Expansión de la CASEN sobre el CENSO de PERSONAS (Nivel nacional urbano para el 2017)

Y regresión lineal de ingresos medios por zona sobre frecuencias de respuesta a la pregunta: P17 ¿Trabajó por un pago o especie?, cuya correlación (0.8717) resultó ser la más alta con los ingresos expandidos.

VE-CC-AJ

DataIntelligence

date: 02-08-2021

1 Resumen

Iniciaremos expandiendo los ingresos promedios (multiplicación del ingreso promedio mensual comunal y los habitantes de la misma comuna) obtenidos de la CASEN 2017 sobre la categoría de respuesta: “Trabajó por un pago o especie” del campo P17 del CENSO de personas del 2017, que fue la categoría de respuesta que más alto correlacionó con los ingresos expandidos, ambos a nivel comunal y ambos a nivel URBANO.

Seguiremos con un análisis sobre todas las zonas Chile comenzando en éste artículo a nivel urbano. En un segundo artículo haremos la publicación a nivel rural.

Como una tercera parte, y ya construída nuestra tabla de trabajo, haremos el análisis por región. Ensayaremos diferentes modelos dentro del análisis de regresión cuya variable independiente será: “frecuencia de población que posee la variable Censal respecto a la zona” y la dependiente: “ingreso expandido por zona por proporción de población zonal respecto al total comunal (multipob)”. Lo anterior para elegir el que posea el mayor coeficiente de determinación y así construir una tabla de valores predichos (estimación del ingreso e ingreso estimado por zona).


1.1 Variable CENSO

Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “Trabajó por un pago o especie” del campo P17 del Censo de personas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver aquí).

1.1.1 Lectura de la tabla censal de personas

Leemos la tabla Censo 2017 de personas que ya tiene integrada la clave zonal:

tabla_con_clave <- 
readRDS("../../../ds_correlaciones_censo_casen/corre_censo_casen_2017/censos_con_clave/censo_personas_con_clave_17")

abc <- head(tabla_con_clave,50)
kbl(abc) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV NHOGAR PERSONAN P07 P08 P09 P10 P10COMUNA P10PAIS P11 P11COMUNA P11PAIS P12 P12COMUNA P12PAIS P12A_LLEGADA P12A_TRAMO P13 P14 P15 P15A P16 P16A P16A_OTRO P17 P18 P19 P20 P21M P21A P10PAIS_GRUPO P11PAIS_GRUPO P12PAIS_GRUPO ESCOLARIDAD P16A_GRUPO REGION_15R PROVINCIA_15R COMUNA_15R P10COMUNA_15R P11COMUNA_15R P12COMUNA_15R clave
15 152 15202 1 2 6 13225 1 1 1 1 1 73 1 98 998 3 15101 998 1 98 998 9998 98 2 4 6 2 1 2 98 7 98 98 98 98 9998 998 998 998 4 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 3 1 1 1 1 78 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 2 2 2 78 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 1 1 3 1965 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 3 5 2 52 1 98 998 2 98 998 1 98 998 9998 98 1 2 5 2 1 2 98 7 98 2 1 4 1995 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 4 11 1 44 1 98 998 2 98 998 1 98 998 9998 98 1 3 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 3 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 1 1 1 39 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 8 98 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 2 2 2 35 1 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 1 Z 2 2 11 2004 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 3 5 1 13 1 98 998 2 98 998 1 98 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 4 5 1 12 1 98 998 2 98 998 1 98 998 9998 98 1 6 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 10 1 1 1 2 65 1 98 998 2 98 998 1 98 998 9998 98 2 4 5 2 1 2 98 6 98 3 3 9 1992 998 998 998 4 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 1 1 1 50 1 98 998 2 98 998 1 98 998 9998 98 2 5 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 2 4 2 43 1 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 6 98 2 2 3 2002 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 3 5 1 15 3 15201 998 2 98 998 1 98 998 9998 98 1 1 7 2 1 2 98 8 98 98 98 98 9998 998 998 998 9 2 15 152 15202 15201 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 1 1 1 75 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 2 16 2 58 4 98 68 6 98 998 5 98 998 9999 1 3 98 98 98 1 2 98 7 98 4 4 99 9999 68 68 68 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 3 2 2 70 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 5 4 99 9999 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 1 1 2 43 2 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 I 3 3 9 2008 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 2 4 1 55 2 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 6 98 98 98 98 9998 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 3 5 2 13 2 98 998 2 98 998 2 15101 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 17 1 4 5 1 8 2 98 998 2 98 998 2 15101 998 9998 98 1 2 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 17 1 5 15 2 29 2 98 998 4 98 998 3 98 998 2015 1 2 6 5 2 1 2 98 6 98 5 5 11 2014 998 604 604 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 6 15 1 4 2 98 998 1 98 998 5 98 998 2015 1 1 0 1 2 1 2 98 98 98 98 98 98 9998 998 998 68 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 7 15 2 2 2 98 998 1 98 998 3 98 998 2015 1 1 0 1 2 1 2 98 98 98 98 98 98 9998 998 998 604 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 8 15 1 16 2 98 998 6 98 998 1 98 998 9998 98 2 4 5 2 1 2 98 6 98 98 98 98 9998 998 68 998 4 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 18 1 1 1 2 74 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 2 2 12 1976 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 19 1 1 1 1 68 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 20 1 1 1 1 74 1 98 998 3 15101 998 1 98 998 9998 98 2 2 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 2 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 20 1 2 2 2 65 1 98 998 3 997 998 3 98 998 9999 2 2 2 5 2 1 2 98 6 98 2 2 9 1982 998 998 604 2 2 15 152 15202 98 997 98 15202012006
15 152 15202 1 2 6 13225 25 1 1 1 2 76 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 6 98 8 6 3 1981 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 25 1 2 5 2 36 1 98 998 2 98 998 1 98 998 9998 98 2 4 8 1 1 2 98 1 A 0 98 98 9998 998 998 998 12 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 1 1 2 31 1 98 998 2 98 998 5 98 998 2007 2 2 5 5 2 1 2 98 1 A 2 2 4 2008 998 998 68 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 2 4 1 35 1 98 998 2 98 998 5 98 998 2007 2 2 6 5 2 1 2 98 1 F 98 98 98 9998 998 998 68 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 3 5 1 11 1 98 998 2 98 998 5 98 998 2007 2 1 5 5 2 1 2 98 98 98 98 98 98 9998 998 998 68 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 4 5 1 8 1 98 998 2 98 998 1 98 998 9998 98 1 2 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 5 15 2 74 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 6 98 6 6 99 9999 998 998 998 3 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 1 1 1 41 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 Z 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 2 2 2 47 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 A 2 1 4 1996 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 3 14 1 88 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 4 14 1 65 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 7 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 1 1 2 59 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 8 8 2 1998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 2 2 1 56 1 98 998 99 99 999 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 98 98 98 9998 998 999 998 2 2 15 152 15202 98 99 98 15202012006
15 152 15202 1 2 6 13225 36 1 3 5 2 36 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 6 98 2 2 7 2010 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 4 12 2 13 1 98 998 2 98 998 1 98 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 5 12 2 6 1 98 998 2 98 998 1 98 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 6 5 1 24 1 98 998 3 15101 998 1 98 998 9998 98 2 4 7 1 1 2 98 1 Z 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 36 1 7 11 2 24 1 98 998 3 15101 998 1 98 998 9998 98 2 4 7 1 1 2 98 1 N 2 2 11 2015 998 998 998 12 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 36 1 8 12 1 6 1 98 998 2 98 998 2 15101 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 36 1 9 12 2 1 1 98 998 1 98 998 2 15101 998 9998 98 3 98 98 98 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 38 1 1 1 1 19 1 98 998 3 15101 998 2 15101 998 9998 98 1 1 8 2 1 2 98 1 A 98 98 98 9998 998 998 998 9 2 15 152 15202 98 15101 15101 15202012006
15 152 15202 1 2 6 13225 39 1 1 1 1 21 1 98 998 2 98 998 1 98 998 9998 98 2 1 7 2 1 2 98 1 F 98 98 98 9998 998 998 998 9 2 15 152 15202 98 98 98 15202012006


Cuantas personas hay en Chile?

length(tabla_con_clave$clave)
## [1] 17574003

Cuántas zonas hay en Chile?

length(unique(tabla_con_clave$clave))
## [1] 15500

1.1.2 Filtro a nivel urbano:

tabla_con_clave_u <- filter(tabla_con_clave, tabla_con_clave$AREA ==1)

Cuantas personas hay en Chile urbanas?

length(tabla_con_clave_u$clave)
## [1] 15424263

Cuantas zonas hay en el nivel urbano?

length(unique(tabla_con_clave_u$clave))
## [1] 5169

1.1.3 Cálculo de respuestas censales

Obtenemos las respuestas a la pregunta P17 por zona eliminando los campos innecesarios. Despleguemos los primeros 1000 registros:

tabla_con_clave_f <- tabla_con_clave_u[,-c(1,2,4:31,33:48),drop=F]
abc <- head(tabla_con_clave_f,1000)
kbl(abc) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
COMUNA P17 clave
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 3 15201011001
15201 5 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 6 15201011001
15201 1 15201011001
15201 8 15201011001
15201 6 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 99 15201011001
15201 99 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 6 15201011001
15201 1 15201011001
15201 98 15201011001
15201 98 15201011001
15201 3 15201011001
15201 98 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 5 15201011001
15201 5 15201011001
15201 98 15201011001
15201 98 15201011001
15201 1 15201011001
15201 3 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 5 15201011001
15201 98 15201011001
15201 98 15201011001
15201 98 15201011001
15201 98 15201011001
15201 1 15201011001
15201 4 15201011001
15201 5 15201011001
15201 98 15201011001
15201 98 15201011001
15201 98 15201011001
15201 99 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 6 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 8 15201011001
15201 1 15201011001
15201 1 15201011001
15201 8 15201011001
15201 98 15201011001
15201 1 15201011001
15201 6 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 98 15201011001
15201 1 15201011001
15201 6 15201011001
15201 1 15201011001
15201 1 15201011001
15201 4 15201011001
15201 1 15201011001
15201 6 15201011001
15201 7 15201011001
15201 4 15201011001
15201 1 15201011001
15201 4 15201011001
15201 1 15201011001
15201 98 15201011001
15201 98 15201011001
15201 3 15201011001
15201 6 15201011001
15201 98 15201011001
15201 98 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 4 15201011001
15201 99 15201011001
15201 99 15201011001
15201 99 15201011001
15201 99 15201011001
15201 99 15201011001
15201 99 15201011001
15201 99 15201011001
15201 99 15201011001
15201 1 15201011001
15201 4 15201011001
15201 8 15201011001
15201 1 15201011001
15201 6 15201011001
15201 1 15201011001
15201 98 15201011001
15201 99 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 6 15201011001
15201 98 15201011001
15201 98 15201011001
15201 98 15201011001
15201 1 15201011001
15201 6 15201011001
15201 98 15201011001
15201 1 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 8 15201011001
15201 7 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 98 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 98 15201011001
15201 98 15201011001
15201 99 15201011001
15201 1 15201011001
15201 5 15201011001
15201 98 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 98 15201011001
15201 98 15201011001
15201 7 15201011001
15201 7 15201011001
15201 3 15201011001
15201 1 15201011001
15201 5 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 8 15201011001
15201 1 15201011001
15201 4 15201011001
15201 98 15201011001
15201 7 15201011001
15201 1 15201011001
15201 1 15201011001
15201 4 15201011001
15201 98 15201011001
15201 98 15201011001
15201 1 15201011001
15201 7 15201011001
15201 1 15201011001
15201 6 15201011001
15201 98 15201011001
15201 98 15201011001
15201 98 15201011001
15201 99 15201011001
15201 6 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 5 15201011001
15201 98 15201011001
15201 98 15201011001
15201 99 15201011001
15201 1 15201011001
15201 7 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 8 15201011001
15201 2 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 8 15201011001
15201 98 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 98 15201011001
15201 8 15201011001
15201 5 15201011001
15201 1 15201011001
15201 8 15201011001
15201 98 15201011001
15201 98 15201011001
15201 1 15201011001
15201 99 15201011001
15201 1 15201011001
15201 98 15201011001
15201 5 15201011001
15201 5 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 99 15201011001
15201 98 15201011001
15201 98 15201011001
15201 2 15201011001
15201 1 15201011001
15201 1 15201011001
15201 6 15201011001
15201 7 15201011001
15201 1 15201011001
15201 4 15201011001
15201 1 15201011001
15201 1 15201011001
15201 4 15201011001
15201 99 15201011001
15201 98 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 8 15201011001
15201 2 15201011001
15201 1 15201011001
15201 1 15201011001
15201 5 15201011001
15201 7 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 99 15201011001
15201 98 15201011001
15201 7 15201011001
15201 99 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 98 15201011001
15201 1 15201011001
15201 3 15201011001
15201 6 15201011001
15201 98 15201011001
15201 98 15201011001
15201 98 15201011001
15201 1 15201011001
15201 99 15201011001
15201 1 15201011001
15201 1 15201011001
15201 3 15201011001
15201 3 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 4 15201011001
15201 98 15201011001
15201 98 15201011001
15201 98 15201011001
15201 1 15201011001
15201 8 15201011001
15201 99 15201011001
15201 6 15201011001
15201 1 15201011001
15201 98 15201011001
15201 7 15201011001
15201 7 15201011001
15201 3 15201011001
15201 1 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 3 15201011001
15201 3 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 4 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 5 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 7 15201011001
15201 3 15201011001
15201 1 15201011001
15201 1 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 8 15201011001
15201 98 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 98 15201011001
15201 1 15201011001
15201 6 15201011001
15201 1 15201011001
15201 1 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 98 15201011001
15201 1 15201011001
15201 6 15201011001
15201 98 15201011001
15201 1 15201011001
15201 7 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 98 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 98 15201011001
15201 98 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 98 15201011001
15201 98 15201011001
15201 3 15201011001
15201 1 15201011001
15201 98 15201011001
15201 98 15201011001
15201 98 15201011001
15201 1 15201011001
15201 6 15201011001
15201 98 15201011001
15201 98 15201011001
15201 3 15201011001
15201 6 15201011001
15201 98 15201011001
15201 8 15201011001
15201 1 15201011001
15201 98 15201011001
15201 98 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 5 15201011001
15201 5 15201011001
15201 98 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 6 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 4 15201011001
15201 1 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 98 15201011001
15201 98 15201011001
15201 7 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 5 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 6 15201011001
15201 7 15201011001
15201 7 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 7 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 4 15201011001
15201 98 15201011001
15201 1 15201011001
15201 99 15201011001
15201 98 15201011001
15201 1 15201011001
15201 2 15201011001
15201 98 15201011001
15201 98 15201011001
15201 1 15201011001
15201 98 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 8 15201011001
15201 5 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 98 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 6 15201011001
15201 98 15201011001
15201 1 15201011001
15201 2 15201011001
15201 2 15201011001
15201 1 15201011001
15201 4 15201011001
15201 98 15201011001
15201 98 15201011001
15201 1 15201011001
15201 6 15201011001
15201 1 15201011001
15201 5 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 6 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 98 15201011001
15201 2 15201011001
15201 1 15201011001
15201 98 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 3 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 7 15201011001
15201 1 15201011001
15201 1 15201011001
15201 4 15201011001
15201 1 15201011001
15201 1 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 8 15201011001
15201 1 15201011001
15201 2 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 4 15201011001
15201 98 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 5 15201011001
15201 1 15201011001
15201 98 15201011001
15201 7 15201011001
15201 6 15201011001
15201 1 15201011001
15201 1 15201011001
15201 5 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 5 15201011001
15201 8 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 8 15201011001
15201 98 15201011001
15201 98 15201011001
15201 98 15201011001
15201 98 15201011001
15201 98 15201011001
15201 7 15201011001
15201 1 15201011001
15201 2 15201011001
15201 7 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 98 15201011001
15201 1 15201011001
15201 7 15201011001
15201 8 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 5 15201011001
15201 98 15201011001
15201 98 15201011001
15201 7 15201011001
15201 7 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 7 15201011001
15201 1 15201011001
15201 1 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 8 15201011001
15201 98 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 8 15201011001
15201 2 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 3 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 3 15201011001
15201 1 15201011001
15201 3 15201011001
15201 3 15201011001
15201 7 15201011001
15201 7 15201011001
15201 1 15201011001
15201 5 15201011001
15201 98 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 98 15201011001
15201 8 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 98 15201011001
15201 98 15201011001
15201 6 15201011001
15201 2 15201011001
15201 5 15201011001
15201 98 15201011001
15201 98 15201011001
15201 98 15201011001
15201 98 15201011001
15201 98 15201011001
15201 6 15201011001
15201 1 15201011001
15201 98 15201011001
15201 2 15201011001
15201 3 15201011001
15201 1 15201011001
15201 6 15201011001
15201 1 15201011001
15201 1 15201011001
15201 98 15201011001
15201 98 15201011001
15201 98 15201011001
15201 7 15201011001
15201 1 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 2 15201011001
15201 1 15201011001
15201 6 15201011001
15201 98 15201011001
15201 98 15201011001
15201 1 15201011001
15201 1 15201011001
15201 5 15201011001
15201 98 15201011001
15201 98 15201011001
15201 98 15201011001
15201 98 15201011001
15201 7 15201011001
15201 8 15201011001
15201 7 15201011001
15201 7 15201011001
15201 8 15201011001
15201 1 15201011001
15201 1 15201011001
15201 6 15201011001
15201 2 15201011001
15201 3 15201011001
15201 1 15201011001
15201 1 15201011001
15201 4 15201011001
15201 6 15201011001
15201 5 15201011001
15201 6 15201011001
15201 6 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 6 15201011001
15201 5 15201011001
15201 8 15201011001
15201 1 15201011001
15201 4 15201011001
15201 5 15201011001
15201 8 15201011001
15201 8 15201011001
15201 4 15201011001
15201 8 15201011001
15201 6 15201011001
15201 5 15201011001
15201 6 15201011001
15201 6 15201011001
15201 8 15201011001
15201 1 15201011001
15201 4 15201011001
15201 8 15201011001
15201 1 15201011001
15201 6 15201011001
15201 1 15201011001
15201 6 15201011001
15201 6 15201011001
15201 4 15201011001
15201 5 15201011001
15201 1 15201011001
15201 4 15201011001
15201 6 15201011001
15201 8 15201011001
15201 8 15201011001
15201 2 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 4 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 5 15201011001
15201 6 15201011001
15201 6 15201011001
15201 1 15201011001
15201 4 15201011001
15201 2 15201011001
15201 3 15201011001
15201 5 15201011001
15201 8 15201011001
15201 1 15201011001
15201 6 15201011001
15201 1 15201011001
15201 6 15201011001
15201 8 15201011001
15201 3 15201011001
15201 8 15201011001
15201 5 15201011001
15201 1 15201011001
15201 8 15201011001
15201 6 15201011001
15201 5 15201011001
15201 1 15201011001
15201 6 15201011001
15201 6 15201011001
15201 5 15201011001
15201 8 15201011001
15201 6 15201011001
15201 5 15201011001
15201 6 15201011001
15201 6 15201011001
15201 8 15201011001
15201 6 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
15201 1 15201011001
nrow(tabla_con_clave_f)
## [1] 15424263

