 22098 | La Cruz | 335544.3 | 2017 | 7414857001 | 296860.8 | 20533.257 | 267715.43 | 319231.5 | 303582.6 |
| 05506 | 22120 | Nogales | 259917.8 | 2017 | 5749381300 | 258843.6 | 14645.694 | 239429.03 | 279399.2 | 262879.2 |
| 05601 | 91350 | San Antonio | 246603.6 | 2017 | 22527241144 | 311419.1 | 27907.777 | 281031.53 | 399154.5 | 307300.9 |
| 05602 | 13817 | Algarrobo | 390710.4 | 2017 | 5398446270 | 281941.1 | 32275.299 | 233374.16 | 337725.1 | 285617.5 |
| 05603 | 22738 | Cartagena | 244949.4 | 2017 | 5569658994 | 265487.4 | 27402.143 | 213297.44 | 305831.0 | 263935.1 |
| 05604 | 15955 | El Quisco | 270498.2 | 2017 | 4315799297 | 267425.0 | 25467.544 | 217506.89 | 306418.1 | 265788.3 |
| 05605 | 13286 | El Tabo | 287271.0 | 2017 | 3816682340 | 259243.4 | 31856.527 | 218161.27 | 314666.9 | 259479.4 |
| 05606 | 10900 | Santo Domingo | 404470.9 | 2017 | 4408732520 | 290626.6 | 41616.420 | 215082.33 | 341685.7 | 297339.8 |
| 05701 | 76844 | San Felipe | 302021.4 | 2017 | 23208536043 | 308061.5 | 34133.274 | 231134.24 | 402113.0 | 310686.5 |
| 05702 | 13998 | Catemu | 233238.3 | 2017 | 3264869972 | 310834.7 | 30287.536 | 291104.21 | 345707.3 | 295692.6 |
| 05703 | 24608 | Llaillay | 295663.4 | 2017 | 7275684301 | 295956.0 | 28310.994 | 235338.01 | 324628.9 | 298428.4 |
| 05704 | 7273 | Panquehue | 328043.3 | 2017 | 2385858928 | 302700.9 | 19562.426 | 283022.01 | 322144.7 | 302936.0 |
| 05705 | 16754 | Putaendo | 309628.4 | 2017 | 5187514898 | 313331.4 | 43810.674 | 275807.13 | 361475.9 | 302711.2 |
| 05706 | 15241 | Santa María | 256403.4 | 2017 | 3907844674 | 306559.3 | 28421.152 | 258033.41 | 345899.7 | 311837.8 |
| 05801 | 151708 | Quilpué | 344393.1 | 2017 | 52247193426 | 298298.2 | 15249.379 | 266063.91 | 342110.7 | 296250.4 |
| 05802 | 46121 | Limache | 307380.7 | 2017 | 14176705125 | 294288.0 | 13121.522 | 276725.39 | 326649.6 | 292740.7 |
| 05803 | 17516 | Olmué | 293997.6 | 2017 | 5149662271 | 290245.3 | 14171.915 | 275867.51 | 313625.7 | 287083.0 |
| 05804 | 126548 | Villa Alemana | 361923.3 | 2017 | 45800670899 | 296526.2 | 19609.725 | 265056.98 | 373987.3 | 298298.3 |
| 06101 | 241774 | Rancagua | 318384.5 | 2017 | 76977097284 | 302505.4 | 29222.661 | 230727.50 | 406352.3 | 301332.2 |
| 06102 | 12988 | Codegua | 289405.7 | 2017 | 3758801352 | 311046.2 | 25781.799 | 283822.85 | 334113.2 | 313124.5 |
| 06103 | 7359 | Coinco | 224485.0 | 2017 | 1651985453 | 292125.0 | 52176.270 | 252617.84 | 368960.3 | 273460.9 |
| 06104 | 19597 | Coltauco | 278925.9 | 2017 | 5466110795 | 274798.2 | 26559.579 | 212445.07 | 303606.9 | 280331.6 |
| 06105 | 20887 | Doñihue | 306532.0 | 2017 | 6402533884 | 271845.8 | 58023.565 | 156650.00 | 308908.9 | 292993.3 |
| 06106 | 33437 | Graneros | 311834.8 | 2017 | 10426820415 | 304668.8 | 14883.148 | 278913.20 | 325275.2 | 309697.3 |
| 06107 | 24640 | Las Cabras | 279810.6 | 2017 | 6894533314 | 298699.7 | 18073.359 | 279212.37 | 319548.1 | 303554.9 |
| 06108 | 52505 | Machalí | 316199.2 | 2017 | 16602037093 | 304567.5 | 23841.121 | 262517.44 | 363900.1 | 302208.4 |
| 06109 | 13407 | Malloa | 213596.6 | 2017 | 2863689033 | 259140.0 | 76554.414 | 145001.48 | 306744.3 | 292407.2 |
| 06110 | 25343 | Mostazal | 291701.8 | 2017 | 7392597596 | 298661.2 | 11969.901 | 277518.52 | 312387.7 | 299063.8 |
| 06111 | 13608 | Olivar | 297914.9 | 2017 | 4054025678 | 297071.2 | 34660.679 | 243198.09 | 328487.8 | 309688.0 |
| 06112 | 14313 | Peumo | 248687.4 | 2017 | 3559462966 | 308154.5 | 19584.660 | 269962.31 | 330122.4 | 310233.3 |
| 06113 | 19714 | Pichidegua | 234187.0 | 2017 | 4616762518 | 310757.2 | 61025.584 | 240137.15 | 389205.1 | 306843.2 |
| 06114 | 13002 | Quinta de Tilcoco | 210835.7 | 2017 | 2741286093 | 315599.1 | 15572.896 | 294126.65 | 329766.0 | 319251.9 |
| 06115 | 58825 | Rengo | 293650.2 | 2017 | 17273974762 | 298321.6 | 34594.690 | 199197.56 | 334776.3 | 304436.9 |
