seasonal_data$Q <- factor(seasonal_data$Q,levels = c("Q1","Q2","Q3","Q4"))
seasonal_data <- rbind(seasonal_data,c(2020,4,0,"Q2"))
seasonal_data <- rbind(seasonal_data,c(2021,4,0,"Q2"))
#seasonal_data <- filter(seasonal_data,Year > 2019 & Q == "Q2")
seasonal_data$Year <- as.numeric(seasonal_data$Year)
seasonal_data$Month <- as.numeric(seasonal_data$Month)
seasonal_data$Total <- as.numeric(seasonal_data$Total )
seasonal_data_aggregated <- seasonal_data %>%
dplyr::filter(Year > 2015)%>%
dplyr::group_by(Year,Q)%>%
dplyr::summarise(Totals = sum(Total))%>%
ggplot(aes(factor(Q), Totals))+
geom_col(fill = rgb(0,51,160, maxColorValue = 255))+
geom_text(aes(label = ifelse(Totals > 0, Totals,"")),vjust = -0.2, fontface = "bold")+
#ylim(0,500)+
theme_classic()+
theme(
legend.position = "top",
legend.title = element_blank(),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
axis.text.x = element_text(size = 12, color = "black"),
axis.ticks.y = element_blank(),
axis.text.y = element_blank()
)+
labs(
title = "Aggregated quarterly data for period 2016 - 2020"
)+
facet_wrap(~Year,ncol = 1)+
ylim(0,500)
## `summarise()` has grouped output by 'Year'. You can override using the `.groups` argument.
seasonal_data_aggregated
