library(rworldmap)
## Warning: package 'rworldmap' was built under R version 4.0.5
## Loading required package: sp
## Warning: package 'sp' was built under R version 4.0.5
## ### Welcome to rworldmap ###
## For a short introduction type :   vignette('rworldmap')
library(rworldxtra)
## Warning: package 'rworldxtra' was built under R version 4.0.5
library(ggmap)
## Warning: package 'ggmap' was built under R version 4.0.5
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.0.5
## Google's Terms of Service: https://cloud.google.com/maps-platform/terms/.
## Please cite ggmap if you use it! See citation("ggmap") for details.
library(sf)                                                                     
## Warning: package 'sf' was built under R version 4.0.5
## Linking to GEOS 3.9.0, GDAL 3.2.1, PROJ 7.2.1
library(spdep)
## Warning: package 'spdep' was built under R version 4.0.5
## Loading required package: spData
## Warning: package 'spData' was built under R version 4.0.5
## To access larger datasets in this package, install the spDataLarge
## package with: `install.packages('spDataLarge',
## repos='https://nowosad.github.io/drat/', type='source')`
library(ape)
## Warning: package 'ape' was built under R version 4.0.5
## Registered S3 method overwritten by 'ape':
##   method   from 
##   plot.mst spdep
library(sp)
library(MVA)
## Warning: package 'MVA' was built under R version 4.0.5
## Loading required package: HSAUR2
## Warning: package 'HSAUR2' was built under R version 4.0.5
## Loading required package: tools
library(Hmisc)
## Warning: package 'Hmisc' was built under R version 4.0.5
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## 
## Attaching package: 'Hmisc'
## The following object is masked from 'package:ape':
## 
##     zoom
## The following objects are masked from 'package:base':
## 
##     format.pval, units
library(normtest)
library(nortest)
library(corrplot)
## corrplot 0.90 loaded
library(psych) 
## Warning: package 'psych' was built under R version 4.0.5
## 
## Attaching package: 'psych'
## The following object is masked from 'package:Hmisc':
## 
##     describe
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
library(crayon)
## Warning: package 'crayon' was built under R version 4.0.4
## 
## Attaching package: 'crayon'
## The following object is masked from 'package:psych':
## 
##     %+%
## The following object is masked from 'package:ggplot2':
## 
##     %+%
library(pastecs)
## Warning: package 'pastecs' was built under R version 4.0.5
library(readxl)
## Warning: package 'readxl' was built under R version 4.0.4
library(clhs)
## Warning: package 'clhs' was built under R version 4.0.5
library(spatialreg)
## Warning: package 'spatialreg' was built under R version 4.0.5
## Loading required package: Matrix
## 
## Attaching package: 'spatialreg'
## The following objects are masked from 'package:spdep':
## 
##     as.spam.listw, as_dgRMatrix_listw, as_dsCMatrix_I,
##     as_dsCMatrix_IrW, as_dsTMatrix_listw, can.be.simmed, cheb_setup,
##     create_WX, do_ldet, eigen_pre_setup, eigen_setup, eigenw,
##     errorsarlm, get.ClusterOption, get.coresOption, get.mcOption,
##     get.VerboseOption, get.ZeroPolicyOption, GMargminImage, GMerrorsar,
##     griffith_sone, gstsls, Hausman.test, impacts, intImpacts,
##     Jacobian_W, jacobianSetup, l_max, lagmess, lagsarlm, lextrB,
##     lextrS, lextrW, lmSLX, LU_prepermutate_setup, LU_setup,
##     Matrix_J_setup, Matrix_setup, mcdet_setup, MCMCsamp, ME, mom_calc,
##     mom_calc_int2, moments_setup, powerWeights, sacsarlm,
##     SE_classic_setup, SE_interp_setup, SE_whichMin_setup,
##     set.ClusterOption, set.coresOption, set.mcOption,
##     set.VerboseOption, set.ZeroPolicyOption, similar.listw, spam_setup,
##     spam_update_setup, SpatialFiltering, spautolm, spBreg_err,
##     spBreg_lag, spBreg_sac, stsls, subgraph_eigenw, trW
data = read_excel("~/R/Computacion/XPABLO.xlsx")

Matriz de coordenadas

df=data.frame(data)

X=as.matrix(data.frame(df[,4:15])); head(X)
##        z       MO        Ca        Mg         K        Na      CICE        CE
## [1,] 120 2.089051  7.828356 1.5564959 0.1751623 0.2912804  9.851295 0.1299864
## [2,] 119 1.649450  3.952001 0.7713688 0.4958336 0.1364539  5.355657 0.1257592
## [3,] 111 1.647495  5.877168 1.2313661 0.2734062 0.1347315  7.516672 0.2874496
## [4,] 114 2.476012  5.617296 1.1285410 0.2171382 0.1628644  7.125839 0.4147940
## [5,] 115 3.005717 11.439130 2.3604502 0.5010103 0.2915674 14.592158 0.2694840
## [6,] 109 1.929737  7.486470 1.5635561 0.2435279 0.1154978  9.409052 0.4095100
##          Fe   Cu    Zn       cos
## [1,] 133.28 3.47 1.686 1.2116495
## [2,]  29.73 1.46 1.402 0.9566813
## [3,] 237.27 4.33 2.589 0.9555473
## [4,] 331.43 4.23 4.159 1.4360867
## [5,] 281.18 3.82 2.946 1.7433161
## [6,] 258.28 3.40 3.430 1.1192475