Vemos que el número total de registros coincide con el total de personas urbanas.

Modifiquemos la tabla para poder trabajarla un poco mejor:

  1. Agregamos un cero a los códigos comunales de cuatro dígitos.
  2. Renombramos la columna clave por código.
codigos <- tabla_con_clave_f$COMUNA
rango <- seq(1:nrow(tabla_con_clave_f))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(tabla_con_clave_f,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE]
names(comuna_corr)[3] <- "código" 

abc <- head(comuna_corr,50)
kbl(abc) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
P17 clave código
1 15201011001 15201
1 15201011001 15201
1 15201011001 15201
1 15201011001 15201
1 15201011001 15201
3 15201011001 15201
5 15201011001 15201
98 15201011001 15201
1 15201011001 15201
1 15201011001 15201
1 15201011001 15201
6 15201011001 15201
1 15201011001 15201
8 15201011001 15201
6 15201011001 15201
1 15201011001 15201
1 15201011001 15201
1 15201011001 15201
99 15201011001 15201
99 15201011001 15201
1 15201011001 15201
1 15201011001 15201
1 15201011001 15201
1 15201011001 15201
6 15201011001 15201
1 15201011001 15201
98 15201011001 15201
98 15201011001 15201
3 15201011001 15201
98 15201011001 15201
98 15201011001 15201
1 15201011001 15201
1 15201011001 15201
1 15201011001 15201
1 15201011001 15201
1 15201011001 15201
5 15201011001 15201
5 15201011001 15201
98 15201011001 15201
98 15201011001 15201
1 15201011001 15201
3 15201011001 15201
1 15201011001 15201
1 15201011001 15201
1 15201011001 15201
1 15201011001 15201
1 15201011001 15201
1 15201011001 15201
1 15201011001 15201
1 15201011001 15201
tabla_con_clave_f <- comuna_corr


Obtenemos la cuenta de las respuestas 1:

claves_con_1 <- filter(tabla_con_clave_f, tabla_con_clave_f$P17 == 1)
head(claves_con_1,10)
##    P17       clave código
## 1    1 15201011001  15201
## 2    1 15201011001  15201
## 3    1 15201011001  15201
## 4    1 15201011001  15201
## 5    1 15201011001  15201
## 6    1 15201011001  15201
## 7    1 15201011001  15201
## 8    1 15201011001  15201
## 9    1 15201011001  15201
## 10   1 15201011001  15201

1.1.3.1 Tabla de contingencia:

con4 <- xtabs(~P17+clave, data=claves_con_1)
con4 <- as.data.frame(con4)

abc <- head(con4,50)
kbl(abc) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
P17 clave Freq
1 10101011001 320
1 10101011002 1309
1 10101021001 1828
1 10101021002 581
1 10101021003 1050
1 10101021004 1457
1 10101021005 1165
1 10101031001 2012
1 10101031002 2166
1 10101031003 1663
1 10101031004 1172
1 10101031005 2657
1 10101031006 1233
1 10101031007 1038
1 10101031008 1616
1 10101031009 1995
1 10101031010 1531
1 10101031011 1232
1 10101031012 837
1 10101031013 1642
1 10101031014 1030
1 10101031015 873
1 10101031016 1285
1 10101031017 1457
1 10101041001 1843
1 10101041002 895
1 10101041003 2559
1 10101051001 1148
1 10101051002 814
1 10101051003 1329
1 10101051004 1712
1 10101061001 3383
1 10101061002 1254
1 10101061003 1559
1 10101061004 1184
1 10101061005 1216
1 10101061006 1991
1 10101061007 340
1 10101061008 1008
1 10101061009 68
1 10101061010 610
1 10101071001 909
1 10101071002 1583
1 10101071003 1915
1 10101071004 1419
1 10101071005 1186
1 10101071006 1741
1 10101071007 987
1 10101071008 2104
1 10101071009 1509
nrow(con4)
## [1] 5165

No perdemos ni una zona a excepción de 4. Más adelante veremos porqué.

A la tabla de frecuencias por zona le añadimos el campo comunal:

trabajo_001 = merge( x = con4, y =claves_con_1, by = "clave", all.x = TRUE)
head(trabajo_001,10)
##          clave P17.x Freq P17.y código
## 1  10101011001     1  320     1  10101
## 2  10101011001     1  320     1  10101
## 3  10101011001     1  320     1  10101
## 4  10101011001     1  320     1  10101
## 5  10101011001     1  320     1  10101
## 6  10101011001     1  320     1  10101
## 7  10101011001     1  320     1  10101
## 8  10101011001     1  320     1  10101
## 9  10101011001     1  320     1  10101
## 10 10101011001     1  320     1  10101

Eliminamos los registros repetidos y renombramos COMUNA como código:

trabajo003 <- unique(trabajo_001)
trabajo003 <- trabajo003[,-c(2,4)]
# trabajo003$código <- as.numeric(trabajo003$código)
head(trabajo003,10)
##             clave Freq código
## 1     10101011001  320  10101
## 321   10101011002 1309  10101
## 1630  10101021001 1828  10101
## 3458  10101021002  581  10101
## 4039  10101021003 1050  10101
## 5089  10101021004 1457  10101
## 6546  10101021005 1165  10101
## 7711  10101031001 2012  10101
## 9723  10101031002 2166  10101
## 11889 10101031003 1663  10101
nrow(trabajo003)
## [1] 5165

Calculamos los ingresos expandidos a nivel urbano:

x <- import("../../../../archivos_grandes/Microdato_Censo2017-Personas.csv")
casen_2017 <- readRDS(file = "../../../../archivos_grandes/casen_2017_c.rds")

casen_2017_u <- filter(casen_2017, casen_2017$zona == "Urbano")
casen_2017_u <- casen_2017_u[!is.na(casen_2017_u$ytotcor),]
Q <- quantile(casen_2017_u$ytotcor, probs=c(.25, .75), na.rm = FALSE)
iqr <- IQR(casen_2017_u$ytotcor)
casen_2017_sin_o <- subset(casen_2017_u, casen_2017_u$ytotcor > 
                                 (Q[1] - 1.5*iqr) &
                                 casen_2017_u$ytotcor < (Q[2]+1.5*iqr))
casen_2017_sin_o <- data.frame(lapply(casen_2017_sin_o, as.character),
                               stringsAsFactors=FALSE)

b <-  as.numeric(casen_2017_sin_o$ytotcor)
a <- casen_2017_sin_o$comuna
promedios_grupales <-aggregate(b, by=list(a), FUN = mean , na.rm=TRUE )
names(promedios_grupales)[1] <- "comuna"
names(promedios_grupales)[2] <- "promedio_i"
promedios_grupales$año <- "2017"
codigos_comunales <- readRDS(file = "../../../../archivos_grandes/codigos_comunales_2011-2017.rds")
names(codigos_comunales)[1] <- "código"
names(codigos_comunales)[2] <- "comuna"
df_2017 = merge( promedios_grupales, codigos_comunales, 
                 by = "comuna", 
                 all.x = TRUE)

my_summary_data <- x %>%
    group_by(x$COMUNA) %>%
    summarise(Count = n()) 
names(my_summary_data)[1] <- "comuna"     
names(my_summary_data)[2] <- "personas"
# recogemos el campo Comuna:
codigos <- my_summary_data$comuna
# construimos una secuencia llamada rango del 1 al total de filas del 
# dataset:
rango <- seq(1:nrow(my_summary_data))
# Creamos un string que agrega un cero a todos los registros:
cadena <- paste("0",codigos[rango], sep = "")
# El string cadena tiene o 5 o 6 digitos, los cuales siempre deben ser 
# siempre 5 
# agregandole un cero al inicio de los que tienen 4.
# Para ello extraemos un substring de la cadena sobre todas las filas 
#(rangos) 
# comenzando desde el primero o el segundo y llegando siempre al 6.
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(my_summary_data,cadena)
names(comuna_corr)[3] <- "código"
comuna_corr <- comuna_corr[,-c(1),drop=FALSE]
df_2017_2 = merge( comuna_corr, df_2017, by = "código", all.x = TRUE)
df_2017_2$ingresos_expandidos <- df_2017_2$personas*df_2017_2$promedio_i
df_2017_2  <- na.omit(df_2017_2)

Veamos los primeros 10 registros:

head(df_2017_2,10)
##    código personas               comuna promedio_i  año ingresos_expandidos
## 1   01101   191468              Iquique   375676.9 2017         71930106513
## 2   01107   108375        Alto Hospicio   311571.7 2017         33766585496
## 3   01401    15711         Pozo Almonte   316138.5 2017          4966851883
## 7   01405     9296                 Pica   330061.1 2017          3068247619
## 8   02101   361873          Antofagasta   368221.4 2017        133249367039
## 9   02102    13467           Mejillones   369770.7 2017          4979702302
## 11  02104    13317               Taltal   383666.2 2017          5109282942
## 12  02201   165731               Calama   434325.1 2017         71981127235
## 14  02203    10996 San Pedro de Atacama   442861.0 2017          4869699464
## 15  02301    25186            Tocopilla   286187.2 2017          7207910819

Guardemos como rds:

saveRDS(df_2017_2, "Ingresos_expandidos_urbano_17.rds")

De cuántas comunas disponemos del valor del ingreso promedio?

nrow(df_2017_2)
## [1] 312
#df_2017_2$código <- as.numeric(df_2017_2$código)
head(df_2017_2,10)
##    código personas               comuna promedio_i  año ingresos_expandidos
## 1   01101   191468              Iquique   375676.9 2017         71930106513
## 2   01107   108375        Alto Hospicio   311571.7 2017         33766585496
## 3   01401    15711         Pozo Almonte   316138.5 2017          4966851883
## 7   01405     9296                 Pica   330061.1 2017          3068247619
## 8   02101   361873          Antofagasta   368221.4 2017        133249367039
## 9   02102    13467           Mejillones   369770.7 2017          4979702302
## 11  02104    13317               Taltal   383666.2 2017          5109282942
## 12  02201   165731               Calama   434325.1 2017         71981127235
## 14  02203    10996 San Pedro de Atacama   442861.0 2017          4869699464
## 15  02301    25186            Tocopilla   286187.2 2017          7207910819

Unimos nuestra tabla de frecuencias por zona con la de ingresos expandidos:

comunas_censo_casen_666 = merge( x = trabajo003, y = df_2017_2, by = "código", all.x = TRUE)
head(comunas_censo_casen_666,10)
##    código      clave Freq personas  comuna promedio_i  año ingresos_expandidos
## 1   01101 1101011001 1255   191468 Iquique   375676.9 2017         71930106513
## 2   01101 1101011002  621   191468 Iquique   375676.9 2017         71930106513
## 3   01101 1101041001  713   191468 Iquique   375676.9 2017         71930106513
## 4   01101 1101041002 1084   191468 Iquique   375676.9 2017         71930106513
## 5   01101 1101041003 1691   191468 Iquique   375676.9 2017         71930106513
## 6   01101 1101021005 1927   191468 Iquique   375676.9 2017         71930106513
## 7   01101 1101041005 1840   191468 Iquique   375676.9 2017         71930106513
## 8   01101 1101041006 1102   191468 Iquique   375676.9 2017         71930106513
## 9   01101 1101051001 1515   191468 Iquique   375676.9 2017         71930106513
## 10  01101 1101041004 2403   191468 Iquique   375676.9 2017         71930106513

