#a https://www.youtube.com/watch?v=5R9_QydbEHc
#b https://www.youtube.com/watch?v=909pbQtpcb8
#c https://www.youtube.com/watch?v=Jbb0oJrNz3g
#d https://www.youtube.com/watch?v=L-v7u6U8YwM
#e https://www.youtube.com/watch?v=Ly27c1v-WGk
#f https://www.youtube.com/watch?v=MeCjvOmNvD0
#g https://www.youtube.com/watch?v=nimdaDovcp8
#h https://www.youtube.com/watch?v=rklDhiLhUX0
#i https://www.youtube.com/watch?v=rykXrptnhgk
#j https://www.youtube.com/watch?v=vkgLZJgEYIE
#l https://www.youtube.com/watch?v=Y3cQQV79jjI
if(!require(pacman)) install.packages("pacman")
## Loading required package: pacman
library(pacman)
pacman::p_load(dplyr, rel, irr)
dados <- read.csv("kappa.csv", stringsAsFactors = TRUE)
#View(dados) # Visualização dos dados em janela separada
#glimpse(dados) # Visualização de um resumo dos dados
irr::kappa2(dados[2:3]) #a
## Cohen's Kappa for 2 Raters (Weights: unweighted)
##
## Subjects = 35
## Raters = 2
## Kappa = 0.726
##
## z = 4.72
## p-value = 2.33e-06
irr::kappa2(dados[4:5]) #b
## Cohen's Kappa for 2 Raters (Weights: unweighted)
##
## Subjects = 36
## Raters = 2
## Kappa = 0.265
##
## z = 1.77
## p-value = 0.0773
irr::kappa2(dados[6:7]) #c
## Cohen's Kappa for 2 Raters (Weights: unweighted)
##
## Subjects = 36
## Raters = 2
## Kappa = 0.647
##
## z = 5.33
## p-value = 9.98e-08
irr::kappa2(dados[8:9]) #d
## Cohen's Kappa for 2 Raters (Weights: unweighted)
##
## Subjects = 36
## Raters = 2
## Kappa = 0.18
##
## z = 1.21
## p-value = 0.228
irr::kappa2(dados[10:11]) #e
## Cohen's Kappa for 2 Raters (Weights: unweighted)
##
## Subjects = 36
## Raters = 2
## Kappa = 0.682
##
## z = 4.45
## p-value = 8.61e-06
irr::kappa2(dados[12:13]) #f
## Cohen's Kappa for 2 Raters (Weights: unweighted)
##
## Subjects = 36
## Raters = 2
## Kappa = 0.405
##
## z = 2.53
## p-value = 0.0114
irr::kappa2(dados[14:15]) #g
## Cohen's Kappa for 2 Raters (Weights: unweighted)
##
## Subjects = 34
## Raters = 2
## Kappa = 0.456
##
## z = 2.96
## p-value = 0.00304
irr::kappa2(dados[16:17]) #h
## Cohen's Kappa for 2 Raters (Weights: unweighted)
##
## Subjects = 36
## Raters = 2
## Kappa = 0.339
##
## z = 2.5
## p-value = 0.0124
irr::kappa2(dados[18:19]) #i
## Cohen's Kappa for 2 Raters (Weights: unweighted)
##
## Subjects = 36
## Raters = 2
## Kappa = 0.392
##
## z = 3.01
## p-value = 0.00264
irr::kappa2(dados[20:21]) #j
## Cohen's Kappa for 2 Raters (Weights: unweighted)
##
## Subjects = 35
## Raters = 2
## Kappa = 0.399
##
## z = 2.66
## p-value = 0.00775
irr::kappa2(dados[22:23]) #l
## Cohen's Kappa for 2 Raters (Weights: unweighted)
##
## Subjects = 36
## Raters = 2
## Kappa = 0.681
##
## z = 4.53
## p-value = 5.8e-06
# https://www.youtube.com/watch?v=5R9_QydbEHc
rel::ckap(dados[2:3], conf.level = 0.95)
## Call:
## rel::ckap(data = dados[2:3], conf.level = 0.95)
##
## Estimate StdErr LowerCB UpperCB
## Const 0.75862 0.21201 0.32777 1.1895
##
## Maximum kappa = 0.9
## Kappa/maximum kappa = 0.84
## Confidence level = 95%
## Observations = 2
## Sample size = 35
# https://www.youtube.com/watch?v=909pbQtpcb8
rel::ckap(dados[4:5], conf.level = 0.95)
## Call:
## rel::ckap(data = dados[4:5], conf.level = 0.95)
##
## Estimate StdErr LowerCB UpperCB
## Const 0.27419 0.35475 -0.44598 0.9944
##
## Maximum kappa = 0.91
## Kappa/maximum kappa = 0.3
## Confidence level = 95%
## Observations = 2
## Sample size = 36
# https://www.youtube.com/watch?v=Jbb0oJrNz3g
rel::ckap(dados[6:7], conf.level = 0.95)
## Call:
## rel::ckap(data = dados[6:7], conf.level = 0.95)
##
## Estimate StdErr LowerCB UpperCB
## Const 0.90909 0.25668 0.38800 1.4302
##
## Maximum kappa = 0.94
## Kappa/maximum kappa = 0.97
## Confidence level = 95%
## Observations = 2
## Sample size = 36
# https://www.youtube.com/watch?v=L-v7u6U8YwM
rel::ckap(dados[8:9], conf.level = 0.95)