| 06116 | 27968 | Requínoa | 288865.3 | 2017 | 8078983811 | 318634.5 | 21560.582 | 285249.50 | 357518.7 | 319399.3 |
| 06117 | 46766 | San Vicente | 285655.7 | 2017 | 13358975033 | 298777.1 | 24280.672 | 262261.97 | 342153.5 | 296366.8 |
| 06201 | 16394 | Pichilemu | 344227.1 | 2017 | 5643258336 | 303759.3 | 34211.726 | 223166.43 | 333618.2 | 313136.8 |
| 06202 | 3041 | La Estrella | 293280.7 | 2017 | 891866686 | 236400.4 | 129257.528 | 145001.48 | 327799.2 | 236400.4 |
| 06203 | 6294 | Litueche | 298955.7 | 2017 | 1881627117 | 319277.5 | 16913.720 | 300830.21 | 334055.1 | 322947.2 |
| 06204 | 7308 | Marchihue | 336379.3 | 2017 | 2458260033 | 313662.5 | 11317.603 | 305659.79 | 321665.3 | 313662.5 |
| 06205 | 6641 | Navidad | 236383.5 | 2017 | 1569822543 | NA | NA | NA | NA | NA |
| 06206 | 6188 | Paredones | 238518.3 | 2017 | 1475951353 | 439597.5 | 198567.556 | 299188.99 | 580005.9 | 439597.5 |
| 06301 | 73973 | San Fernando | 324998.7 | 2017 | 24041131495 | 310093.9 | 19446.932 | 259200.72 | 339240.2 | 310731.8 |
| 06302 | 15037 | Chépica | 245508.7 | 2017 | 3691714537 | 270656.8 | 20386.617 | 246573.61 | 296155.3 | 269949.2 |
| 06303 | 35399 | Chimbarongo | 260706.7 | 2017 | 9228754903 | 296635.3 | 35327.054 | 203947.27 | 340681.3 | 305670.1 |
| 06304 | 6811 | Lolol | 236668.2 | 2017 | 1611947197 | 307398.5 | 11823.738 | 299037.87 | 315759.2 | 307398.5 |
| 06305 | 17833 | Nancagua | 245992.6 | 2017 | 4386786331 | 278648.0 | 54436.525 | 197945.23 | 317207.3 | 299719.8 |
| 06306 | 12482 | Palmilla | 246745.0 | 2017 | 3079870843 | 319520.0 | 39939.360 | 287619.11 | 364313.2 | 306627.8 |
| 06307 | 11007 | Peralillo | 265630.7 | 2017 | 2923796850 | 288996.9 | 14793.731 | 276770.36 | 309491.9 | 284862.6 |
| 06308 | 8738 | Placilla | 240573.8 | 2017 | 2102134220 | 319928.5 | 26713.853 | 301038.98 | 338818.1 | 319928.5 |
| 06310 | 37855 | Santa Cruz | 300976.4 | 2017 | 11393463346 | 326091.3 | 21246.123 | 288548.29 | 355406.5 | 327814.1 |
| 07101 | 220357 | Talca | 307377.4 | 2017 | 67732753814 | 296681.1 | 29808.239 | 185058.02 | 376683.5 | 295195.6 |
| 07102 | 46068 | Constitución | 280736.9 | 2017 | 12932986800 | 311162.9 | 28491.828 | 257524.87 | 359735.7 | 304458.3 |
| 07103 | 9448 | Curepto | 281855.5 | 2017 | 2662971120 | 282559.7 | 20798.632 | 267852.84 | 297266.5 | 282559.7 |
| 07104 | 4142 | Empedrado | 209235.2 | 2017 | 866652110 | 315700.4 | 85134.346 | 226360.87 | 395890.5 | 324850.0 |
| 07105 | 49721 | Maule | 245019.7 | 2017 | 12182624190 | 301160.4 | 26170.230 | 264664.99 | 348925.2 | 296372.3 |
| 07106 | 8422 | Pelarco | 216777.5 | 2017 | 1825700105 | 332375.8 | 40829.732 | 303504.82 | 361246.8 | 332375.8 |
| 07107 | 8245 | Pencahue | 233692.6 | 2017 | 1926795579 | 295650.8 | 50463.574 | 237534.28 | 328373.4 | 321044.6 |
| 07108 | 13906 | Río Claro | 224864.2 | 2017 | 3126961590 | 292710.2 | 41555.961 | 263325.69 | 322094.7 | 292710.2 |
| 07109 | 43269 | San Clemente | 247003.5 | 2017 | 10687595452 | 277295.5 | 64529.235 | 231214.90 | 445505.2 | 256072.2 |
| 07110 | 9191 | San Rafael | 249688.5 | 2017 | 2294886656 | 333009.1 | 70543.216 | 283127.48 | 382890.6 | 333009.1 |
| 07201 | 40441 | Cauquenes | 235303.7 | 2017 | 9515918892 | 273011.3 | 23874.033 | 240565.51 | 334929.9 | 270848.7 |
| 07202 | 8928 | Chanco | 250327.3 | 2017 | 2234922252 | 266348.0 | 35105.386 | 229502.69 | 299406.4 | 270135.0 |
| 07203 | 7571 | Pelluhue | 202735.2 | 2017 | 1534908448 | 261387.9 | 21799.268 | 239664.05 | 292407.1 | 252895.9 |
| 07301 | 149136 | Curicó | 282406.9 | 2017 | 42117028333 | 323388.3 | 22314.394 | 276793.86 | 363944.1 | 325424.3 |
| 07302 | 9657 | Hualañé | 303280.6 | 2017 | 2928781043 | 251434.9 | 56793.080 | 193335.31 | 306824.4 | 254144.9 |
| 07303 | 6653 | Licantén | 261799.2 | 2017 | 1741750148 | 318432.3 | 13919.583 | 308589.67 | 328274.9 | 318432.3 |