Cuantas zonas tenemos?

nrow(comunas_censo_casen_666)
## [1] 5165
tabla_de_prop_pob <- readRDS("../../../../archivos_grandes/tabla_de_prop_pob.rds")
names(tabla_de_prop_pob)[1]  <- "clave"
head(tabla_de_prop_pob,10)
##         clave Freq            p código
## 1  1101011001 2491 0.0130100069  01101
## 2  1101011002 1475 0.0077036372  01101
## 3  1101021001 1003 0.0052384733  01101
## 4  1101021002   54 0.0002820315  01101
## 5  1101021003 2895 0.0151200201  01101
## 6  1101021004 2398 0.0125242860  01101
## 7  1101021005 4525 0.0236331920  01101
## 8  1101031001 2725 0.0142321432  01101
## 9  1101031002 3554 0.0185618485  01101
## 10 1101031003 5246 0.0273988343  01101
nrow(tabla_de_prop_pob)
## [1] 15500
comunas_censo_casen_6666 = merge( x = comunas_censo_casen_666, y = tabla_de_prop_pob, by = "clave", all.x = TRUE)
nrow(comunas_censo_casen_6666)
## [1] 5165
head(comunas_censo_casen_6666,10)
##          clave código.x Freq.x personas       comuna promedio_i  año
## 1  10101011001    10101    320   245902 Puerto Montt   304409.6 2017
## 2  10101011002    10101   1309   245902 Puerto Montt   304409.6 2017
## 3  10101021001    10101   1828   245902 Puerto Montt   304409.6 2017
## 4  10101021002    10101    581   245902 Puerto Montt   304409.6 2017
## 5  10101021003    10101   1050   245902 Puerto Montt   304409.6 2017
## 6  10101021004    10101   1457   245902 Puerto Montt   304409.6 2017
## 7  10101021005    10101   1165   245902 Puerto Montt   304409.6 2017
## 8  10101031001    10101   2012   245902 Puerto Montt   304409.6 2017
## 9  10101031002    10101   2166   245902 Puerto Montt   304409.6 2017
## 10 10101031003    10101   1663   245902 Puerto Montt   304409.6 2017
##    ingresos_expandidos Freq.y           p código.y
## 1          74854925754    584 0.002374930    10101
## 2          74854925754   2941 0.011960049    10101
## 3          74854925754   3953 0.016075510    10101
## 4          74854925754   1107 0.004501793    10101
## 5          74854925754   2294 0.009328920    10101
## 6          74854925754   3391 0.013790046    10101
## 7          74854925754   2564 0.010426918    10101
## 8          74854925754   4530 0.018421973    10101
## 9          74854925754   4740 0.019275972    10101
## 10         74854925754   4107 0.016701776    10101
comunas_censo_casen_6666$multipob <- comunas_censo_casen_6666$ingresos_expandidos*comunas_censo_casen_6666$p
head(comunas_censo_casen_6666,10)
##          clave código.x Freq.x personas       comuna promedio_i  año
## 1  10101011001    10101    320   245902 Puerto Montt   304409.6 2017
## 2  10101011002    10101   1309   245902 Puerto Montt   304409.6 2017
## 3  10101021001    10101   1828   245902 Puerto Montt   304409.6 2017
## 4  10101021002    10101    581   245902 Puerto Montt   304409.6 2017
## 5  10101021003    10101   1050   245902 Puerto Montt   304409.6 2017
## 6  10101021004    10101   1457   245902 Puerto Montt   304409.6 2017
## 7  10101021005    10101   1165   245902 Puerto Montt   304409.6 2017
## 8  10101031001    10101   2012   245902 Puerto Montt   304409.6 2017
## 9  10101031002    10101   2166   245902 Puerto Montt   304409.6 2017
## 10 10101031003    10101   1663   245902 Puerto Montt   304409.6 2017
##    ingresos_expandidos Freq.y           p código.y   multipob
## 1          74854925754    584 0.002374930    10101  177775198
## 2          74854925754   2941 0.011960049    10101  895268589
## 3          74854925754   3953 0.016075510    10101 1203331089
## 4          74854925754   1107 0.004501793    10101  336981411
## 5          74854925754   2294 0.009328920    10101  698315588
## 6          74854925754   3391 0.013790046    10101 1032252903
## 7          74854925754   2564 0.010426918    10101  780506176
## 8          74854925754   4530 0.018421973    10101 1378975420
## 9          74854925754   4740 0.019275972    10101 1442901433
## 10         74854925754   4107 0.016701776    10101 1250210165
saveRDS(comunas_censo_casen_6666, "tabla_de_trabajo_2017_urbana.rds")
write_xlsx(comunas_censo_casen_6666, "tabla_de_trabajo_2017_urbana.xlsx")

2 Desaparecen 4 zonas

Porque no tienen categoría de respuesta 1 a la pregunta P17

tabla_original <-
readRDS("../../../ds_correlaciones_censo_casen/corre_censo_casen_2017/censos_con_clave/censo_personas_con_clave_17") 
tabla_de_trabajo <- readRDS("tabla_de_trabajo_2017_urbana.rds")
tabla_con_clave_u <- filter(tabla_original , tabla_original $AREA ==1)
unicos_001 <- unique(tabla_con_clave_u$clave)
length(unicos_001)
## [1] 5169
unicos_002 <- tabla_de_trabajo$clave
length(unicos_002)
## [1] 5165

Identifiquemos los que fueron excluídos:

ddd <- setdiff(unicos_001 ,unicos_002)
ttt <- unique(ddd)
ttt
## [1] "9113991999"  "16303991999" "7303991999"  "6204991999"
#9113991999

tabla_original_1 <- filter(tabla_original, tabla_original$clave == "9113991999")
tabla_original_1
##   REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV NHOGAR PERSONAN P07
## 1      9        91   9113 99    1    999         232    1      1        1   1
## 2      9        91   9113 99    1    999         232    1      1        2   5
## 3      9        91   9113 99    1    999         232    1      1        3   5
##   P08 P09 P10 P10COMUNA P10PAIS P11 P11COMUNA P11PAIS P12 P12COMUNA P12PAIS
## 1   2  39   1        98     998   2        98     998   1        98     998
## 2   1  12   1        98     998   2        98     998   1        98     998
## 3   2   7   1        98     998   2        98     998   1        98     998
##   P12A_LLEGADA P12A_TRAMO P13 P14 P15 P15A P16 P16A P16A_OTRO P17 P18 P19 P20
## 1         9998         98   2   4   7    1   2   98        98   6  98   2   2
## 2         9998         98   1   6   5    2   2   98        98  98  98  98  98
## 3         9998         98   1   1   5    2   2   98        98  98  98  98  98
##   P21M P21A P10PAIS_GRUPO P11PAIS_GRUPO P12PAIS_GRUPO ESCOLARIDAD P16A_GRUPO
## 1   10 2009           998           998           998          12         98
## 2   98 9998           998           998           998           6         98
## 3   98 9998           998           998           998           1         98
##   REGION_15R PROVINCIA_15R COMUNA_15R P10COMUNA_15R P11COMUNA_15R P12COMUNA_15R
## 1          9            91       9113            98            98            98
## 2          9            91       9113            98            98            98
## 3          9            91       9113            98            98            98
##        clave
## 1 9113991999
## 2 9113991999
## 3 9113991999

Hay solamente 4 zonas que no poseen el valor 1 de respuesta a la pregunta P17.

2.1 Diagrama de dispersión loess

scatter.smooth(x=comunas_censo_casen_6666$Freq.x, y=comunas_censo_casen_6666$multipob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

3 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

3.1 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

3.2 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multipob~(Freq.x) , data=tabla_de_trabajo)
summary(linearMod) 
## 
## Call:
## lm(formula = multipob ~ (Freq.x), data = tabla_de_trabajo)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -850547865  -78144039   -6002220   58511371 2933901395 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -3897469    4656177  -0.837    0.403    
## Freq.x        753444       3165 238.083   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 162300000 on 5143 degrees of freedom
##   (20 observations deleted due to missingness)
## Multiple R-squared:  0.9168, Adjusted R-squared:  0.9168 
## F-statistic: 5.668e+04 on 1 and 5143 DF,  p-value: < 2.2e-16

3.3 Gráfica de la recta de regresión lineal

ggplot(tabla_de_trabajo, aes(x = Freq.x , y = multipob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.9168 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

4 Modelos alternativos

### 8.1 Modelo cuadrático
linearMod <- lm( multipob~(Freq.x^2) , data=tabla_de_trabajo)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,dato,sintaxis)

### 8.2 Modelo cúbico
linearMod <- lm( multipob~(Freq.x^3) , data=tabla_de_trabajo)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,dato,sintaxis)
 
### 8.3 Modelo logarítmico
linearMod <- lm( multipob~log(Freq.x) , data=tabla_de_trabajo)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,dato,sintaxis)
 
### 8.5 Modelo con raíz cuadrada 
linearMod <- lm( multipob~sqrt(Freq.x) , data=tabla_de_trabajo)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,dato,sintaxis)
 
### 8.6 Modelo raíz-raíz
linearMod <- lm( sqrt(multipob)~sqrt(Freq.x) , data=tabla_de_trabajo)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,dato,sintaxis)
 
### 8.7 Modelo log-raíz
linearMod <- lm( log(multipob)~sqrt(Freq.x) , data=tabla_de_trabajo)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,dato,sintaxis)
 
### 8.8 Modelo raíz-log
linearMod <- lm( sqrt(multipob)~log(Freq.x) , data=tabla_de_trabajo)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,dato,sintaxis)
 
### 8.9 Modelo log-log
linearMod <- lm( log(multipob)~log(Freq.x) , data=tabla_de_trabajo)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,dato,sintaxis)
 
modelos_bind <- rbind(modelos1, modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind <<- modelos_bind[order(modelos_bind$dato, decreasing = T ),]

h_y_m_comuna_corr_01 <<- tabla_de_trabajo

kbl(modelos_bind) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
modelo dato sintaxis
8 log-log 0.982633689397265 linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
5 raíz-raíz 0.956016832106656 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
1 cuadrático 0.916799197009415 linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
2 cúbico 0.916799197009415 linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
4 raíz cuadrada 0.858216862956833 linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
6 log-raíz 0.825833185026114 linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
7 raíz-log 0.804952865180797 linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
3 logarítmico 0.585652425658201 linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)


5 Elección del modelo.

Elegimos el modelo log-log (8) pues tiene el más alto \(R^2\)

h_y_m_comuna_corr <- h_y_m_comuna_corr_01
metodo <- 8
switch (metodo,
        case = linearMod <- lm( multipob~(Freq.x^2) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( multipob~(Freq.x^3) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( multipob~log(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( multipob~sqrt(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( sqrt(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( log(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( sqrt(multipob)~log(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( log(multipob)~log(Freq.x) , data=h_y_m_comuna_corr)
)
summary(linearMod)
## 
## Call:
## lm(formula = log(multipob) ~ log(Freq.x), data = h_y_m_comuna_corr)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.99023 -0.09645 -0.00222  0.09395  1.53885 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.270794   0.013259  1000.9   <2e-16 ***
## log(Freq.x)  1.033996   0.001917   539.5   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1618 on 5143 degrees of freedom
##   (20 observations deleted due to missingness)
## Multiple R-squared:  0.9826, Adjusted R-squared:  0.9826 
## F-statistic: 2.911e+05 on 1 and 5143 DF,  p-value: < 2.2e-16

5.1 Modelo log-log (log-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.9826).

5.1.1 Diagrama de dispersión sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

head(tabla_de_trabajo,10)
##          clave código.x Freq.x personas       comuna promedio_i  año
## 1  10101011001    10101    320   245902 Puerto Montt   304409.6 2017
## 2  10101011002    10101   1309   245902 Puerto Montt   304409.6 2017
## 3  10101021001    10101   1828   245902 Puerto Montt   304409.6 2017
## 4  10101021002    10101    581   245902 Puerto Montt   304409.6 2017
## 5  10101021003    10101   1050   245902 Puerto Montt   304409.6 2017
## 6  10101021004    10101   1457   245902 Puerto Montt   304409.6 2017
## 7  10101021005    10101   1165   245902 Puerto Montt   304409.6 2017
## 8  10101031001    10101   2012   245902 Puerto Montt   304409.6 2017
## 9  10101031002    10101   2166   245902 Puerto Montt   304409.6 2017
## 10 10101031003    10101   1663   245902 Puerto Montt   304409.6 2017
##    ingresos_expandidos Freq.y           p código.y   multipob
## 1          74854925754    584 0.002374930    10101  177775198
## 2          74854925754   2941 0.011960049    10101  895268589
## 3          74854925754   3953 0.016075510    10101 1203331089
## 4          74854925754   1107 0.004501793    10101  336981411
## 5          74854925754   2294 0.009328920    10101  698315588
## 6          74854925754   3391 0.013790046    10101 1032252903
## 7          74854925754   2564 0.010426918    10101  780506176
## 8          74854925754   4530 0.018421973    10101 1378975420
## 9          74854925754   4740 0.019275972    10101 1442901433
## 10         74854925754   4107 0.016701776    10101 1250210165
scatter.smooth(x=log(tabla_de_trabajo$Freq.x), y=log(tabla_de_trabajo$multipob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

ggplot(tabla_de_trabajo, aes(x = log(Freq.x) , y = log(multipob))) + geom_point() + stat_smooth(method=lm , color="blue",  level = 0.9, fill="green", se=TRUE) 

5.1.2 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

5.1.3 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]


linearMod <- lm( log(multipob)~log(Freq.x) , data=tabla_de_trabajo)
aa <- linearMod$coefficients[1]
bb <- linearMod$coefficients[2]


6 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

tabla_de_trabajo$est_ing <- exp(aa+bb*log(tabla_de_trabajo$Freq.x))