## Call:
## rel::ckap(data = dados[8:9], conf.level = 0.95)
##
## Estimate StdErr LowerCB UpperCB
## Const 0.65505 0.41203 -0.18142 1.4915
##
## Maximum kappa = 0.97
## Kappa/maximum kappa = 0.68
## Confidence level = 95%
## Observations = 2
## Sample size = 36
#https://www.youtube.com/watch?v=Ly27c1v-WGk
rel::ckap(dados[10:11], conf.level = 0.95)
## Call:
## rel::ckap(data = dados[10:11], conf.level = 0.95)
##
## Estimate StdErr LowerCB UpperCB
## Const 0.85246 0.23968 0.36589 1.339
##
## Maximum kappa = 0.94
## Kappa/maximum kappa = 0.91
## Confidence level = 95%
## Observations = 2
## Sample size = 36
# https://www.youtube.com/watch?v=MeCjvOmNvD0
rel::ckap(dados[12:13], conf.level = 0.95)
## Call:
## rel::ckap(data = dados[12:13], conf.level = 0.95)
##
## Estimate StdErr LowerCB UpperCB
## Const 0.30194 0.35453 -0.41779 1.0217
##
## Maximum kappa = 0.97
## Kappa/maximum kappa = 0.31
## Confidence level = 95%
## Observations = 2
## Sample size = 36
# https://www.youtube.com/watch?v=nimdaDovcp8
rel::ckap(dados[14:15], conf.level = 0.95)
## Call:
## rel::ckap(data = dados[14:15], conf.level = 0.95)
##
## Estimate StdErr LowerCB UpperCB
## Const 0.50903 0.33681 -0.17621 1.1943
##
## Maximum kappa = 0.93
## Kappa/maximum kappa = 0.55
## Confidence level = 95%
## Observations = 2
## Sample size = 34
# https://www.youtube.com/watch?v=rklDhiLhUX0
rel::ckap(dados[16:17], conf.level = 0.95)
## Call:
## rel::ckap(data = dados[16:17], conf.level = 0.95)
##
## Estimate StdErr LowerCB UpperCB
## Const 0.687410 0.357169 -0.037681 1.4125
##
## Maximum kappa = 0.75
## Kappa/maximum kappa = 0.92
## Confidence level = 95%
## Observations = 2
## Sample size = 36
# https://www.youtube.com/watch?v=rykXrptnhgk
rel::ckap(dados[18:19], conf.level = 0.95)
## Call:
## rel::ckap(data = dados[18:19], conf.level = 0.95)
##
## Estimate StdErr LowerCB UpperCB
## Const 0.638686 0.321225 -0.013435 1.2908
##
## Maximum kappa = 0.71
## Kappa/maximum kappa = 0.89
## Confidence level = 95%
## Observations = 2
## Sample size = 36
# https://www.youtube.com/watch?v=vkgLZJgEYIE
rel::ckap(dados[20:21], conf.level = 0.95)
## Call:
## rel::ckap(data = dados[20:21], conf.level = 0.95)
##
## Estimate StdErr LowerCB UpperCB
## Const 0.60938 0.36465 -0.13168 1.3504
##
## Maximum kappa = 0.87
## Kappa/maximum kappa = 0.7
## Confidence level = 95%
## Observations = 2
## Sample size = 35
# https://www.youtube.com/watch?v=Y3cQQV79jjI
rel::ckap(dados[22:23], conf.level = 0.95)
## Call:
## rel::ckap(data = dados[22:23], conf.level = 0.95)
##
## Estimate StdErr LowerCB UpperCB
## Const 0.85771 0.23115 0.38845 1.327
##
## Maximum kappa = 0.87
## Kappa/maximum kappa = 0.98
## Confidence level = 95%
## Observations = 2
## Sample size = 36
irr::agree(dados[2:3]) #a
## Percentage agreement (Tolerance=0)
##
## Subjects = 35
## Raters = 2
## %-agree = 85.7
irr::agree(dados[4:5]) #b
## Percentage agreement (Tolerance=0)
##
## Subjects = 36
## Raters = 2
## %-agree = 66.7
irr::agree(dados[6:7]) #c
## Percentage agreement (Tolerance=0)
##
## Subjects = 36
## Raters = 2
## %-agree = 94.4
irr::agree(dados[8:9]) #d
## Percentage agreement (Tolerance=0)
##
## Subjects = 36
## Raters = 2
## %-agree = 69.4
irr::agree(dados[10:11]) #e
## Percentage agreement (Tolerance=0)
##
## Subjects = 36
## Raters = 2
## %-agree = 83.3
irr::agree(dados[12:13]) #f
## Percentage agreement (Tolerance=0)
##
## Subjects = 36
## Raters = 2
## %-agree = 69.4
irr::agree(dados[14:15]) #g
## Percentage agreement (Tolerance=0)
##
## Subjects = 34
## Raters = 2
## %-agree = 76.5
irr::agree(dados[16:17]) #h
## Percentage agreement (Tolerance=0)
##
## Subjects = 36
## Raters = 2
## %-agree = 66.7
irr::agree(dados[18:19]) #i
## Percentage agreement (Tolerance=0)
##
## Subjects = 36
## Raters = 2
## %-agree = 69.4
irr::agree(dados[20:21]) #j
## Percentage agreement (Tolerance=0)
##
## Subjects = 35
## Raters = 2
## %-agree = 71.4
irr::agree(dados[22:23]) #l
## Percentage agreement (Tolerance=0)
##
## Subjects = 36
## Raters = 2
## %-agree = 83.3