| 07304 | 45976 | Molina | 261223.2 | 2017 | 12009998195 | 303505.4 | 25884.602 | 235574.33 | 337106.4 | 311008.9 |
| 07305 | 10484 | Rauco | 271406.8 | 2017 | 2845428741 | 311255.5 | 31088.888 | 276438.36 | 336236.7 | 321091.3 |
| 07306 | 15187 | Romeral | 269017.0 | 2017 | 4085560646 | 305806.0 | 49584.771 | 248578.00 | 335957.4 | 332882.7 |
| 07307 | 18544 | Sagrada Familia | 248654.3 | 2017 | 4611045339 | 310147.7 | 22190.858 | 280594.84 | 342794.9 | 307258.6 |
| 07308 | 28921 | Teno | 262087.1 | 2017 | 7579820261 | 315374.3 | 40599.780 | 263294.74 | 370095.0 | 313983.9 |
| 07309 | 4322 | Vichuquén | 218281.8 | 2017 | 943414066 | 307408.4 | 44044.239 | 276264.45 | 338552.4 | 307408.4 |
| 07401 | 93602 | Linares | 270205.2 | 2017 | 25291751487 | 294027.2 | 30360.299 | 233518.83 | 356071.2 | 287440.6 |
| 07402 | 20765 | Colbún | 200983.0 | 2017 | 4173410967 | 260833.6 | 29441.815 | 238510.59 | 311657.1 | 254990.2 |
| 07403 | 30534 | Longaví | 216067.2 | 2017 | 6597394825 | 265474.8 | 30319.178 | 212443.15 | 289587.0 | 275304.9 |
| 07404 | 41637 | Parral | 266374.6 | 2017 | 11091040324 | 271569.3 | 32754.481 | 208329.98 | 321470.1 | 281437.3 |
| 07405 | 19974 | Retiro | 225715.0 | 2017 | 4508431050 | 260096.9 | 32629.221 | 216885.53 | 308130.4 | 260514.9 |
| 07406 | 45547 | San Javier | 278559.1 | 2017 | 12687530322 | 270224.2 | 21537.570 | 222956.86 | 308774.0 | 272893.0 |
| 07407 | 16221 | Villa Alegre | 262111.0 | 2017 | 4251702731 | 275395.3 | 20507.708 | 242334.41 | 295291.6 | 282334.0 |
| 07408 | 18081 | Yerbas Buenas | 244050.7 | 2017 | 4412680158 | 255841.5 | 17672.506 | 220424.31 | 276940.4 | 261476.9 |
| 08101 | 223574 | Concepción | 323059.6 | 2017 | 72227728923 | 304706.7 | 24280.608 | 237800.37 | 359079.5 | 301343.6 |
| 08102 | 116262 | Coronel | 277633.4 | 2017 | 32278209118 | 255142.1 | 21087.205 | 192736.11 | 303229.2 | 255764.7 |
| 08103 | 85938 | Chiguayante | 298370.0 | 2017 | 25641323296 | 298400.0 | 21465.971 | 268121.45 | 362236.9 | 295060.4 |
| 08104 | 10624 | Florida | 232450.3 | 2017 | 2469551785 | 282105.3 | 13842.886 | 266190.56 | 291353.2 | 288772.2 |
| 08105 | 24333 | Hualqui | 232273.3 | 2017 | 5651905803 | 268758.5 | 31410.240 | 197304.90 | 308130.4 | 278481.2 |
| 08106 | 43535 | Lota | 283449.0 | 2017 | 12339953990 | 261008.2 | 14826.101 | 247039.11 | 293702.7 | 256135.6 |
| 08107 | 47367 | Penco | 265193.8 | 2017 | 12561435651 | 282732.5 | 15762.852 | 250714.58 | 311213.5 | 279650.5 |
| 08108 | 131808 | San Pedro de la Paz | 274394.0 | 2017 | 36167321662 | 304044.5 | 23113.144 | 274447.10 | 363569.7 | 297209.0 |
| 08109 | 13749 | Santa Juana | 260550.2 | 2017 | 3582304723 | 233738.5 | 63083.114 | 139385.02 | 271556.7 | 262006.0 |
| 08110 | 151749 | Talcahuano | 320279.6 | 2017 | 48602104064 | 281151.4 | 26912.372 | 244725.41 | 365267.3 | 274214.3 |
| 08111 | 54946 | Tomé | 275421.3 | 2017 | 15133299927 | 274032.6 | 32604.680 | 224141.68 | 386779.3 | 271361.1 |
| 08112 | 91773 | Hualpén | 287452.1 | 2017 | 26380344663 | 282873.9 | 24856.704 | 240261.33 | 342543.8 | 276264.2 |
| 08201 | 25522 | Lebu | 256023.5 | 2017 | 6534231082 | 268978.9 | 52003.704 | 183718.60 | 387751.9 | 262402.5 |
| 08202 | 36257 | Arauco | 316263.6 | 2017 | 11466769473 | 302319.5 | 98678.055 | 221779.72 | 556966.8 | 278180.1 |
| 08203 | 34537 | Cañete | 241126.1 | 2017 | 8327773342 | 279581.0 | 38531.385 | 230653.53 | 359337.1 | 278059.0 |
| 08204 | 6031 | Contulmo | 213011.2 | 2017 | 1284670805 | 305825.5 | NA | 305825.51 | 305825.5 | 305825.5 |
| 08205 | 32288 | Curanilahue | 262911.9 | 2017 | 8488900056 | 269708.5 | 17442.456 | 238540.76 | 310201.5 | 271317.2 |
| 08206 | 21035 | Los Álamos | 230097.8 | 2017 | 4840107033 | 233242.2 | 46129.593 | 145863.10 | 273307.8 | 247561.0 |
| 08207 | 10417 | Tirúa | 221347.3 | 2017 | 2305775206 | 292778.6 | 27804.612 | 264664.99 | 320263.6 | 293407.2 |