7 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


tabla_de_trabajo$ing_medio_zona <- tabla_de_trabajo$est_ing /(tabla_de_trabajo$personas  * tabla_de_trabajo$p)
write_xlsx(tabla_de_trabajo, "tabla_de_trabajo_2.xlsx")
write.dbf(tabla_de_trabajo, "tabla_de_trabajo_2.dbf")
r3_100 <- tabla_de_trabajo[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
clave código.x Freq.x personas comuna promedio_i año ingresos_expandidos Freq.y p código.y multipob est_ing ing_medio_zona
10101011001 10101 320 245902 Puerto Montt 304409.6 2017 74854925754 584 0.0023749 10101 177775197.6 225812484 386665.2
10101011002 10101 1309 245902 Puerto Montt 304409.6 2017 74854925754 2941 0.0119600 10101 895268589.3 969027564 329489.1
10101021001 10101 1828 245902 Puerto Montt 304409.6 2017 74854925754 3953 0.0160755 10101 1203331089.2 1368684549 346239.5
10101021002 10101 581 245902 Puerto Montt 304409.6 2017 74854925754 1107 0.0045018 10101 336981410.5 418388755 377948.3
10101021003 10101 1050 245902 Puerto Montt 304409.6 2017 74854925754 2294 0.0093289 10101 698315587.8 771490596 336308.0
10101021004 10101 1457 245902 Puerto Montt 304409.6 2017 74854925754 3391 0.0137900 10101 1032252902.5 1082524004 319234.4
10101021005 10101 1165 245902 Puerto Montt 304409.6 2017 74854925754 2564 0.0104269 10101 780506175.8 859016955 335030.0
10101031001 10101 2012 245902 Puerto Montt 304409.6 2017 74854925754 4530 0.0184220 10101 1378975419.7 1511371232 333636.0
10101031002 10101 2166 245902 Puerto Montt 304409.6 2017 74854925754 4740 0.0192760 10101 1442901432.6 1631137384 344121.8
10101031003 10101 1663 245902 Puerto Montt 304409.6 2017 74854925754 4107 0.0167018 10101 1250210165.3 1241145581 302202.5
10101031004 10101 1172 245902 Puerto Montt 304409.6 2017 74854925754 2856 0.0116144 10101 869393774.6 864354445 302645.1
10101031005 10101 2657 245902 Puerto Montt 304409.6 2017 74854925754 5690 0.0231393 10101 1732090538.3 2014838451 354101.7
10101031006 10101 1233 245902 Puerto Montt 304409.6 2017 74854925754 2460 0.0100040 10101 748847578.9 910912070 370289.5
10101031007 10101 1038 245902 Puerto Montt 304409.6 2017 74854925754 2292 0.0093208 10101 697706768.7 762375593 332624.6
10101031008 10101 1616 245902 Puerto Montt 304409.6 2017 74854925754 3585 0.0145790 10101 1091308362.0 1204893190 336092.9
10101031009 10101 1995 245902 Puerto Montt 304409.6 2017 74854925754 4436 0.0180397 10101 1350360918.8 1498168966 337729.7
10101031010 10101 1531 245902 Puerto Montt 304409.6 2017 74854925754 3566 0.0145017 10101 1085524579.9 1139422061 319523.9
10101031011 10101 1232 245902 Puerto Montt 304409.6 2017 74854925754 2757 0.0112118 10101 839257225.7 910148187 330122.7
10101031012 10101 837 245902 Puerto Montt 304409.6 2017 74854925754 1849 0.0075193 10101 562853322.5 610266318 330052.1
10101031013 10101 1642 245902 Puerto Montt 304409.6 2017 74854925754 3945 0.0160430 10101 1200895812.6 1224943339 310505.3
10101031014 10101 1030 245902 Puerto Montt 304409.6 2017 74854925754 2265 0.0092110 10101 689487709.9 756300911 333907.7
10101031015 10101 873 245902 Puerto Montt 304409.6 2017 74854925754 1930 0.0078487 10101 587510498.9 637426237 330272.7
10101031016 10101 1285 245902 Puerto Montt 304409.6 2017 74854925754 3071 0.0124887 10101 934841835.3 950662583 309561.2
10101031017 10101 1457 245902 Puerto Montt 304409.6 2017 74854925754 3885 0.0157990 10101 1182631237.5 1082524004 278642.0
10101041001 10101 1843 245902 Puerto Montt 304409.6 2017 74854925754 4342 0.0176574 10101 1321746417.8 1380298976 317894.7
10101041002 10101 895 245902 Puerto Montt 304409.6 2017 74854925754 2169 0.0088206 10101 660264389.7 654042823 301541.2
10101041003 10101 2559 245902 Puerto Montt 304409.6 2017 74854925754 5202 0.0211548 10101 1583538660.8 1938046089 372557.9
10101051001 10101 1148 245902 Puerto Montt 304409.6 2017 74854925754 2463 0.0100162 10101 749760807.7 846059032 343507.5
10101051002 10101 814 245902 Puerto Montt 304409.6 2017 74854925754 1913 0.0077795 10101 582335536.0 592934824 309950.2
10101051003 10101 1329 245902 Puerto Montt 304409.6 2017 74854925754 3272 0.0133061 10101 996028161.9 984340471 300837.6
10101051004 10101 1712 245902 Puerto Montt 304409.6 2017 74854925754 3633 0.0147742 10101 1105920022.1 1278977722 352044.5
10101061001 10101 3383 245902 Puerto Montt 304409.6 2017 74854925754 6787 0.0276004 10101 2066027852.9 2586528264 381100.4
10101061002 10101 1254 245902 Puerto Montt 304409.6 2017 74854925754 2729 0.0110979 10101 830733757.3 926958434 339669.6
10101061003 10101 1559 245902 Puerto Montt 304409.6 2017 74854925754 3668 0.0149165 10101 1116574357.5 1160975700 316514.6
10101061004 10101 1184 245902 Puerto Montt 304409.6 2017 74854925754 2995 0.0121796 10101 911706706.9 873506946 291655.1
10101061005 10101 1216 245902 Puerto Montt 304409.6 2017 74854925754 2571 0.0104554 10101 782637042.9 897928952 349252.8
10101061006 10101 1991 245902 Puerto Montt 304409.6 2017 74854925754 4130 0.0167953 10101 1257211585.8 1495063105 362000.8
10101061007 10101 340 245902 Puerto Montt 304409.6 2017 74854925754 817 0.0033225 10101 248702630.9 240420763 294272.7
10101061008 10101 1008 245902 Puerto Montt 304409.6 2017 74854925754 2109 0.0085766 10101 641999814.6 739603843 350689.4
10101061009 10101 68 245902 Puerto Montt 304409.6 2017 74854925754 168 0.0006832 10101 51140810.3 45523920 270975.7
10101061010 10101 610 245902 Puerto Montt 304409.6 2017 74854925754 1543 0.0062749 10101 469703989.6 440000177 285158.9
10101071001 10101 909 245902 Puerto Montt 304409.6 2017 74854925754 2352 0.0095648 10101 715971343.8 664624269 282578.3
10101071002 10101 1583 245902 Puerto Montt 304409.6 2017 74854925754 3919 0.0159372 10101 1192981163.4 1179460734 300959.6
10101071003 10101 1915 245902 Puerto Montt 304409.6 2017 74854925754 4978 0.0202438 10101 1515350913.8 1436092528 288487.9
10101071004 10101 1419 245902 Puerto Montt 304409.6 2017 74854925754 3443 0.0140015 10101 1048082200.9 1053343936 305937.8
10101071005 10101 1186 245902 Puerto Montt 304409.6 2017 74854925754 2751 0.0111874 10101 837430768.2 875032670 318078.0
10101071006 10101 1741 245902 Puerto Montt 304409.6 2017 74854925754 4214 0.0171369 10101 1282781990.9 1301385588 308824.3
10101071007 10101 987 245902 Puerto Montt 304409.6 2017 74854925754 2345 0.0095363 10101 713840476.7 723677283 308604.4
10101071008 10101 2104 245902 Puerto Montt 304409.6 2017 74854925754 5480 0.0222853 10101 1668164525.4 1582883822 288847.4
10101071009 10101 1509 245902 Puerto Montt 304409.6 2017 74854925754 3549 0.0144326 10101 1080349616.9 1122496446 316285.3
10101071010 10101 1442 245902 Puerto Montt 304409.6 2017 74854925754 3521 0.0143187 10101 1071826148.6 1071002427 304175.6
10101071011 10101 1301 245902 Puerto Montt 304409.6 2017 74854925754 3094 0.0125822 10101 941843255.8 962904621 311216.7
10101071012 10101 1066 245902 Puerto Montt 304409.6 2017 74854925754 2621 0.0106587 10101 797857522.1 783649437 298988.7
10101071013 10101 41 245902 Puerto Montt 304409.6 2017 74854925754 84 0.0003416 10101 25570405.1 26980176 321192.6
10101071014 10101 350 245902 Puerto Montt 304409.6 2017 74854925754 875 0.0035583 10101 266358386.8 247735976 283126.8
10101131001 10101 282 245902 Puerto Montt 304409.6 2017 74854925754 604 0.0024563 10101 183863389.3 198143878 328052.8
10101151001 10101 1757 245902 Puerto Montt 304409.6 2017 74854925754 3973 0.0161568 10101 1209419280.9 1313753995 330670.5
10101151002 10101 2237 245902 Puerto Montt 304409.6 2017 74854925754 4655 0.0189303 10101 1417026617.9 1686453130 362288.5
10101151003 10101 248 245902 Puerto Montt 304409.6 2017 74854925754 592 0.0024075 10101 180210474.3 173494747 293065.5
10101151004 10101 143 245902 Puerto Montt 304409.6 2017 74854925754 325 0.0013217 10101 98933115.1 98184214 302105.3
10101151005 10101 179 245902 Puerto Montt 304409.6 2017 74854925754 384 0.0015616 10101 116893280.6 123843685 322509.6
10101161001 10101 342 245902 Puerto Montt 304409.6 2017 74854925754 739 0.0030053 10101 224958683.3 241883227 327311.5
10101161002 10101 2677 245902 Puerto Montt 304409.6 2017 74854925754 6507 0.0264618 10101 1980793169.2 2030522314 312052.0
10101161003 10101 1242 245902 Puerto Montt 304409.6 2017 74854925754 2841 0.0115534 10101 864827630.8 917787954 323051.0
10101161004 10101 491 245902 Puerto Montt 304409.6 2017 74854925754 1224 0.0049776 10101 372597332.0 351560784 287222.9
10101161005 10101 70 245902 Puerto Montt 304409.6 2017 74854925754 188 0.0007645 10101 57229002.0 46909063 249516.3
10101161006 10101 190 245902 Puerto Montt 304409.6 2017 74854925754 435 0.0017690 10101 132418169.4 131720981 302806.9
10101171001 10101 735 245902 Puerto Montt 304409.6 2017 74854925754 1747 0.0071045 10101 531803544.9 533534615 305400.5
10101171002 10101 1196 245902 Puerto Montt 304409.6 2017 74854925754 2902 0.0118014 10101 883396615.5 882662601 304156.7
10101171003 10101 1335 245902 Puerto Montt 304409.6 2017 74854925754 2873 0.0116835 10101 874568737.5 988935876 344217.2
10101171004 10101 2230 245902 Puerto Montt 304409.6 2017 74854925754 4707 0.0191418 10101 1432855916.3 1680996781 357127.0
10101171005 10101 1799 245902 Puerto Montt 304409.6 2017 74854925754 3782 0.0153801 10101 1151277050.2 1346239200 355959.6
10101171006 10101 1635 245902 Puerto Montt 304409.6 2017 74854925754 3515 0.0142943 10101 1069999691.0 1219544153 346954.2
10101181001 10101 1384 245902 Puerto Montt 304409.6 2017 74854925754 3155 0.0128303 10101 960412240.5 1026491036 325353.7
10101181002 10101 1039 245902 Puerto Montt 304409.6 2017 74854925754 2282 0.0092801 10101 694662672.8 763135040 334415.0
10101181003 10101 601 245902 Puerto Montt 304409.6 2017 74854925754 1312 0.0053355 10101 399385375.4 433289366 330251.0
10101181004 10101 645 245902 Puerto Montt 304409.6 2017 74854925754 1466 0.0059617 10101 446264451.5 466129355 317960.0
10101991999 10101 763 245902 Puerto Montt 304409.6 2017 74854925754 1400 0.0056933 10101 426173418.9 554564165 396117.3
10102051001 10102 1243 33985 Calbuco 280878.2 2017 9545646863 3082 0.0906871 10102 865666724.5 918552046 298037.7
10102051002 10102 1603 33985 Calbuco 280878.2 2017 9545646863 3879 0.1141386 10102 1089526678.9 1194872215 308036.1
10102141001 10102 1473 33985 Calbuco 280878.2 2017 9545646863 3356 0.0987494 10102 942627361.2 1094818130 326227.1
10102141002 10102 2318 33985 Calbuco 280878.2 2017 9545646863 5586 0.1643666 10102 1568985828.3 1749632662 313217.4
10102991999 10102 51 33985 Calbuco 280878.2 2017 9545646863 93 0.0027365 10102 26121676.0 33810647 363555.3
10104011001 10104 1160 12261 Fresia 223666.2 2017 2742371891 2769 0.2258380 10104 619331846.2 855205130 308849.8
10104011002 10104 1735 12261 Fresia 223666.2 2017 2742371891 4559 0.3718294 10104 1019694433.8 1296748430 284437.0
10104991999 10104 3 12261 Fresia 223666.2 2017 2742371891 3 0.0002447 10104 670998.8 1806234 602078.0
10105011001 10105 1420 18428 Frutillar 281543.9 2017 5188291726 3426 0.1859127 10105 964569538.4 1054111495 307679.9
10105011002 10105 1299 18428 Frutillar 281543.9 2017 5188291726 3126 0.1696332 10105 880106356.4 961374085 307541.3
10105011003 10105 1345 18428 Frutillar 281543.9 2017 5188291726 3037 0.1648036 10105 855048945.8 996596444 328151.6
10105011004 10105 1396 18428 Frutillar 281543.9 2017 5188291726 3287 0.1783699 10105 925434930.8 1035695173 315088.3
10105991999 10105 37 18428 Frutillar 281543.9 2017 5188291726 76 0.0041242 10105 21397339.4 24263141 319251.9
10106011001 10106 2144 17068 Los Muermos 233220.1 2017 3980600731 5180 0.3034919 10106 1208080137.5 1614009706 311584.9
10106011002 10106 1105 17068 Los Muermos 233220.1 2017 3980600731 2748 0.1610030 10106 640888845.2 813312435 295965.2
10106991999 10106 79 17068 Los Muermos 233220.1 2017 3980600731 178 0.0104289 10106 41513178.5 53158363 298642.5
10107011001 10107 1772 17591 Llanquihue 251391.8 2017 4422233283 4286 0.2436473 10107 1077465286.3 1325352856 309228.4
10107011002 10107 455 17591 Llanquihue 251391.8 2017 4422233283 1159 0.0658860 10107 291363104.7 324942166 280364.3
10107011003 10107 1362 17591 Llanquihue 251391.8 2017 4422233283 3146 0.1788415 10107 790878625.9 1009623846 320923.0
10107021001 10107 937 17591 Llanquihue 251391.8 2017 4422233283 2292 0.1302939 10107 576190022.4 685803705 299216.3
10107021002 10107 1283 17591 Llanquihue 251391.8 2017 4422233283 3221 0.1831050 10107 809733011.4 949132691 294670.2
10107991999 10107 58 17591 Llanquihue 251391.8 2017 4422233283 118 0.0067080 10107 29664233.3 38619820 327286.6

