1. Upload library

2.Upload data

data(package="survival")
bc<-cancer
head(bc)
##   inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
## 1    3  306      2  74   1       1       90       100     1175      NA
## 2    3  455      2  68   1       0       90        90     1225      15
## 3    3 1010      1  56   1       0       90        90       NA      15
## 4    5  210      2  57   1       1       90        60     1150      11
## 5    1  883      2  60   1       0      100        90       NA       0
## 6   12 1022      1  74   1       1       50        80      513       0
dc<-datadist(bc)
options(datadist="dc")
head(dc)
## $limits
##                 inst    time status age sex ph.ecog ph.karno pat.karno
## Low:effect         3  166.75      1  56   1       0       75        70
## Adjust to         11  255.50      1  63   1       1       80        80
## High:effect       16  396.50      2  69   2       1       90        90
## Low:prediction     1   31.00      1  44   1       0       60        60
## High:prediction   26  740.00      2  76   2       2      100       100
## Low                1    5.00      1  39   1       0       50        30
## High              33 1022.00      2  82   2       3      100       100
##                  meal.cal   wt.loss
## Low:effect       635.0000   0.00000
## Adjust to        975.0000   7.00000
## High:effect     1150.0000  15.75000
## Low:prediction   312.4361  -5.00000
## High:prediction 1500.0000  35.23348
## Low               96.0000 -24.00000
## High            2600.0000  68.00000
## 
## $values
## $values$status
## [1] 1 2
## 
## $values$sex
## [1] 1 2
## 
## $values$ph.ecog
## [1] 0 1 2 3
## 
## $values$ph.karno
## [1]  50  60  70  80  90 100
## 
## $values$pat.karno
## [1]  30  40  50  60  70  80  90 100

3.COX regression equation

f <- cph(Surv(time, status) ~ age + sex + ph.ecog + pat.karno +wt.loss,
x=T, y=T, surv=T, data=cancer, time.inc=36)

4. Read summary

summary(f)
##              Effects              Response : Surv(time, status) 
## 
##  Factor        Low High  Diff. Effect   S.E.    Lower 0.95 Upper 0.95
##  age           56  69.00 13.00  0.13928 0.12616 -0.10799    0.386550 
##   Hazard Ratio 56  69.00 13.00  1.14940      NA  0.89764    1.471900 
##  sex            1   2.00  1.00 -0.57795 0.17713 -0.92511   -0.230790 
##   Hazard Ratio  1   2.00  1.00  0.56105      NA  0.39649    0.793910 
##  ph.ecog        0   1.00  1.00  0.40411 0.14441  0.12108    0.687150 
##   Hazard Ratio  0   1.00  1.00  1.49800      NA  1.12870    1.988000 
##  pat.karno     70  90.00 20.00 -0.24743 0.14520 -0.53202    0.037159 
##   Hazard Ratio 70  90.00 20.00  0.78081      NA  0.58742    1.037900 
##  wt.loss        0  15.75 15.75 -0.19042 0.10869 -0.40346    0.022618 
##   Hazard Ratio  0  15.75 15.75  0.82661      NA  0.66801    1.022900

5.Plot nomogram

surv <- Survival(f)
nom <- nomogram(f, fun=list(function(x) surv(36, x), function(x) surv(60, x),
function(x) surv(120, x)), lp=F, funlabel=c("3-year survival", "5-year survival", "10-year survival"),
maxscale=10, fun.at=c(0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.6, 0.5))
plot(nom)