| 08301 | 202331 | Los Ángeles | 298724.4 | 2017 | 60441208918 | 292288.4 | 34521.202 | 197111.74 | 347528.7 | 296461.7 |
| 08302 | 4073 | Antuco | 191980.2 | 2017 | 781935233 | 288752.2 | 105618.684 | 214068.46 | 363435.8 | 288752.2 |
| 08303 | 28573 | Cabrero | 225166.5 | 2017 | 6433682620 | 271740.7 | 42501.269 | 239047.90 | 361475.9 | 262429.1 |
| 08304 | 22389 | Laja | 224428.0 | 2017 | 5024717382 | 223170.1 | 16917.557 | 197744.63 | 248866.4 | 219748.7 |
| 08305 | 29627 | Mulchén | 246376.9 | 2017 | 7299407611 | 267441.5 | 24688.798 | 237209.22 | 319946.2 | 265765.5 |
| 08306 | 26315 | Nacimiento | 292529.0 | 2017 | 7697899431 | 249362.7 | 15612.947 | 228540.67 | 281547.7 | 248470.3 |
| 08307 | 9737 | Negrete | 196781.4 | 2017 | 1916060576 | 227345.8 | 26844.443 | 200692.65 | 254377.5 | 226967.3 |
| 08308 | 3988 | Quilaco | 196761.0 | 2017 | 784682868 | 229642.8 | 23115.771 | 213297.44 | 245988.1 | 229642.8 |
| 08309 | 9587 | Quilleco | 201931.6 | 2017 | 1935917806 | 214690.2 | 18954.032 | 187496.98 | 232574.8 | 223696.0 |
| 08310 | 3412 | San Rosendo | 206738.0 | 2017 | 705390056 | 242835.8 | 65661.181 | 196406.33 | 289265.3 | 242835.8 |
| 08311 | 13773 | Santa Bárbara | 250849.5 | 2017 | 3454949584 | 262803.9 | 6760.668 | 255125.24 | 267861.9 | 265424.6 |
| 08312 | 14134 | Tucapel | 214733.9 | 2017 | 3035048397 | 225121.6 | 35243.716 | 173712.92 | 254230.8 | 242007.5 |
| 08313 | 21198 | Yumbel | 221417.8 | 2017 | 4693613938 | 286828.1 | 66066.993 | 236904.48 | 383935.4 | 263236.2 |
| 08314 | 5923 | Alto Biobío | 251792.7 | 2017 | 1491367928 | NA | NA | NA | NA | NA |
| 09101 | 282415 | Temuco | 294512.7 | 2017 | 83174794799 | 308710.1 | 23826.178 | 256182.42 | 392002.1 | 305911.0 |
| 09102 | 24533 | Carahue | 237416.7 | 2017 | 5824543339 | 271817.4 | 45269.383 | 205353.31 | 326939.1 | 265185.8 |
| 09103 | 17526 | Cunco | 247099.1 | 2017 | 4330659433 | 246879.1 | 32647.802 | 196376.89 | 286226.0 | 252261.4 |
| 09104 | 7489 | Curarrehue | 204180.7 | 2017 | 1529109215 | 279439.1 | 14051.966 | 269502.85 | 289375.3 | 279439.1 |
| 09105 | 24606 | Freire | 305541.7 | 2017 | 7518158340 | 244377.9 | 36195.091 | 197331.75 | 282892.0 | 249473.3 |
| 09106 | 11996 | Galvarino | 244269.6 | 2017 | 2930258102 | 277023.4 | 3317.876 | 274677.35 | 279369.5 | 277023.4 |
| 09107 | 14414 | Gorbea | 254627.9 | 2017 | 3670206245 | 264719.8 | 21770.848 | 240729.64 | 301039.0 | 258426.6 |
| 09108 | 38013 | Lautaro | 296417.7 | 2017 | 11267725602 | 263508.8 | 16477.328 | 238296.28 | 286329.6 | 262106.3 |
| 09109 | 23612 | Loncoche | 213841.9 | 2017 | 5049235445 | 231962.4 | 52238.318 | 127730.02 | 268385.5 | 250823.0 |
| 09110 | 6138 | Melipeuco | 211980.8 | 2017 | 1301137941 | 240532.7 | 26372.155 | 221884.75 | 259180.6 | 240532.7 |
| 09111 | 32510 | Nueva Imperial | 242015.9 | 2017 | 7867935676 | 266922.6 | 9629.951 | 252000.13 | 279412.1 | 265894.3 |
| 09112 | 76126 | Padre Las Casas | 278372.7 | 2017 | 21191399108 | 296704.8 | 23112.436 | 249619.67 | 323243.2 | 304294.2 |
| 09113 | 6905 | Perquenco | 260596.6 | 2017 | 1799419624 | 276852.6 | NA | 276852.62 | 276852.6 | 276852.6 |
| 09114 | 24837 | Pitrufquén | 249811.8 | 2017 | 6204576082 | 291183.7 | 37712.428 | 268192.51 | 374994.0 | 277846.5 |
| 09115 | 28523 | Pucón | 260967.9 | 2017 | 7443587942 | 331611.6 | 15114.724 | 311504.77 | 356659.8 | 333006.6 |
| 09116 | 12450 | Saavedra | 229431.4 | 2017 | 2856420491 | 328228.1 | 39709.865 | 300148.97 | 356307.2 | 328228.1 |
| 09117 | 15045 | Teodoro Schmidt | 224680.1 | 2017 | 3380311968 | 253110.7 | 33071.156 | 217564.95 | 282969.8 | 258797.2 |
| 09118 | 9722 | Toltén | 219705.4 | 2017 | 2135976054 | 237150.7 | 81972.499 | 145001.48 | 301957.1 | 264493.6 |
| 09119 | 28151 | Vilcún | 172649.0 | 2017 | 4860243131 | 257646.6 | 55421.187 | 164932.88 | 324386.1 | 273609.4 |