7.1 Estadísticos

ingresos <- readRDS("Ingresos_expandidos_urbano_17.rds")
kbl(ingresos) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código personas comuna promedio_i año ingresos_expandidos
1 01101 191468 Iquique 375676.9 2017 71930106513
2 01107 108375 Alto Hospicio 311571.7 2017 33766585496
3 01401 15711 Pozo Almonte 316138.5 2017 4966851883
7 01405 9296 Pica 330061.1 2017 3068247619
8 02101 361873 Antofagasta 368221.4 2017 133249367039
9 02102 13467 Mejillones 369770.7 2017 4979702302
11 02104 13317 Taltal 383666.2 2017 5109282942
12 02201 165731 Calama 434325.1 2017 71981127235
14 02203 10996 San Pedro de Atacama 442861.0 2017 4869699464
15 02301 25186 Tocopilla 286187.2 2017 7207910819
16 02302 6457 María Elena 477748.0 2017 3084818966
17 03101 153937 Copiapó 343121.0 2017 52819016037
18 03102 17662 Caldera 318653.2 2017 5628052276
19 03103 14019 Tierra Amarilla 333194.9 2017 4671058718
20 03201 12219 Chañaral 286389.3 2017 3499391196
21 03202 13925 Diego de Almagro 351583.9 2017 4895805596
22 03301 51917 Vallenar 315981.5 2017 16404810756
24 03303 7041 Freirina 289049.9 2017 2035200054
25 03304 10149 Huasco 337414.8 2017 3424422750
26 04101 221054 La Serena 279340.1 2017 61749247282
27 04102 227730 Coquimbo 269078.6 2017 61277269093
28 04103 11044 Andacollo 258539.7 2017 2855312920
29 04104 4241 La Higuera 214257.0 2017 908664019
31 04106 27771 Vicuña 254177.0 2017 7058750373
32 04201 30848 Illapel 282139.3 2017 8703433491
33 04202 9093 Canela 233397.3 2017 2122281844
34 04203 21382 Los Vilos 285214.0 2017 6098444926
35 04204 29347 Salamanca 262056.9 2017 7690585032
36 04301 111272 Ovalle 280373.5 2017 31197719080
37 04302 13322 Combarbalá 234537.3 2017 3124505460
38 04303 30751 Monte Patria 225369.1 2017 6930326684
39 04304 10956 Punitaqui 212496.1 2017 2328107498
41 05101 296655 Valparaíso 306572.5 2017 90946261553
42 05102 26867 Casablanca 348088.6 2017 9352095757
43 05103 42152 Concón 333932.4 2017 14075920021
45 05105 18546 Puchuncaví 296035.5 2017 5490274928
46 05107 31923 Quintero 308224.7 2017 9839456903
47 05109 334248 Viña del Mar 354715.9 2017 118563074323
49 05301 66708 Los Andes 355446.2 2017 23711104774
50 05302 14832 Calle Larga 246387.3 2017 3654416747
51 05303 10207 Rinconada 279807.9 2017 2855998928
52 05304 18855 San Esteban 219571.6 2017 4140022481
53 05401 35390 La Ligua 259482.3 2017 9183080280
54 05402 19388 Cabildo 262745.9 2017 5094117762
55 05403 6356 Papudo 302317.1 2017 1921527704
56 05404 9826 Petorca 237510.8 2017 2333781007
57 05405 7339 Zapallar 294389.2 2017 2160521991
58 05501 90517 Quillota 288694.2 2017 26131733924
59 05502 50554 Calera 282823.6 2017 14297866792
60 05503 17988 Hijuelas 268449.7 2017 4828872604
61 05504 22098 La Cruz 335544.3 2017 7414857001
62 05506 22120 Nogales 259917.8 2017 5749381300
63 05601 91350 San Antonio 246603.6 2017 22527241144
64 05602 13817 Algarrobo 390710.4 2017 5398446270
65 05603 22738 Cartagena 244949.4 2017 5569658994
66 05604 15955 El Quisco 270498.2 2017 4315799297
67 05605 13286 El Tabo 287271.0 2017 3816682340
68 05606 10900 Santo Domingo 404470.9 2017 4408732520
69 05701 76844 San Felipe 302021.4 2017 23208536043
70 05702 13998 Catemu 233238.3 2017 3264869972
71 05703 24608 Llaillay 295663.4 2017 7275684301
72 05704 7273 Panquehue 328043.3 2017 2385858928
73 05705 16754 Putaendo 309628.4 2017 5187514898
74 05706 15241 Santa María 256403.4 2017 3907844674
75 05801 151708 Quilpué 344393.1 2017 52247193426
76 05802 46121 Limache 307380.7 2017 14176705125
77 05803 17516 Olmué 293997.6 2017 5149662271
78 05804 126548 Villa Alemana 361923.3 2017 45800670899
79 06101 241774 Rancagua 318384.5 2017 76977097284
80 06102 12988 Codegua 289405.7 2017 3758801352
81 06103 7359 Coinco 224485.0 2017 1651985453
82 06104 19597 Coltauco 278925.9 2017 5466110795
83 06105 20887 Doñihue 306532.0 2017 6402533884
84 06106 33437 Graneros 311834.8 2017 10426820415
85 06107 24640 Las Cabras 279810.6 2017 6894533314
86 06108 52505 Machalí 316199.2 2017 16602037093
87 06109 13407 Malloa 213596.6 2017 2863689033
88 06110 25343 Mostazal 291701.8 2017 7392597596
89 06111 13608 Olivar 297914.9 2017 4054025678
90 06112 14313 Peumo 248687.4 2017 3559462966
91 06113 19714 Pichidegua 234187.0 2017 4616762518
92 06114 13002 Quinta de Tilcoco 210835.7 2017 2741286093
93 06115 58825 Rengo 293650.2 2017 17273974762
94 06116 27968 Requínoa 288865.3 2017 8078983811
95 06117 46766 San Vicente 285655.7 2017 13358975033
96 06201 16394 Pichilemu 344227.1 2017 5643258336
97 06202 3041 La Estrella 293280.7 2017 891866686
98 06203 6294 Litueche 298955.7 2017 1881627117
99 06204 7308 Marchihue 336379.3 2017 2458260033
100 06205 6641 Navidad 236383.5 2017 1569822543
101 06206 6188 Paredones 238518.3 2017 1475951353
102 06301 73973 San Fernando 324998.7 2017 24041131495
103 06302 15037 Chépica 245508.7 2017 3691714537
104 06303 35399 Chimbarongo 260706.7 2017 9228754903
105 06304 6811 Lolol 236668.2 2017 1611947197
106 06305 17833 Nancagua 245992.6 2017 4386786331
107 06306 12482 Palmilla 246745.0 2017 3079870843
108 06307 11007 Peralillo 265630.7 2017 2923796850
109 06308 8738 Placilla 240573.8 2017 2102134220
111 06310 37855 Santa Cruz 300976.4 2017 11393463346
112 07101 220357 Talca 307377.4 2017 67732753814
113 07102 46068 Constitución 280736.9 2017 12932986800
114 07103 9448 Curepto 281855.5 2017 2662971120
115 07104 4142 Empedrado 209235.2 2017 866652110
116 07105 49721 Maule 245019.7 2017 12182624190
117 07106 8422 Pelarco 216777.5 2017 1825700105
118 07107 8245 Pencahue 233692.6 2017 1926795579
119 07108 13906 Río Claro 224864.2 2017 3126961590
120 07109 43269 San Clemente 247003.5 2017 10687595452
121 07110 9191 San Rafael 249688.5 2017 2294886656
122 07201 40441 Cauquenes 235303.7 2017 9515918892
123 07202 8928 Chanco 250327.3 2017 2234922252
124 07203 7571 Pelluhue 202735.2 2017 1534908448
125 07301 149136 Curicó 282406.9 2017 42117028333
126 07302 9657 Hualañé 303280.6 2017 2928781043
127 07303 6653 Licantén 261799.2 2017 1741750148
128 07304 45976 Molina 261223.2 2017 12009998195
129 07305 10484 Rauco 271406.8 2017 2845428741
130 07306 15187 Romeral 269017.0 2017 4085560646
131 07307 18544 Sagrada Familia 248654.3 2017 4611045339
132 07308 28921 Teno 262087.1 2017 7579820261
133 07309 4322 Vichuquén 218281.8 2017 943414066
134 07401 93602 Linares 270205.2 2017 25291751487
135 07402 20765 Colbún 200983.0 2017 4173410967
136 07403 30534 Longaví 216067.2 2017 6597394825
137 07404 41637 Parral 266374.6 2017 11091040324
138 07405 19974 Retiro 225715.0 2017 4508431050
139 07406 45547 San Javier 278559.1 2017 12687530322
140 07407 16221 Villa Alegre 262111.0 2017 4251702731
141 07408 18081 Yerbas Buenas 244050.7 2017 4412680158
142 08101 223574 Concepción 323059.6 2017 72227728923
143 08102 116262 Coronel 277633.4 2017 32278209118
144 08103 85938 Chiguayante 298370.0 2017 25641323296
145 08104 10624 Florida 232450.3 2017 2469551785
146 08105 24333 Hualqui 232273.3 2017 5651905803
147 08106 43535 Lota 283449.0 2017 12339953990
148 08107 47367 Penco 265193.8 2017 12561435651
149 08108 131808 San Pedro de la Paz 274394.0 2017 36167321662
150 08109 13749 Santa Juana 260550.2 2017 3582304723
151 08110 151749 Talcahuano 320279.6 2017 48602104064
152 08111 54946 Tomé 275421.3 2017 15133299927
153 08112 91773 Hualpén 287452.1 2017 26380344663
154 08201 25522 Lebu 256023.5 2017 6534231082
155 08202 36257 Arauco 316263.6 2017 11466769473
156 08203 34537 Cañete 241126.1 2017 8327773342
157 08204 6031 Contulmo 213011.2 2017 1284670805
158 08205 32288 Curanilahue 262911.9 2017 8488900056
159 08206 21035 Los Álamos 230097.8 2017 4840107033
160 08207 10417 Tirúa 221347.3 2017 2305775206
161 08301 202331 Los Ángeles 298724.4 2017 60441208918
162 08302 4073 Antuco 191980.2 2017 781935233
163 08303 28573 Cabrero 225166.5 2017 6433682620
164 08304 22389 Laja 224428.0 2017 5024717382
165 08305 29627 Mulchén 246376.9 2017 7299407611
166 08306 26315 Nacimiento 292529.0 2017 7697899431
167 08307 9737 Negrete 196781.4 2017 1916060576
168 08308 3988 Quilaco 196761.0 2017 784682868
169 08309 9587 Quilleco 201931.6 2017 1935917806
170 08310 3412 San Rosendo 206738.0 2017 705390056
171 08311 13773 Santa Bárbara 250849.5 2017 3454949584
172 08312 14134 Tucapel 214733.9 2017 3035048397
173 08313 21198 Yumbel 221417.8 2017 4693613938
174 08314 5923 Alto Biobío 251792.7 2017 1491367928
175 09101 282415 Temuco 294512.7 2017 83174794799
176 09102 24533 Carahue 237416.7 2017 5824543339
177 09103 17526 Cunco 247099.1 2017 4330659433
178 09104 7489 Curarrehue 204180.7 2017 1529109215
179 09105 24606 Freire 305541.7 2017 7518158340
180 09106 11996 Galvarino 244269.6 2017 2930258102
181 09107 14414 Gorbea 254627.9 2017 3670206245
182 09108 38013 Lautaro 296417.7 2017 11267725602
183 09109 23612 Loncoche 213841.9 2017 5049235445
184 09110 6138 Melipeuco 211980.8 2017 1301137941
185 09111 32510 Nueva Imperial 242015.9 2017 7867935676
186 09112 76126 Padre Las Casas 278372.7 2017 21191399108
187 09113 6905 Perquenco 260596.6 2017 1799419624
188 09114 24837 Pitrufquén 249811.8 2017 6204576082
189 09115 28523 Pucón 260967.9 2017 7443587942
190 09116 12450 Saavedra 229431.4 2017 2856420491
191 09117 15045 Teodoro Schmidt 224680.1 2017 3380311968
192 09118 9722 Toltén 219705.4 2017 2135976054
193 09119 28151 Vilcún 172649.0 2017 4860243131
194 09120 55478 Villarrica 246047.7 2017 13650235814
195 09121 11611 Cholchol 253226.0 2017 2940207311
196 09201 53262 Angol 268414.6 2017 14296297282
197 09202 24598 Collipulli 247911.8 2017 6098134776
198 09203 17413 Curacautín 234574.3 2017 4084643011
199 09204 7733 Ercilla 268071.3 2017 2072995481
200 09205 10251 Lonquimay 250560.5 2017 2568496128
201 09206 7265 Los Sauces 212950.7 2017 1547086780
202 09207 9548 Lumaco 282522.6 2017 2697526159
203 09208 11779 Purén 234139.4 2017 2757928013
204 09209 10250 Renaico 266020.9 2017 2726714090
205 09210 18843 Traiguén 258102.0 2017 4863416659
206 09211 34182 Victoria 225959.9 2017 7723760970
207 10101 245902 Puerto Montt 304409.6 2017 74854925754
208 10102 33985 Calbuco 280878.2 2017 9545646863
210 10104 12261 Fresia 223666.2 2017 2742371891
211 10105 18428 Frutillar 281543.9 2017 5188291726
212 10106 17068 Los Muermos 233220.1 2017 3980600731
213 10107 17591 Llanquihue 251391.8 2017 4422233283
214 10108 14216 Maullín 269082.7 2017 3825279050
215 10109 44578 Puerto Varas 312276.5 2017 13920663786
216 10201 43807 Castro 349368.8 2017 15304799118
217 10202 38991 Ancud 229798.1 2017 8960055930
218 10203 14858 Chonchi 239577.2 2017 3559637517
220 10205 13762 Dalcahue 325358.2 2017 4477578923
222 10207 5385 Queilén 183406.6 2017 987644627
223 10208 27192 Quellón 241965.8 2017 6579532876
224 10209 8352 Quemchi 308051.3 2017 2572844097
225 10210 8088 Quinchao 370474.4 2017 2996397098
226 10301 161460 Osorno 271587.3 2017 43850482486
227 10302 8999 Puerto Octay 262148.9 2017 2359078294
228 10303 20369 Purranque 302471.6 2017 6161043438
229 10304 11667 Puyehue 230541.3 2017 2689725003
230 10305 14085 Río Negro 276657.1 2017 3896715111
231 10306 7512 San Juan de la Costa 222910.5 2017 1674503801
232 10307 10030 San Pablo 195712.4 2017 1962995435
237 11101 57818 Coyhaique 327100.3 2017 18912283227
239 11201 23959 Aysén 307831.4 2017 7375332218
240 11202 6517 Cisnes 251971.0 2017 1642095149
242 11301 3490 Cochrane 350724.8 2017 1224029692
245 11401 4865 Chile Chico 333445.3 2017 1622211456
247 12101 131592 Punta Arenas 391758.4 2017 51552266922
253 12301 6801 Porvenir 446255.2 2017 3034981682
256 12401 21477 Natales 336808.6 2017 7233637635
258 13101 404495 Santiago 450851.7 2017 182367246208
259 13102 80832 Cerrillos 276766.5 2017 22371586546
260 13103 132622 Cerro Navia 270634.1 2017 35892031153
261 13104 126955 Conchalí 310325.3 2017 39397353402
262 13105 162505 El Bosque 281653.9 2017 45770170398
263 13106 147041 Estación Central 340680.2 2017 50093952387
264 13107 98671 Huechuraba 315250.1 2017 31106038806
265 13108 100281 Independencia 376152.6 2017 37720956327
266 13109 90119 La Cisterna 367262.4 2017 33097323323
267 13110 366916 La Florida 349483.5 2017 128231071590
268 13111 116571 La Granja 306768.3 2017 35760286668
269 13112 177335 La Pintana 232647.0 2017 41256447003
270 13113 92787 La Reina 434408.5 2017 40307459856
271 13114 294838 Las Condes 456515.7 2017 134598169599
272 13115 105833 Lo Barnechea 349308.7 2017 36968385127
273 13116 98804 Lo Espejo 264154.1 2017 26099479542
274 13117 96249 Lo Prado 305431.2 2017 29397444939
275 13118 116534 Macul 345701.4 2017 40285970358
276 13119 521627 Maipú 358559.2 2017 187034167391
277 13120 208237 Ñuñoa 426460.1 2017 88804766896
278 13121 101174 Pedro Aguirre Cerda 316863.2 2017 32058321741
279 13122 241599 Peñalolén 321570.6 2017 77691132095
280 13123 142079 Providencia 516122.3 2017 73330144381
281 13124 230293 Pudahuel 320572.7 2017 73825647438
282 13125 210410 Quilicura 383485.8 2017 80689241762
283 13126 110026 Quinta Normal 311731.1 2017 34298531093
284 13127 157851 Recoleta 344997.0 2017 54458123369
285 13128 147151 Renca 294000.5 2017 43262464632
286 13129 94492 San Joaquín 336046.8 2017 31753732439
287 13130 107954 San Miguel 351632.1 2017 37960091353
288 13131 82900 San Ramón 281439.6 2017 23331343432
289 13132 85384 Vitacura 496933.1 2017 42430139879
290 13201 568106 Puente Alto 328342.7 2017 186533464474
291 13202 26521 Pirque 332454.5 2017 8817024774
292 13203 18189 San José de Maipo 381218.4 2017 6933981276
293 13301 146207 Colina 300609.0 2017 43951136523
294 13302 102034 Lampa 372624.0 2017 38020316317
295 13303 19312 Tiltil 327523.1 2017 6325126322
296 13401 301313 San Bernardo 286991.8 2017 86474375157
297 13402 96614 Buin 314979.3 2017 30431412042
298 13403 25392 Calera de Tango 307306.5 2017 7803125477
299 13404 72759 Paine 330137.7 2017 24020488982
300 13501 123627 Melipilla 291641.9 2017 36054817558
301 13502 6444 Alhué 349434.5 2017 2251756129
302 13503 32579 Curacaví 269095.1 2017 8766848005
303 13504 13590 María Pinto 253962.5 2017 3451350898
305 13601 74237 Talagante 394670.6 2017 29299162746
306 13602 35923 El Monte 297691.7 2017 10693979408
307 13603 36219 Isla de Maipo 229284.1 2017 8304441408
308 13604 63250 Padre Hurtado 277563.2 2017 17555873230
309 13605 90201 Peñaflor 351564.7 2017 31711490484
310 14101 166080 Valdivia 308754.5 2017 51277944139
311 14102 5302 Corral 222523.9 2017 1179821617
312 14103 16752 Lanco 267286.0 2017 4477574931
313 14104 19634 Los Lagos 211843.1 2017 4159328181
314 14105 7095 Máfil 315022.1 2017 2235081533
315 14106 21278 Mariquina 251064.3 2017 5342147079
316 14107 20188 Paillaco 223306.5 2017 4508111622
317 14108 34539 Panguipulli 287752.5 2017 9938682028
318 14201 38036 La Unión 247291.7 2017 9405987850
319 14202 14665 Futrono 247331.7 2017 3627119212
320 14203 9896 Lago Ranco 247154.2 2017 2445838259
321 14204 31372 Río Bueno 267934.4 2017 8405637271
322 15101 221364 Arica 310013.3 2017 68625788545
324 15201 2765 Putre 283661.5 2017 784324030
326 16101 184739 Chillán 275879.2 2017 50965643906
327 16102 21493 Bulnes 224694.9 2017 4829367278
328 16103 30907 Chillán Viejo 259577.5 2017 8022762560
329 16104 12044 El Carmen 215566.5 2017 2596282563
330 16105 8448 Pemuco 262037.4 2017 2213691761
331 16106 10827 Pinto 175602.5 2017 1901248804
332 16107 17485 Quillón 256072.4 2017 4477425886
333 16108 16079 San Ignacio 203331.5 2017 3269367252
334 16109 17787 Yungay 258601.1 2017 4599738091
335 16201 11594 Quirihue 252923.7 2017 2932397811
336 16202 5012 Cobquecura 259487.2 2017 1300549630
337 16203 15995 Coelemu 296882.1 2017 4748629723
338 16204 5213 Ninhue 301493.8 2017 1571687052
339 16205 4862 Portezuelo 196869.9 2017 957181342
340 16206 5755 Ránquil 286762.9 2017 1650320432
341 16207 5401 Treguaco 218702.4 2017 1181211462
342 16301 53024 San Carlos 252551.6 2017 13391296803
343 16302 26881 Coihueco 213580.4 2017 5741254097
344 16303 11152 Ñiquén 236681.5 2017 2639471976
345 16304 4308 San Fabián 259592.5 2017 1118324609
346 16305 11603 San Nicolás 266207.1 2017 3088800683