| 09120 | 55478 | Villarrica | 246047.7 | 2017 | 13650235814 | 295286.4 | 22024.568 | 249715.94 | 336408.4 | 296086.8 |
| 09121 | 11611 | Cholchol | 253226.0 | 2017 | 2940207311 | 222869.7 | 40881.066 | 193962.40 | 251777.0 | 222869.7 |
| 09201 | 53262 | Angol | 268414.6 | 2017 | 14296297282 | 292721.6 | 33538.577 | 247142.56 | 382781.6 | 288640.5 |
| 09202 | 24598 | Collipulli | 247911.8 | 2017 | 6098134776 | 258173.4 | 38974.350 | 182540.44 | 317749.3 | 263913.0 |
| 09203 | 17413 | Curacautín | 234574.3 | 2017 | 4084643011 | 264813.7 | 28466.715 | 236680.12 | 325581.3 | 258773.1 |
| 09204 | 7733 | Ercilla | 268071.3 | 2017 | 2072995481 | 275932.3 | 26020.139 | 254056.67 | 304706.6 | 269033.6 |
| 09205 | 10251 | Lonquimay | 250560.5 | 2017 | 2568496128 | 340170.6 | 2697.560 | 338263.11 | 342078.0 | 340170.6 |
| 09206 | 7265 | Los Sauces | 212950.7 | 2017 | 1547086780 | 260090.1 | 17697.999 | 241220.44 | 276319.9 | 262730.1 |
| 09207 | 9548 | Lumaco | 282522.6 | 2017 | 2697526159 | 272360.7 | 11893.621 | 260738.15 | 284508.0 | 271835.8 |
| 09208 | 11779 | Purén | 234139.4 | 2017 | 2757928013 | 263556.4 | 16656.076 | 244648.34 | 283008.9 | 263284.2 |
| 09209 | 10250 | Renaico | 266020.9 | 2017 | 2726714090 | 268081.4 | 6138.245 | 261222.13 | 276142.0 | 267480.8 |
| 09210 | 18843 | Traiguén | 258102.0 | 2017 | 4863416659 | 268281.0 | 28770.246 | 232797.16 | 312085.3 | 262524.6 |
| 09211 | 34182 | Victoria | 225959.9 | 2017 | 7723760970 | 281172.8 | 21014.455 | 257461.71 | 329429.4 | 274785.3 |
| 10101 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 323364.6 | 28086.643 | 249516.29 | 396117.3 | 321851.1 |
| 10102 | 33985 | Calbuco | 280878.2 | 2017 | 9545646863 | 321814.7 | 25450.243 | 298037.65 | 363555.3 | 313217.4 |
| 10104 | 12261 | Fresia | 223666.2 | 2017 | 2742371891 | 398454.9 | 176764.671 | 284437.03 | 602078.0 | 308849.8 |
| 10105 | 18428 | Frutillar | 281543.9 | 2017 | 5188291726 | 315542.6 | 8642.835 | 307541.29 | 328151.6 | 315088.3 |
| 10106 | 17068 | Los Muermos | 233220.1 | 2017 | 3980600731 | 302064.2 | 8353.115 | 295965.22 | 311584.9 | 298642.5 |
| 10107 | 17591 | Llanquihue | 251391.8 | 2017 | 4422233283 | 305281.5 | 17405.265 | 280364.25 | 327286.6 | 304222.3 |
| 10108 | 14216 | Maullín | 269082.7 | 2017 | 3825279050 | 370115.0 | 101003.272 | 304184.47 | 486396.2 | 319764.5 |
| 10109 | 44578 | Puerto Varas | 312276.5 | 2017 | 13920663786 | 337050.7 | 39691.333 | 235338.01 | 375616.8 | 350660.4 |
| 10201 | 43807 | Castro | 349368.8 | 2017 | 15304799118 | 338599.5 | 16940.464 | 315366.44 | 372754.0 | 333221.7 |
| 10202 | 38991 | Ancud | 229798.1 | 2017 | 8960055930 | 305819.6 | 12074.189 | 288410.21 | 322404.1 | 306227.4 |
| 10203 | 14858 | Chonchi | 239577.2 | 2017 | 3559637517 | 305133.2 | 31157.332 | 271120.24 | 332294.4 | 311985.1 |
| 10205 | 13762 | Dalcahue | 325358.2 | 2017 | 4477578923 | 304228.8 | 27458.783 | 277898.24 | 332691.5 | 302096.6 |
| 10207 | 5385 | Queilén | 183406.6 | 2017 | 987644627 | 358690.7 | 68565.088 | 310207.88 | 407173.6 | 358690.7 |
| 10208 | 27192 | Quellón | 241965.8 | 2017 | 6579532876 | 342364.3 | 33297.418 | 305011.78 | 404593.8 | 336631.7 |
| 10209 | 8352 | Quemchi | 308051.3 | 2017 | 2572844097 | 299840.9 | 44066.592 | 248996.95 | 327004.0 | 323521.8 |
| 10210 | 8088 | Quinchao | 370474.4 | 2017 | 2996397098 | 252208.4 | 92111.925 | 187075.46 | 317341.4 | 252208.4 |
| 10301 | 161460 | Osorno | 271587.3 | 2017 | 43850482486 | 313715.1 | 28778.147 | 256448.63 | 384550.8 | 308858.3 |
| 10302 | 8999 | Puerto Octay | 262148.9 | 2017 | 2359078294 | 295721.6 | 1691.740 | 294525.37 | 296917.8 | 295721.6 |
| 10303 | 20369 | Purranque | 302471.6 | 2017 | 6161043438 | 293065.9 | 47462.524 | 251391.30 | 374994.0 | 278899.5 |
| 10304 | 11667 | Puyehue | 230541.3 | 2017 | 2689725003 | 252340.2 | 20938.767 | 237534.28 | 267146.2 | 252340.2 |
| 10305 | 14085 | Río Negro | 276657.1 | 2017 | 3896715111 | 241486.7 | 38071.388 | 197945.23 | 268504.9 | 258009.9 |
| 10306 | 7512 | San Juan de la Costa | 222910.5 | 2017 | 1674503801 | 270543.7 | 24552.991 | 253182.10 | 287905.3 | 270543.7 |
| 10307 | 10030 | San Pablo | 195712.4 | 2017 | 1962995435 | 338456.3 | 102530.029 | 265956.66 | 410956.0 | 338456.3 |
| 11101 | 57818 | Coyhaique | 327100.3 | 2017 | 18912283227 | 344164.9 | 31644.111 | 235625.01 | 382396.3 | 350366.5 |
| 11201 | 23959 | Aysén | 307831.4 | 2017 | 7375332218 | 330385.2 | 52412.484 | 285693.90 | 463767.6 | 315327.0 |
| 11202 | 6517 | Cisnes | 251971.0 | 2017 | 1642095149 | 350240.3 | 16273.355 | 331482.51 | 360583.6 | 358654.9 |
| 11301 | 3490 | Cochrane | 350724.8 | 2017 | 1224029692 | 446971.1 | 120164.252 | 362002.10 | 531940.0 | 446971.1 |
| 11401 | 4865 | Chile Chico | 333445.3 | 2017 | 1622211456 | 353728.5 | 21739.468 | 338356.42 | 369100.7 | 353728.5 |
| 12101 | 131592 | Punta Arenas | 391758.4 | 2017 | 51552266922 | 351715.6 | 29319.890 | 316522.57 | 454638.0 | 345815.2 |
| 12301 | 6801 | Porvenir | 446255.2 | 2017 | 3034981682 | 400454.3 | 46627.544 | 346616.30 | 427850.5 | 426896.2 |
| 12401 | 21477 | Natales | 336808.6 | 2017 | 7233637635 | 338499.5 | 16960.265 | 322327.29 | 378820.0 | 334401.1 |
| 13101 | 404495 | Santiago | 450851.7 | 2017 | 182367246208 | 449866.5 | 48044.908 | 186563.20 | 539749.7 | 457340.8 |
| 13102 | 80832 | Cerrillos | 276766.5 | 2017 | 22371586546 | 326585.5 | 33485.911 | 270387.80 | 445898.9 | 322334.0 |
| 13103 | 132622 | Cerro Navia | 270634.1 | 2017 | 35892031153 | 322225.9 | 15491.767 | 278407.85 | 350253.6 | 324465.0 |
| 13104 | 126955 | Conchalí | 310325.3 | 2017 | 39397353402 | 325736.1 | 21227.453 | 266948.14 | 377656.1 | 319640.7 |
| 13105 | 162505 | El Bosque | 281653.9 | 2017 | 45770170398 | 322706.8 | 30311.115 | 295869.56 | 473272.2 | 317115.1 |
| 13106 | 147041 | Estación Central | 340680.2 | 2017 | 50093952387 | 360896.4 | 48210.583 | 294110.94 | 486934.1 | 346694.5 |
| 13107 | 98671 | Huechuraba | 315250.1 | 2017 | 31106038806 | 326688.6 | 27135.610 | 293575.63 | 410986.3 | 326591.7 |
| 13108 | 100281 | Independencia | 376152.6 | 2017 | 37720956327 | 380517.1 | 47287.575 | 318221.11 | 461557.2 | 363354.1 |
| 13109 | 90119 | La Cisterna | 367262.4 | 2017 | 33097323323 | 341778.4 | 17404.565 | 306765.53 | 372871.2 | 341576.6 |
| 13110 | 366916 | La Florida | 349483.5 | 2017 | 128231071590 | 338536.6 | 22019.622 | 285825.98 | 419345.1 | 336157.8 |
| 13111 | 116571 | La Granja | 306768.3 | 2017 | 35760286668 | 325307.0 | 15902.594 | 293356.18 | 354980.9 | 322067.6 |
| 13112 | 177335 | La Pintana | 232647.0 | 2017 | 41256447003 | 310929.5 | 30350.628 | 274264.69 | 497993.9 | 307816.6 |
| 13113 | 92787 | La Reina | 434408.5 | 2017 | 40307459856 | 346490.1 | 17858.449 | 294344.48 | 370921.6 | 349123.2 |
| 13114 | 294838 | Las Condes | 456515.7 | 2017 | 134598169599 | 369219.5 | 34154.121 | 318516.24 | 465128.3 | 359172.4 |
| 13115 | 105833 | Lo Barnechea | 349308.7 | 2017 | 36968385127 | 338198.3 | 31429.650 | 274239.57 | 384041.1 | 333753.9 |
| 13116 | 98804 | Lo Espejo | 264154.1 | 2017 | 26099479542 | 317033.7 | 13429.289 | 277571.24 | 347440.3 | 318145.2 |
| 13117 | 96249 | Lo Prado | 305431.2 | 2017 | 29397444939 | 329136.6 | 18551.833 | 288457.90 | 371364.6 | 327782.4 |
| 13118 | 116534 | Macul | 345701.4 | 2017 | 40285970358 | 354762.8 | 28906.123 | 304728.16 | 428018.3 | 353438.6 |
| 13119 | 521627 | Maipú | 358559.2 | 2017 | 187034167391 | 338313.3 | 19739.727 | 278211.79 | 399801.5 | 337559.1 |
| 13120 | 208237 | Ñuñoa | 426460.1 | 2017 | 88804766896 | 382296.2 | 33494.320 | 321678.15 | 482868.2 | 381940.3 |
| 13121 | 101174 | Pedro Aguirre Cerda | 316863.2 | 2017 | 32058321741 | 324390.9 | 20962.540 | 302241.91 | 417524.2 | 320184.8 |