7.1.1 Promedio

t_de_c <- tabla_de_trabajo %>%
  group_by(código.y) %>%
  summarize(mean = mean(ing_medio_zona, na.rm = TRUE))
names(t_de_c)[1] <- "código" 
estadisticos_finales <- merge( x = ingresos, y = t_de_c, by = "código", all.x = TRUE)

7.1.2 Desviación standard

t_de_c_2 <- tabla_de_trabajo %>%
  group_by(código.y) %>%
  summarize(sd = sd(ing_medio_zona, na.rm = TRUE))
names(t_de_c_2)[1] <- "código" 
estadisticos_finales <- merge( x = estadisticos_finales, y = t_de_c_2, by = "código", all.x = TRUE)

7.1.3 Mínimo

t_de_c_3 <- tabla_de_trabajo %>%
  group_by(código.y) %>%
  summarize(min = min(ing_medio_zona, na.rm = TRUE))
names(t_de_c_3)[1] <- "código" 
estadisticos_finales <- merge( x = estadisticos_finales, y = t_de_c_3, by = "código", all.x = TRUE)

7.1.4 Máximo

t_de_c_4 <- tabla_de_trabajo %>%
  group_by(código.y) %>%
  summarize(max = max(ing_medio_zona, na.rm = TRUE))
names(t_de_c_4)[1] <- "código" 
estadisticos_finales <- merge( x = estadisticos_finales, y = t_de_c_4, by = "código", all.x = TRUE)

7.1.5 Mediana

t_de_c_5 <- tabla_de_trabajo %>%
  group_by(código.y) %>%
  summarize(median = median(ing_medio_zona, na.rm = TRUE))
names(t_de_c_5)[1] <- "código" 
estadisticos_finales <- merge( x = estadisticos_finales, y = t_de_c_5, by = "código", all.x = TRUE)
kbl(estadisticos_finales) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código personas comuna promedio_i año ingresos_expandidos mean sd min max median
01101 191468 Iquique 375676.9 2017 71930106513 336932.5 30379.201 287239.14 404791.9 330193.5
01107 108375 Alto Hospicio 311571.7 2017 33766585496 287355.9 13224.968 268365.43 325896.6 284302.9
01401 15711 Pozo Almonte 316138.5 2017 4966851883 404223.4 217202.815 260413.30 654078.0 298178.9
01405 9296 Pica 330061.1 2017 3068247619 305865.5 19913.032 291784.88 319946.2 305865.5
02101 361873 Antofagasta 368221.4 2017 133249367039 316433.3 35863.939 263943.86 459458.1 306122.7
02102 13467 Mejillones 369770.7 2017 4979702302 439311.2 72542.396 377530.10 519188.7 421214.7
02104 13317 Taltal 383666.2 2017 5109282942 324585.5 39014.970 289770.48 379173.0 314699.3
02201 165731 Calama 434325.1 2017 71981127235 312175.4 47419.462 244061.27 553019.5 304505.4
02203 10996 San Pedro de Atacama 442861.0 2017 4869699464 377684.1 25754.958 359472.63 395895.6 377684.1
02301 25186 Tocopilla 286187.2 2017 7207910819 282459.8 67548.694 231307.27 476934.1 255506.8
02302 6457 María Elena 477748.0 2017 3084818966 364409.8 23849.594 344634.52 390895.8 357699.0
03101 153937 Copiapó 343121.0 2017 52819016037 294190.3 32048.528 246016.17 396376.8 287619.5
03102 17662 Caldera 318653.2 2017 5628052276 333036.6 38246.203 297260.93 396426.7 324567.0
03103 14019 Tierra Amarilla 333194.9 2017 4671058718 278189.4 92142.116 226469.17 415905.0 235191.7
03201 12219 Chañaral 286389.3 2017 3499391196 256025.0 67923.871 118767.14 324874.6 270558.5
03202 13925 Diego de Almagro 351583.9 2017 4895805596 315058.6 54526.666 250393.26 401415.5 303361.4
03301 51917 Vallenar 315981.5 2017 16404810756 278400.9 39223.506 234014.36 343600.5 259078.4
03303 7041 Freirina 289049.9 2017 2035200054 390884.2 234843.652 241720.41 661588.9 269343.2
03304 10149 Huasco 337414.8 2017 3424422750 311636.7 40859.835 272211.41 379345.8 298448.7
04101 221054 La Serena 279340.1 2017 61749247282 282492.2 23765.052 240651.67 386556.6 280354.4
04102 227730 Coquimbo 269078.6 2017 61277269093 286925.6 20722.703 246807.05 338325.4 286053.3
04103 11044 Andacollo 258539.7 2017 2855312920 256551.7 4914.570 252752.69 262102.1 254800.4
04104 4241 La Higuera 214257.0 2017 908664019 231254.3 16320.050 219714.33 242794.4 231254.3
04106 27771 Vicuña 254177.0 2017 7058750373 287777.1 43439.033 257521.05 382890.6 267819.2
04201 30848 Illapel 282139.3 2017 8703433491 287112.2 33893.073 257095.70 354536.2 274326.4
04202 9093 Canela 233397.3 2017 2122281844 234142.4 76111.371 180323.54 287961.3 234142.4
04203 21382 Los Vilos 285214.0 2017 6098444926 338040.5 46966.082 297974.03 438023.5 335335.6
04204 29347 Salamanca 262056.9 2017 7690585032 304302.8 41409.818 242849.26 369610.5 297046.3
04301 111272 Ovalle 280373.5 2017 31197719080 284137.0 50989.002 60175.86 365477.2 289736.0
04302 13322 Combarbalá 234537.3 2017 3124505460 297031.7 21921.280 273496.12 316867.9 300731.2
04303 30751 Monte Patria 225369.1 2017 6930326684 261347.9 25270.346 217361.36 285252.9 272774.5
04304 10956 Punitaqui 212496.1 2017 2328107498 258995.4 30208.768 237724.16 293573.1 245689.1
05101 296655 Valparaíso 306572.5 2017 90946261553 302170.4 29821.003 223199.50 454453.1 299214.3
05102 26867 Casablanca 348088.6 2017 9352095757 316917.2 37785.292 255893.67 386685.6 317050.8
05103 42152 Concón 333932.4 2017 14075920021 319879.6 19339.641 291740.62 352321.0 318512.7
05105 18546 Puchuncaví 296035.5 2017 5490274928 288714.5 39644.175 193093.04 346074.8 290227.1
05107 31923 Quintero 308224.7 2017 9839456903 286112.8 56974.301 215054.40 415282.0 286169.9
05109 334248 Viña del Mar 354715.9 2017 118563074323 309752.7 18252.407 246149.66 350475.0 310744.3
05301 66708 Los Andes 355446.2 2017 23711104774 304312.8 37640.068 251789.51 429650.3 297699.8
05302 14832 Calle Larga 246387.3 2017 3654416747 294230.3 27888.188 256819.97 351556.8 292327.0
05303 10207 Rinconada 279807.9 2017 2855998928 293129.1 31863.591 238687.95 328933.7 303490.3
05304 18855 San Esteban 219571.6 2017 4140022481 288947.8 13727.706 270468.84 306305.7 285014.7
05401 35390 La Ligua 259482.3 2017 9183080280 297433.4 43734.939 176938.32 331647.7 301720.1
05402 19388 Cabildo 262745.9 2017 5094117762 261878.3 18676.693 235561.61 277375.5 272934.0
05403 6356 Papudo 302317.1 2017 1921527704 317023.7 14650.982 301038.98 333094.3 324556.0
05404 9826 Petorca 237510.8 2017 2333781007 284712.6 19680.635 261620.74 307904.3 284662.7
05405 7339 Zapallar 294389.2 2017 2160521991 298253.3 72726.232 169667.34 372978.5 316239.6
05501 90517 Quillota 288694.2 2017 26131733924 305119.2 40928.375 249307.49 486283.7 298560.2
05502 50554 Calera 282823.6 2017 14297866792 283973.5 47275.393 196272.23 445860.2 274964.1
05503 17988 Hijuelas 268449.7 2017 4828872604 279500.9 48213.452 193335.31 303046.0 300817.4
05504 22098 La Cruz 335544.3 2017 7414857001 296860.8 20533.257 267715.43 319231.5 303582.6
05506 22120 Nogales 259917.8 2017 5749381300 258843.6 14645.694 239429.03 279399.2 262879.2
05601 91350 San Antonio 246603.6 2017 22527241144 311419.1 27907.777 281031.53 399154.5 307300.9
05602 13817 Algarrobo 390710.4 2017 5398446270 281941.1 32275.299 233374.16 337725.1 285617.5
05603 22738 Cartagena 244949.4 2017 5569658994 265487.4 27402.143 213297.44 305831.0 263935.1
05604 15955 El Quisco 270498.2 2017 4315799297 267425.0 25467.544 217506.89 306418.1 265788.3
05605 13286 El Tabo 287271.0 2017 3816682340 259243.4 31856.527 218161.27 314666.9 259479.4
05606 10900 Santo Domingo 404470.9 2017 4408732520 290626.6 41616.420 215082.33 341685.7 297339.8
05701 76844 San Felipe 302021.4 2017 23208536043 308061.5 34133.274 231134.24 402113.0 310686.5
05702 13998 Catemu 233238.3 2017 3264869972 310834.7 30287.536 291104.21 345707.3 295692.6
05703 24608 Llaillay 295663.4 2017 7275684301 295956.0 28310.994 235338.01 324628.9 298428.4
05704 7273 Panquehue 328043.3 2017 2385858928 302700.9 19562.426 283022.01 322144.7 302936.0
05705 16754 Putaendo 309628.4 2017 5187514898 313331.4 43810.674 275807.13 361475.9 302711.2
05706 15241 Santa María 256403.4 2017 3907844674 306559.3 28421.152 258033.41 345899.7 311837.8
05801 151708 Quilpué 344393.1 2017 52247193426 298298.2 15249.379 266063.91 342110.7 296250.4
05802 46121 Limache 307380.7 2017 14176705125 294288.0 13121.522 276725.39 326649.6 292740.7
05803 17516 Olmué 293997.6 2017 5149662271 290245.3 14171.915 275867.51 313625.7 287083.0
05804 126548 Villa Alemana 361923.3 2017 45800670899 296526.2 19609.725 265056.98 373987.3 298298.3
06101 241774 Rancagua 318384.5 2017 76977097284 302505.4 29222.661 230727.50 406352.3 301332.2
06102 12988 Codegua 289405.7 2017 3758801352 311046.2 25781.799 283822.85 334113.2 313124.5
06103 7359 Coinco 224485.0 2017 1651985453 292125.0 52176.270 252617.84 368960.3 273460.9
06104 19597 Coltauco 278925.9 2017 5466110795 274798.2 26559.579 212445.07 303606.9 280331.6
06105 20887 Doñihue 306532.0 2017 6402533884 271845.8 58023.565 156650.00 308908.9 292993.3
06106 33437 Graneros 311834.8 2017 10426820415 304668.8 14883.148 278913.20 325275.2 309697.3
06107 24640 Las Cabras 279810.6 2017 6894533314 298699.7 18073.359 279212.37 319548.1 303554.9
06108 52505 Machalí 316199.2 2017 16602037093 304567.5 23841.121 262517.44 363900.1 302208.4
06109 13407 Malloa 213596.6 2017 2863689033 259140.0 76554.414 145001.48 306744.3 292407.2
06110 25343 Mostazal 291701.8 2017 7392597596 298661.2 11969.901 277518.52 312387.7 299063.8
06111 13608 Olivar 297914.9 2017 4054025678 297071.2 34660.679 243198.09 328487.8 309688.0
06112 14313 Peumo 248687.4 2017 3559462966 308154.5 19584.660 269962.31 330122.4 310233.3
06113 19714 Pichidegua 234187.0 2017 4616762518 310757.2 61025.584 240137.15 389205.1 306843.2
06114 13002 Quinta de Tilcoco 210835.7 2017 2741286093 315599.1 15572.896 294126.65 329766.0 319251.9
06115 58825 Rengo 293650.2 2017 17273974762 298321.6 34594.690 199197.56 334776.3 304436.9
06116 27968 Requínoa 288865.3 2017 8078983811 318634.5 21560.582 285249.50 357518.7 319399.3
06117 46766 San Vicente 285655.7 2017 13358975033 298777.1 24280.672 262261.97 342153.5 296366.8
06201 16394 Pichilemu 344227.1 2017 5643258336 303759.3 34211.726 223166.43 333618.2 313136.8
06202 3041 La Estrella 293280.7 2017 891866686 236400.4 129257.528 145001.48 327799.2 236400.4
06203 6294 Litueche 298955.7 2017 1881627117 319277.5 16913.720 300830.21 334055.1 322947.2
06204 7308 Marchihue 336379.3 2017 2458260033 313662.5 11317.603 305659.79 321665.3 313662.5
06205 6641 Navidad 236383.5 2017 1569822543 NA NA NA NA NA
06206 6188 Paredones 238518.3 2017 1475951353 439597.5 198567.556 299188.99 580005.9 439597.5
06301 73973 San Fernando 324998.7 2017 24041131495 310093.9 19446.932 259200.72 339240.2 310731.8
06302 15037 Chépica 245508.7 2017 3691714537 270656.8 20386.617 246573.61 296155.3 269949.2
06303 35399 Chimbarongo 260706.7 2017 9228754903 296635.3 35327.054 203947.27 340681.3 305670.1
06304 6811 Lolol 236668.2 2017 1611947197 307398.5 11823.738 299037.87 315759.2 307398.5
06305 17833 Nancagua 245992.6 2017 4386786331 278648.0 54436.525 197945.23 317207.3 299719.8
06306 12482 Palmilla 246745.0 2017 3079870843 319520.0 39939.360 287619.11 364313.2 306627.8
06307 11007 Peralillo 265630.7 2017 2923796850 288996.9 14793.731 276770.36 309491.9 284862.6
06308 8738 Placilla 240573.8 2017 2102134220 319928.5 26713.853 301038.98 338818.1 319928.5
06310 37855 Santa Cruz 300976.4 2017 11393463346 326091.3 21246.123 288548.29 355406.5 327814.1
07101 220357 Talca 307377.4 2017 67732753814 296681.1 29808.239 185058.02 376683.5 295195.6
07102 46068 Constitución 280736.9 2017 12932986800 311162.9 28491.828 257524.87 359735.7 304458.3
07103 9448 Curepto 281855.5 2017 2662971120 282559.7 20798.632 267852.84 297266.5 282559.7
07104 4142 Empedrado 209235.2 2017 866652110 315700.4 85134.346 226360.87 395890.5 324850.0
07105 49721 Maule 245019.7 2017 12182624190 301160.4 26170.230 264664.99 348925.2 296372.3
07106 8422 Pelarco 216777.5 2017 1825700105 332375.8 40829.732 303504.82 361246.8 332375.8
07107 8245 Pencahue 233692.6 2017 1926795579 295650.8 50463.574 237534.28 328373.4 321044.6
07108 13906 Río Claro 224864.2 2017 3126961590 292710.2 41555.961 263325.69 322094.7 292710.2
07109 43269 San Clemente 247003.5 2017 10687595452 277295.5 64529.235 231214.90 445505.2 256072.2
07110 9191 San Rafael 249688.5 2017 2294886656 333009.1 70543.216 283127.48 382890.6 333009.1
07201 40441 Cauquenes 235303.7 2017 9515918892 273011.3 23874.033 240565.51 334929.9 270848.7
07202 8928 Chanco 250327.3 2017 2234922252 266348.0 35105.386 229502.69 299406.4 270135.0
07203 7571 Pelluhue 202735.2 2017 1534908448 261387.9 21799.268 239664.05 292407.1 252895.9
07301 149136 Curicó 282406.9 2017 42117028333 323388.3 22314.394 276793.86 363944.1 325424.3
07302 9657 Hualañé 303280.6 2017 2928781043 251434.9 56793.080 193335.31 306824.4 254144.9
07303 6653 Licantén 261799.2 2017 1741750148 318432.3 13919.583 308589.67 328274.9 318432.3
07304 45976 Molina 261223.2 2017 12009998195 303505.4 25884.602 235574.33 337106.4 311008.9
07305 10484 Rauco 271406.8 2017 2845428741 311255.5 31088.888 276438.36 336236.7 321091.3
07306 15187 Romeral 269017.0 2017 4085560646 305806.0 49584.771 248578.00 335957.4 332882.7
07307 18544 Sagrada Familia 248654.3 2017 4611045339 310147.7 22190.858 280594.84 342794.9 307258.6
07308 28921 Teno 262087.1 2017 7579820261 315374.3 40599.780 263294.74 370095.0 313983.9
07309 4322 Vichuquén 218281.8 2017 943414066 307408.4 44044.239 276264.45 338552.4 307408.4
07401 93602 Linares 270205.2 2017 25291751487 294027.2 30360.299 233518.83 356071.2 287440.6
07402 20765 Colbún 200983.0 2017 4173410967 260833.6 29441.815 238510.59 311657.1 254990.2
07403 30534 Longaví 216067.2 2017 6597394825 265474.8 30319.178 212443.15 289587.0 275304.9
07404 41637 Parral 266374.6 2017 11091040324 271569.3 32754.481 208329.98 321470.1 281437.3
07405 19974 Retiro 225715.0 2017 4508431050 260096.9 32629.221 216885.53 308130.4 260514.9
07406 45547 San Javier 278559.1 2017 12687530322 270224.2 21537.570 222956.86 308774.0 272893.0
07407 16221 Villa Alegre 262111.0 2017 4251702731 275395.3 20507.708 242334.41 295291.6 282334.0
07408 18081 Yerbas Buenas 244050.7 2017 4412680158 255841.5 17672.506 220424.31 276940.4 261476.9
08101 223574 Concepción 323059.6 2017 72227728923 304706.7 24280.608 237800.37 359079.5 301343.6
08102 116262 Coronel 277633.4 2017 32278209118 255142.1 21087.205 192736.11 303229.2 255764.7
08103 85938 Chiguayante 298370.0 2017 25641323296 298400.0 21465.971 268121.45 362236.9 295060.4
08104 10624 Florida 232450.3 2017 2469551785 282105.3 13842.886 266190.56 291353.2 288772.2
08105 24333 Hualqui 232273.3 2017 5651905803 268758.5 31410.240 197304.90 308130.4 278481.2
08106 43535 Lota 283449.0 2017 12339953990 261008.2 14826.101 247039.11 293702.7 256135.6
08107 47367 Penco 265193.8 2017 12561435651 282732.5 15762.852 250714.58 311213.5 279650.5
08108 131808 San Pedro de la Paz 274394.0 2017 36167321662 304044.5 23113.144 274447.10 363569.7 297209.0
08109 13749 Santa Juana 260550.2 2017 3582304723 233738.5 63083.114 139385.02 271556.7 262006.0
08110 151749 Talcahuano 320279.6 2017 48602104064 281151.4 26912.372 244725.41 365267.3 274214.3
08111 54946 Tomé 275421.3 2017 15133299927 274032.6 32604.680 224141.68 386779.3 271361.1
08112 91773 Hualpén 287452.1 2017 26380344663 282873.9 24856.704 240261.33 342543.8 276264.2
08201 25522 Lebu 256023.5 2017 6534231082 268978.9 52003.704 183718.60 387751.9 262402.5
08202 36257 Arauco 316263.6 2017 11466769473 302319.5 98678.055 221779.72 556966.8 278180.1
08203 34537 Cañete 241126.1 2017 8327773342 279581.0 38531.385 230653.53 359337.1 278059.0
08204 6031 Contulmo 213011.2 2017 1284670805 305825.5 NA 305825.51 305825.5 305825.5
08205 32288 Curanilahue 262911.9 2017 8488900056 269708.5 17442.456 238540.76 310201.5 271317.2
08206 21035 Los Álamos 230097.8 2017 4840107033 233242.2 46129.593 145863.10 273307.8 247561.0
08207 10417 Tirúa 221347.3 2017 2305775206 292778.6 27804.612 264664.99 320263.6 293407.2
08301 202331 Los Ángeles 298724.4 2017 60441208918 292288.4 34521.202 197111.74 347528.7 296461.7
08302 4073 Antuco 191980.2 2017 781935233 288752.2 105618.684 214068.46 363435.8 288752.2
08303 28573 Cabrero 225166.5 2017 6433682620 271740.7 42501.269 239047.90 361475.9 262429.1
08304 22389 Laja 224428.0 2017 5024717382 223170.1 16917.557 197744.63 248866.4 219748.7
08305 29627 Mulchén 246376.9 2017 7299407611 267441.5 24688.798 237209.22 319946.2 265765.5
08306 26315 Nacimiento 292529.0 2017 7697899431 249362.7 15612.947 228540.67 281547.7 248470.3