| 13122 | 241599 | Peñalolén | 321570.6 | 2017 | 77691132095 | 343077.6 | 10961.811 | 316772.22 | 370749.9 | 341958.5 |
| 13123 | 142079 | Providencia | 516122.3 | 2017 | 73330144381 | 404163.7 | 31229.699 | 312085.27 | 469965.8 | 405631.0 |
| 13124 | 230293 | Pudahuel | 320572.7 | 2017 | 73825647438 | 338317.7 | 23697.537 | 296685.70 | 443868.7 | 332280.2 |
| 13125 | 210410 | Quilicura | 383485.8 | 2017 | 80689241762 | 343614.8 | 15489.944 | 290963.05 | 387614.3 | 345575.2 |
| 13126 | 110026 | Quinta Normal | 311731.1 | 2017 | 34298531093 | 351328.6 | 27540.147 | 310842.91 | 414589.6 | 344132.6 |
| 13127 | 157851 | Recoleta | 344997.0 | 2017 | 54458123369 | 355525.8 | 42516.727 | 305234.41 | 466310.1 | 343686.2 |
| 13128 | 147151 | Renca | 294000.5 | 2017 | 43262464632 | 319351.3 | 21827.160 | 215843.76 | 346588.9 | 320042.2 |
| 13129 | 94492 | San Joaquín | 336046.8 | 2017 | 31753732439 | 333476.6 | 20043.038 | 290326.48 | 393890.5 | 329416.2 |
| 13130 | 107954 | San Miguel | 351632.1 | 2017 | 37960091353 | 373225.6 | 27993.488 | 333056.20 | 418872.6 | 368890.8 |
| 13131 | 82900 | San Ramón | 281439.6 | 2017 | 23331343432 | 317741.0 | 14379.749 | 291856.72 | 340498.4 | 317786.2 |
| 13132 | 85384 | Vitacura | 496933.1 | 2017 | 42430139879 | 348352.3 | 39278.438 | 200553.47 | 428169.9 | 343005.1 |
| 13201 | 568106 | Puente Alto | 328342.7 | 2017 | 186533464474 | 331967.8 | 23287.400 | 235096.48 | 391765.6 | 333630.7 |
| 13202 | 26521 | Pirque | 332454.5 | 2017 | 8817024774 | 319421.3 | 19097.655 | 287383.75 | 335058.2 | 322241.2 |
| 13203 | 18189 | San José de Maipo | 381218.4 | 2017 | 6933981276 | 341712.2 | 35893.783 | 301038.93 | 404396.9 | 338323.1 |
| 13301 | 146207 | Colina | 300609.0 | 2017 | 43951136523 | 328631.3 | 44844.048 | 229455.56 | 557074.4 | 325596.5 |
| 13302 | 102034 | Lampa | 372624.0 | 2017 | 38020316317 | 323021.2 | 21785.177 | 261243.52 | 356023.3 | 319512.8 |
| 13303 | 19312 | Tiltil | 327523.1 | 2017 | 6325126322 | 299915.5 | 35848.414 | 235625.01 | 338575.8 | 309964.8 |
| 13401 | 301313 | San Bernardo | 286991.8 | 2017 | 86474375157 | 315766.5 | 17429.906 | 258702.50 | 355232.6 | 315609.1 |
| 13402 | 96614 | Buin | 314979.3 | 2017 | 30431412042 | 324513.3 | 21418.931 | 281347.83 | 359271.9 | 326639.1 |
| 13403 | 25392 | Calera de Tango | 307306.5 | 2017 | 7803125477 | 314434.4 | 53650.922 | 227120.85 | 401900.0 | 322844.9 |
| 13404 | 72759 | Paine | 330137.7 | 2017 | 24020488982 | 304899.8 | 20133.016 | 250241.34 | 332860.5 | 310346.7 |
| 13501 | 123627 | Melipilla | 291641.9 | 2017 | 36054817558 | 309278.7 | 25404.201 | 265030.59 | 369025.7 | 302818.4 |
| 13502 | 6444 | Alhué | 349434.5 | 2017 | 2251756129 | 370601.5 | 26873.212 | 351599.25 | 389603.7 | 370601.5 |
| 13503 | 32579 | Curacaví | 269095.1 | 2017 | 8766848005 | 312443.8 | 24525.290 | 271852.77 | 353645.9 | 314881.7 |
| 13504 | 13590 | María Pinto | 253962.5 | 2017 | 3451350898 | 320531.4 | 85161.401 | 268060.08 | 511355.4 | 286529.9 |
| 13601 | 74237 | Talagante | 394670.6 | 2017 | 29299162746 | 323131.9 | 20250.441 | 287674.11 | 357121.5 | 323626.4 |
| 13602 | 35923 | El Monte | 297691.7 | 2017 | 10693979408 | 302912.3 | 10426.084 | 288437.51 | 317574.4 | 303760.4 |
| 13603 | 36219 | Isla de Maipo | 229284.1 | 2017 | 8304441408 | 310069.7 | 13965.619 | 290623.19 | 328947.2 | 314928.8 |
| 13604 | 63250 | Padre Hurtado | 277563.2 | 2017 | 17555873230 | 323746.2 | 12757.391 | 302505.03 | 348225.4 | 324311.9 |
| 13605 | 90201 | Peñaflor | 351564.7 | 2017 | 31711490484 | 312376.1 | 20152.546 | 274104.59 | 360451.0 | 313182.8 |
| 14101 | 166080 | Valdivia | 308754.5 | 2017 | 51277944139 | 311790.9 | 20956.836 | 249305.39 | 350028.1 | 308155.6 |
| 14102 | 5302 | Corral | 222523.9 | 2017 | 1179821617 | 399361.9 | 174417.656 | 276030.01 | 522693.8 | 399361.9 |
| 14103 | 16752 | Lanco | 267286.0 | 2017 | 4477574931 | 248623.2 | 57856.754 | 147944.17 | 289039.0 | 268007.0 |