08307 9737 Negrete 196781.4 2017 1916060576 227345.8 26844.443 200692.65 254377.5 226967.3
08308 3988 Quilaco 196761.0 2017 784682868 229642.8 23115.771 213297.44 245988.1 229642.8
08309 9587 Quilleco 201931.6 2017 1935917806 214690.2 18954.032 187496.98 232574.8 223696.0
08310 3412 San Rosendo 206738.0 2017 705390056 242835.8 65661.181 196406.33 289265.3 242835.8
08311 13773 Santa Bárbara 250849.5 2017 3454949584 262803.9 6760.668 255125.24 267861.9 265424.6
08312 14134 Tucapel 214733.9 2017 3035048397 225121.6 35243.716 173712.92 254230.8 242007.5
08313 21198 Yumbel 221417.8 2017 4693613938 286828.1 66066.993 236904.48 383935.4 263236.2
08314 5923 Alto Biobío 251792.7 2017 1491367928 NA NA NA NA NA
09101 282415 Temuco 294512.7 2017 83174794799 308710.1 23826.178 256182.42 392002.1 305911.0
09102 24533 Carahue 237416.7 2017 5824543339 271817.4 45269.383 205353.31 326939.1 265185.8
09103 17526 Cunco 247099.1 2017 4330659433 246879.1 32647.802 196376.89 286226.0 252261.4
09104 7489 Curarrehue 204180.7 2017 1529109215 279439.1 14051.966 269502.85 289375.3 279439.1
09105 24606 Freire 305541.7 2017 7518158340 244377.9 36195.091 197331.75 282892.0 249473.3
09106 11996 Galvarino 244269.6 2017 2930258102 277023.4 3317.876 274677.35 279369.5 277023.4
09107 14414 Gorbea 254627.9 2017 3670206245 264719.8 21770.848 240729.64 301039.0 258426.6
09108 38013 Lautaro 296417.7 2017 11267725602 263508.8 16477.328 238296.28 286329.6 262106.3
09109 23612 Loncoche 213841.9 2017 5049235445 231962.4 52238.318 127730.02 268385.5 250823.0
09110 6138 Melipeuco 211980.8 2017 1301137941 240532.7 26372.155 221884.75 259180.6 240532.7
09111 32510 Nueva Imperial 242015.9 2017 7867935676 266922.6 9629.951 252000.13 279412.1 265894.3
09112 76126 Padre Las Casas 278372.7 2017 21191399108 296704.8 23112.436 249619.67 323243.2 304294.2
09113 6905 Perquenco 260596.6 2017 1799419624 276852.6 NA 276852.62 276852.6 276852.6
09114 24837 Pitrufquén 249811.8 2017 6204576082 291183.7 37712.428 268192.51 374994.0 277846.5
09115 28523 Pucón 260967.9 2017 7443587942 331611.6 15114.724 311504.77 356659.8 333006.6
09116 12450 Saavedra 229431.4 2017 2856420491 328228.1 39709.865 300148.97 356307.2 328228.1
09117 15045 Teodoro Schmidt 224680.1 2017 3380311968 253110.7 33071.156 217564.95 282969.8 258797.2
09118 9722 Toltén 219705.4 2017 2135976054 237150.7 81972.499 145001.48 301957.1 264493.6
09119 28151 Vilcún 172649.0 2017 4860243131 257646.6 55421.187 164932.88 324386.1 273609.4
09120 55478 Villarrica 246047.7 2017 13650235814 295286.4 22024.568 249715.94 336408.4 296086.8
09121 11611 Cholchol 253226.0 2017 2940207311 222869.7 40881.066 193962.40 251777.0 222869.7
09201 53262 Angol 268414.6 2017 14296297282 292721.6 33538.577 247142.56 382781.6 288640.5
09202 24598 Collipulli 247911.8 2017 6098134776 258173.4 38974.350 182540.44 317749.3 263913.0
09203 17413 Curacautín 234574.3 2017 4084643011 264813.7 28466.715 236680.12 325581.3 258773.1
09204 7733 Ercilla 268071.3 2017 2072995481 275932.3 26020.139 254056.67 304706.6 269033.6
09205 10251 Lonquimay 250560.5 2017 2568496128 340170.6 2697.560 338263.11 342078.0 340170.6
09206 7265 Los Sauces 212950.7 2017 1547086780 260090.1 17697.999 241220.44 276319.9 262730.1
09207 9548 Lumaco 282522.6 2017 2697526159 272360.7 11893.621 260738.15 284508.0 271835.8
09208 11779 Purén 234139.4 2017 2757928013 263556.4 16656.076 244648.34 283008.9 263284.2
09209 10250 Renaico 266020.9 2017 2726714090 268081.4 6138.245 261222.13 276142.0 267480.8
09210 18843 Traiguén 258102.0 2017 4863416659 268281.0 28770.246 232797.16 312085.3 262524.6
09211 34182 Victoria 225959.9 2017 7723760970 281172.8 21014.455 257461.71 329429.4 274785.3
10101 245902 Puerto Montt 304409.6 2017 74854925754 323364.6 28086.643 249516.29 396117.3 321851.1
10102 33985 Calbuco 280878.2 2017 9545646863 321814.7 25450.243 298037.65 363555.3 313217.4
10104 12261 Fresia 223666.2 2017 2742371891 398454.9 176764.671 284437.03 602078.0 308849.8
10105 18428 Frutillar 281543.9 2017 5188291726 315542.6 8642.835 307541.29 328151.6 315088.3
10106 17068 Los Muermos 233220.1 2017 3980600731 302064.2 8353.115 295965.22 311584.9 298642.5
10107 17591 Llanquihue 251391.8 2017 4422233283 305281.5 17405.265 280364.25 327286.6 304222.3
10108 14216 Maullín 269082.7 2017 3825279050 370115.0 101003.272 304184.47 486396.2 319764.5
10109 44578 Puerto Varas 312276.5 2017 13920663786 337050.7 39691.333 235338.01 375616.8 350660.4
10201 43807 Castro 349368.8 2017 15304799118 338599.5 16940.464 315366.44 372754.0 333221.7
10202 38991 Ancud 229798.1 2017 8960055930 305819.6 12074.189 288410.21 322404.1 306227.4
10203 14858 Chonchi 239577.2 2017 3559637517 305133.2 31157.332 271120.24 332294.4 311985.1
10205 13762 Dalcahue 325358.2 2017 4477578923 304228.8 27458.783 277898.24 332691.5 302096.6
10207 5385 Queilén 183406.6 2017 987644627 358690.7 68565.088 310207.88 407173.6 358690.7
10208 27192 Quellón 241965.8 2017 6579532876 342364.3 33297.418 305011.78 404593.8 336631.7
10209 8352 Quemchi 308051.3 2017 2572844097 299840.9 44066.592 248996.95 327004.0 323521.8
10210 8088 Quinchao 370474.4 2017 2996397098 252208.4 92111.925 187075.46 317341.4 252208.4
10301 161460 Osorno 271587.3 2017 43850482486 313715.1 28778.147 256448.63 384550.8 308858.3
10302 8999 Puerto Octay 262148.9 2017 2359078294 295721.6 1691.740 294525.37 296917.8 295721.6
10303 20369 Purranque 302471.6 2017 6161043438 293065.9 47462.524 251391.30 374994.0 278899.5
10304 11667 Puyehue 230541.3 2017 2689725003 252340.2 20938.767 237534.28 267146.2 252340.2
10305 14085 Río Negro 276657.1 2017 3896715111 241486.7 38071.388 197945.23 268504.9 258009.9
10306 7512 San Juan de la Costa 222910.5 2017 1674503801 270543.7 24552.991 253182.10 287905.3 270543.7
10307 10030 San Pablo 195712.4 2017 1962995435 338456.3 102530.029 265956.66 410956.0 338456.3
11101 57818 Coyhaique 327100.3 2017 18912283227 344164.9 31644.111 235625.01 382396.3 350366.5
11201 23959 Aysén 307831.4 2017 7375332218 330385.2 52412.484 285693.90 463767.6 315327.0
11202 6517 Cisnes 251971.0 2017 1642095149 350240.3 16273.355 331482.51 360583.6 358654.9
11301 3490 Cochrane 350724.8 2017 1224029692 446971.1 120164.252 362002.10 531940.0 446971.1
11401 4865 Chile Chico 333445.3 2017 1622211456 353728.5 21739.468 338356.42 369100.7 353728.5
12101 131592 Punta Arenas 391758.4 2017 51552266922 351715.6 29319.890 316522.57 454638.0 345815.2
12301 6801 Porvenir 446255.2 2017 3034981682 400454.3 46627.544 346616.30 427850.5 426896.2
12401 21477 Natales 336808.6 2017 7233637635 338499.5 16960.265 322327.29 378820.0 334401.1
13101 404495 Santiago 450851.7 2017 182367246208 449866.5 48044.908 186563.20 539749.7 457340.8
13102 80832 Cerrillos 276766.5 2017 22371586546 326585.5 33485.911 270387.80 445898.9 322334.0
13103 132622 Cerro Navia 270634.1 2017 35892031153 322225.9 15491.767 278407.85 350253.6 324465.0
13104 126955 Conchalí 310325.3 2017 39397353402 325736.1 21227.453 266948.14 377656.1 319640.7
13105 162505 El Bosque 281653.9 2017 45770170398 322706.8 30311.115 295869.56 473272.2 317115.1
13106 147041 Estación Central 340680.2 2017 50093952387 360896.4 48210.583 294110.94 486934.1 346694.5
13107 98671 Huechuraba 315250.1 2017 31106038806 326688.6 27135.610 293575.63 410986.3 326591.7
13108 100281 Independencia 376152.6 2017 37720956327 380517.1 47287.575 318221.11 461557.2 363354.1
13109 90119 La Cisterna 367262.4 2017 33097323323 341778.4 17404.565 306765.53 372871.2 341576.6
13110 366916 La Florida 349483.5 2017 128231071590 338536.6 22019.622 285825.98 419345.1 336157.8
13111 116571 La Granja 306768.3 2017 35760286668 325307.0 15902.594 293356.18 354980.9 322067.6
13112 177335 La Pintana 232647.0 2017 41256447003 310929.5 30350.628 274264.69 497993.9 307816.6
13113 92787 La Reina 434408.5 2017 40307459856 346490.1 17858.449 294344.48 370921.6 349123.2
13114 294838 Las Condes 456515.7 2017 134598169599 369219.5 34154.121 318516.24 465128.3 359172.4
13115 105833 Lo Barnechea 349308.7 2017 36968385127 338198.3 31429.650 274239.57 384041.1 333753.9
13116 98804 Lo Espejo 264154.1 2017 26099479542 317033.7 13429.289 277571.24 347440.3 318145.2
13117 96249 Lo Prado 305431.2 2017 29397444939 329136.6 18551.833 288457.90 371364.6 327782.4
13118 116534 Macul 345701.4 2017 40285970358 354762.8 28906.123 304728.16 428018.3 353438.6
13119 521627 Maipú 358559.2 2017 187034167391 338313.3 19739.727 278211.79 399801.5 337559.1
13120 208237 Ñuñoa 426460.1 2017 88804766896 382296.2 33494.320 321678.15 482868.2 381940.3
13121 101174 Pedro Aguirre Cerda 316863.2 2017 32058321741 324390.9 20962.540 302241.91 417524.2 320184.8
13122 241599 Peñalolén 321570.6 2017 77691132095 343077.6 10961.811 316772.22 370749.9 341958.5
13123 142079 Providencia 516122.3 2017 73330144381 404163.7 31229.699 312085.27 469965.8 405631.0
13124 230293 Pudahuel 320572.7 2017 73825647438 338317.7 23697.537 296685.70 443868.7 332280.2
13125 210410 Quilicura 383485.8 2017 80689241762 343614.8 15489.944 290963.05 387614.3 345575.2
13126 110026 Quinta Normal 311731.1 2017 34298531093 351328.6 27540.147 310842.91 414589.6 344132.6
13127 157851 Recoleta 344997.0 2017 54458123369 355525.8 42516.727 305234.41 466310.1 343686.2
13128 147151 Renca 294000.5 2017 43262464632 319351.3 21827.160 215843.76 346588.9 320042.2
13129 94492 San Joaquín 336046.8 2017 31753732439 333476.6 20043.038 290326.48 393890.5 329416.2
13130 107954 San Miguel 351632.1 2017 37960091353 373225.6 27993.488 333056.20 418872.6 368890.8
13131 82900 San Ramón 281439.6 2017 23331343432 317741.0 14379.749 291856.72 340498.4 317786.2
13132 85384 Vitacura 496933.1 2017 42430139879 348352.3 39278.438 200553.47 428169.9 343005.1
13201 568106 Puente Alto 328342.7 2017 186533464474 331967.8 23287.400 235096.48 391765.6 333630.7
13202 26521 Pirque 332454.5 2017 8817024774 319421.3 19097.655 287383.75 335058.2 322241.2
13203 18189 San José de Maipo 381218.4 2017 6933981276 341712.2 35893.783 301038.93 404396.9 338323.1
13301 146207 Colina 300609.0 2017 43951136523 328631.3 44844.048 229455.56 557074.4 325596.5
13302 102034 Lampa 372624.0 2017 38020316317 323021.2 21785.177 261243.52 356023.3 319512.8
13303 19312 Tiltil 327523.1 2017 6325126322 299915.5 35848.414 235625.01 338575.8 309964.8
13401 301313 San Bernardo 286991.8 2017 86474375157 315766.5 17429.906 258702.50 355232.6 315609.1
13402 96614 Buin 314979.3 2017 30431412042 324513.3 21418.931 281347.83 359271.9 326639.1
13403 25392 Calera de Tango 307306.5 2017 7803125477 314434.4 53650.922 227120.85 401900.0 322844.9
13404 72759 Paine 330137.7 2017 24020488982 304899.8 20133.016 250241.34 332860.5 310346.7
13501 123627 Melipilla 291641.9 2017 36054817558 309278.7 25404.201 265030.59 369025.7 302818.4
13502 6444 Alhué 349434.5 2017 2251756129 370601.5 26873.212 351599.25 389603.7 370601.5
13503 32579 Curacaví 269095.1 2017 8766848005 312443.8 24525.290 271852.77 353645.9 314881.7
13504 13590 María Pinto 253962.5 2017 3451350898 320531.4 85161.401 268060.08 511355.4 286529.9
13601 74237 Talagante 394670.6 2017 29299162746 323131.9 20250.441 287674.11 357121.5 323626.4
13602 35923 El Monte 297691.7 2017 10693979408 302912.3 10426.084 288437.51 317574.4 303760.4
13603 36219 Isla de Maipo 229284.1 2017 8304441408 310069.7 13965.619 290623.19 328947.2 314928.8
13604 63250 Padre Hurtado 277563.2 2017 17555873230 323746.2 12757.391 302505.03 348225.4 324311.9
13605 90201 Peñaflor 351564.7 2017 31711490484 312376.1 20152.546 274104.59 360451.0 313182.8
14101 166080 Valdivia 308754.5 2017 51277944139 311790.9 20956.836 249305.39 350028.1 308155.6
14102 5302 Corral 222523.9 2017 1179821617 399361.9 174417.656 276030.01 522693.8 399361.9
14103 16752 Lanco 267286.0 2017 4477574931 248623.2 57856.754 147944.17 289039.0 268007.0
14104 19634 Los Lagos 211843.1 2017 4159328181 271844.6 20518.954 246995.55 292332.9 274025.0
14105 7095 Máfil 315022.1 2017 2235081533 210894.0 93186.083 145001.48 276786.5 210894.0
14106 21278 Mariquina 251064.3 2017 5342147079 259513.9 33008.610 215505.01 288890.4 266830.0
14107 20188 Paillaco 223306.5 2017 4508111622 266112.6 31361.995 227044.90 302017.0 267311.8
14108 34539 Panguipulli 287752.5 2017 9938682028 287862.1 26250.737 254583.42 325654.3 283641.8
14201 38036 La Unión 247291.7 2017 9405987850 279750.5 26979.607 247373.38 331829.3 273467.2
14202 14665 Futrono 247331.7 2017 3627119212 259492.4 25393.802 228476.13 286755.0 264665.0
14203 9896 Lago Ranco 247154.2 2017 2445838259 314247.5 63095.994 269631.89 358863.1 314247.5
14204 31372 Río Bueno 267934.4 2017 8405637271 261457.9 39567.878 175272.12 286877.0 279645.8
15101 221364 Arica 310013.3 2017 68625788545 300491.6 32272.782 263247.39 428284.2 290446.1
15201 2765 Putre 283661.5 2017 784324030 522557.6 126349.015 433215.36 611899.8 522557.6
16101 184739 Chillán 275879.2 2017 50965643906 283378.1 27637.463 222319.63 351037.5 282598.4
16102 21493 Bulnes 224694.9 2017 4829367278 258513.5 18998.990 226784.25 282851.4 260395.6
16103 30907 Chillán Viejo 259577.5 2017 8022762560 281428.8 23519.323 243606.44 309425.4 282296.6
16104 12044 El Carmen 215566.5 2017 2596282563 182974.6 95206.507 96667.65 285099.4 167156.8
16105 8448 Pemuco 262037.4 2017 2213691761 181438.1 71309.826 82857.99 243166.8 199863.9
16106 10827 Pinto 175602.5 2017 1901248804 271411.0 27974.535 236331.16 301417.3 272930.1
16107 17485 Quillón 256072.4 2017 4477425886 247251.0 20687.393 217122.66 277124.0 248488.0
16108 16079 San Ignacio 203331.5 2017 3269367252 252640.5 25609.994 231322.35 300954.4 246470.5
16109 17787 Yungay 258601.1 2017 4599738091 254386.4 27699.622 215753.18 291767.6 255205.0
16201 11594 Quirihue 252923.7 2017 2932397811 258915.4 38454.372 192976.35 313262.7 263059.9
16202 5012 Cobquecura 259487.2 2017 1300549630 331339.9 42618.719 301203.92 361475.9 331339.9
16203 15995 Coelemu 296882.1 2017 4748629723 265510.5 41168.591 206202.67 321605.7 268033.2
16204 5213 Ninhue 301493.8 2017 1571687052 234292.3 25429.411 216310.95 252273.6 234292.3
16205 4862 Portezuelo 196869.9 2017 957181342 274960.2 21273.655 259917.47 290003.0 274960.2
16206 5755 Ránquil 286762.9 2017 1650320432 167473.5 119664.426 82857.99 252089.0 167473.5
16207 5401 Treguaco 218702.4 2017 1181211462 253494.6 NA 253494.65 253494.6 253494.6
16301 53024 San Carlos 252551.6 2017 13391296803 273382.9 17517.541 243470.90 297822.8 274743.2
16302 26881 Coihueco 213580.4 2017 5741254097 248093.5 27317.634 200692.65 270026.2 255380.5
16303 11152 Ñiquén 236681.5 2017 2639471976 221285.6 NA 221285.58 221285.6 221285.6
16304 4308 San Fabián 259592.5 2017 1118324609 255083.0 8170.730 249305.39 260860.5 255083.0
16305 11603 San Nicolás 266207.1 2017 3088800683 268453.6 8724.779 262284.24 274622.9 268453.6
write_xlsx(estadisticos_finales, "estadisticos_finales.xlsx")
write.dbf(estadisticos_finales, "estadisticos_finales.dbf")