| 14104 | 19634 | Los Lagos | 211843.1 | 2017 | 4159328181 | 271844.6 | 20518.954 | 246995.55 | 292332.9 | 274025.0 |
| 14105 | 7095 | Máfil | 315022.1 | 2017 | 2235081533 | 210894.0 | 93186.083 | 145001.48 | 276786.5 | 210894.0 |
| 14106 | 21278 | Mariquina | 251064.3 | 2017 | 5342147079 | 259513.9 | 33008.610 | 215505.01 | 288890.4 | 266830.0 |
| 14107 | 20188 | Paillaco | 223306.5 | 2017 | 4508111622 | 266112.6 | 31361.995 | 227044.90 | 302017.0 | 267311.8 |
| 14108 | 34539 | Panguipulli | 287752.5 | 2017 | 9938682028 | 287862.1 | 26250.737 | 254583.42 | 325654.3 | 283641.8 |
| 14201 | 38036 | La Unión | 247291.7 | 2017 | 9405987850 | 279750.5 | 26979.607 | 247373.38 | 331829.3 | 273467.2 |
| 14202 | 14665 | Futrono | 247331.7 | 2017 | 3627119212 | 259492.4 | 25393.802 | 228476.13 | 286755.0 | 264665.0 |
| 14203 | 9896 | Lago Ranco | 247154.2 | 2017 | 2445838259 | 314247.5 | 63095.994 | 269631.89 | 358863.1 | 314247.5 |
| 14204 | 31372 | Río Bueno | 267934.4 | 2017 | 8405637271 | 261457.9 | 39567.878 | 175272.12 | 286877.0 | 279645.8 |
| 15101 | 221364 | Arica | 310013.3 | 2017 | 68625788545 | 300491.6 | 32272.782 | 263247.39 | 428284.2 | 290446.1 |
| 15201 | 2765 | Putre | 283661.5 | 2017 | 784324030 | 522557.6 | 126349.015 | 433215.36 | 611899.8 | 522557.6 |
| 16101 | 184739 | Chillán | 275879.2 | 2017 | 50965643906 | 283378.1 | 27637.463 | 222319.63 | 351037.5 | 282598.4 |
| 16102 | 21493 | Bulnes | 224694.9 | 2017 | 4829367278 | 258513.5 | 18998.990 | 226784.25 | 282851.4 | 260395.6 |
| 16103 | 30907 | Chillán Viejo | 259577.5 | 2017 | 8022762560 | 281428.8 | 23519.323 | 243606.44 | 309425.4 | 282296.6 |
| 16104 | 12044 | El Carmen | 215566.5 | 2017 | 2596282563 | 182974.6 | 95206.507 | 96667.65 | 285099.4 | 167156.8 |
| 16105 | 8448 | Pemuco | 262037.4 | 2017 | 2213691761 | 181438.1 | 71309.826 | 82857.99 | 243166.8 | 199863.9 |
| 16106 | 10827 | Pinto | 175602.5 | 2017 | 1901248804 | 271411.0 | 27974.535 | 236331.16 | 301417.3 | 272930.1 |
| 16107 | 17485 | Quillón | 256072.4 | 2017 | 4477425886 | 247251.0 | 20687.393 | 217122.66 | 277124.0 | 248488.0 |
| 16108 | 16079 | San Ignacio | 203331.5 | 2017 | 3269367252 | 252640.5 | 25609.994 | 231322.35 | 300954.4 | 246470.5 |
| 16109 | 17787 | Yungay | 258601.1 | 2017 | 4599738091 | 254386.4 | 27699.622 | 215753.18 | 291767.6 | 255205.0 |
| 16201 | 11594 | Quirihue | 252923.7 | 2017 | 2932397811 | 258915.4 | 38454.372 | 192976.35 | 313262.7 | 263059.9 |
| 16202 | 5012 | Cobquecura | 259487.2 | 2017 | 1300549630 | 331339.9 | 42618.719 | 301203.92 | 361475.9 | 331339.9 |
| 16203 | 15995 | Coelemu | 296882.1 | 2017 | 4748629723 | 265510.5 | 41168.591 | 206202.67 | 321605.7 | 268033.2 |
| 16204 | 5213 | Ninhue | 301493.8 | 2017 | 1571687052 | 234292.3 | 25429.411 | 216310.95 | 252273.6 | 234292.3 |
| 16205 | 4862 | Portezuelo | 196869.9 | 2017 | 957181342 | 274960.2 | 21273.655 | 259917.47 | 290003.0 | 274960.2 |
| 16206 | 5755 | Ránquil | 286762.9 | 2017 | 1650320432 | 167473.5 | 119664.426 | 82857.99 | 252089.0 | 167473.5 |
| 16207 | 5401 | Treguaco | 218702.4 | 2017 | 1181211462 | 253494.6 | NA | 253494.65 | 253494.6 | 253494.6 |
| 16301 | 53024 | San Carlos | 252551.6 | 2017 | 13391296803 | 273382.9 | 17517.541 | 243470.90 | 297822.8 | 274743.2 |
| 16302 | 26881 | Coihueco | 213580.4 | 2017 | 5741254097 | 248093.5 | 27317.634 | 200692.65 | 270026.2 | 255380.5 |
| 16303 | 11152 | Ñiquén | 236681.5 | 2017 | 2639471976 | 221285.6 | NA | 221285.58 | 221285.6 | 221285.6 |
| 16304 | 4308 | San Fabián | 259592.5 | 2017 | 1118324609 | 255083.0 | 8170.730 | 249305.39 | 260860.5 | 255083.0 |
| 16305 | 11603 | San Nicolás | 266207.1 | 2017 | 3088800683 | 268453.6 | 8724.779 | 262284.24 | 274622.9 | 268453.6 |
write_xlsx(estadisticos_finales, "estadisticos_finales.xlsx")
write.dbf(estadisticos_finales, "estadisticos_finales.dbf")