Muestreo espacial

n = 0.80 *403
n = round(n,0)

df_ = data.frame(x=df$Long,
                 y=df$Lat,
                 K=df$K)

res <- clhs(df_, size = n, 
            iter = 100, progress = FALSE,
            simple = TRUE)

df_ = df_[res,]; head(df)
##   id      Long      Lat   z       MO        Ca        Mg         K        Na
## 1  1 -72.58261 8.078605 120 2.089051  7.828356 1.5564959 0.1751623 0.2912804
## 2  2 -72.57632 8.078605 119 1.649450  3.952001 0.7713688 0.4958336 0.1364539
## 3  3 -72.58261 8.084898 111 1.647495  5.877168 1.2313661 0.2734062 0.1347315
## 4  4 -72.57632 8.084898 114 2.476012  5.617296 1.1285410 0.2171382 0.1628644
## 5  5 -72.58261 8.091191 115 3.005717 11.439130 2.3604502 0.5010103 0.2915674
## 6  6 -72.57632 8.091191 109 1.929737  7.486470 1.5635561 0.2435279 0.1154978
##        CICE        CE     Fe   Cu    Zn       cos mod1  mod2  mod3    mod4
## 1  9.851295 0.1299864 133.28 3.47 1.686 1.2116495 1.25 1.128 1.194 1.23743
## 2  5.355657 0.1257592  29.73 1.46 1.402 0.9566813 1.27 1.108 1.200 1.15116
## 3  7.516672 0.2874496 237.27 4.33 2.589 0.9555473 1.28 1.238 1.291 1.33531
## 4  7.125839 0.4147940 331.43 4.23 4.159 1.4360867 1.25 1.218 1.270 1.35233
## 5 14.592158 0.2694840 281.18 3.82 2.946 1.7433161 1.25 1.484 1.523 1.55687
## 6  9.409052 0.4095100 258.28 3.40 3.430 1.1192475 1.28 1.228 1.267 1.31463

Primer mapa de puntos : Zona de arroz

#Rango de coordenadas
mapa.puntos = getMap(resolution = "high")
plot(mapa.puntos, xlim = c(-72.6, -72.3), ylim = c(8.0, 8.4), asp = 1)
points(df_$x, df_$y, col = "purple", cex = .6, pch = 16)

Segundo mapa de puntos : Lagunas de arroz

ggplot(df_, aes(x, y)) + geom_point(colour="darkgreen")+ ggtitle("Lagunas de arróz")+labs(y ="Latitud",x ="Longitud")

Comparando población con muestras

plot(df$Long, df$Lat)
points(df_$x, df_$y, pch=16, col = 10* df_$K)

XY=as.matrix(df[,2:3])
k.d=as.matrix(dist(XY, diag=T, upper=T))

MatrĆ­z inversa de distancias

k.d.inv <-as.matrix(1/k.d)

Asignando 0 a la diagonal

diag(k.d.inv) <- 0

Matriz de peso basada en distancias

w=as.matrix(k.d.inv)

Verificando sumas por filas

sumas = apply(w, 1, sum); head(sumas)
##        1        2        3        4        5        6 
## 3644.500 3775.069 4007.650 4218.188 4183.214 4563.151

Nueva construcción de matriz de pesos estandarizados

contnb=dnearneigh(coordinates(XY),0,380000,longlat = F)
dlist <- nbdists(contnb, XY)
dlist <- lapply(dlist, function(x) 1/x)
Wve=nb2listw(contnb,glist=dlist,style = "W"); Wve
## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 403 
## Number of nonzero links: 162006 
## Percentage nonzero weights: 99.75186 
## Average number of links: 402 
## 
## Weights style: W 
## Weights constants summary:
##     n     nn  S0       S1       S2
## W 403 162409 403 4.967671 1617.208

Primer modelo \[Y = \lambda W Y + \epsilon\]

Modelo autoregresivo puro

modelo.arp=spautolm(K~1,data=df,listw=Wve)
summary(modelo.arp)
## 
## Call: spautolm(formula = K ~ 1, data = df, listw = Wve)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.261475 -0.106784 -0.022284  0.075295  0.551268 
## 
## Coefficients: 
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  0.20872    0.10283  2.0297  0.04239
## 
## Lambda: 0.93328 LR test value: 31.281 p-value: 2.2325e-08 
## Numerical Hessian standard error of lambda: 0.065028 
## 
## Log likelihood: 224.5228 
## ML residual variance (sigma squared): 0.018969, (sigma: 0.13773)
## Number of observations: 403 
## Number of parameters estimated: 3 
## AIC: -443.05
res1 = modelo.arp$fit$residuals
Moran.I(res1, k.d.inv)
## $observed
## [1] 0.02593183
## 
## $expected
## [1] -0.002487562
## 
## $sd
## [1] 0.004258952
## 
## $p.value
## [1] 2.50866e-11
shapiro.test(res1)
## 
##  Shapiro-Wilk normality test
## 
## data:  res1
## W = 0.9606, p-value = 6.342e-09
ad.test(res1)
## 
##  Anderson-Darling normality test
## 
## data:  res1
## A = 4.0015, p-value = 5.648e-10
sf.test(res1)
## 
##  Shapiro-Francia normality test
## 
## data:  res1
## W = 0.96077, p-value = 5.08e-08
cvm.test(res1)
## 
##  Cramer-von Mises normality test
## 
## data:  res1
## W = 0.65484, p-value = 1.342e-07

Segundo modelo \[Y = \lambda W Y + u \\ u= \rho Wu + \epsilon\]

mod2 = sacsarlm(K~1,data=df,listw=Wve)
## Warning in sacsarlm(K ~ 1, data = df, listw = Wve): inversion of asymptotic covariance matrix failed for tol.solve = 2.22044604925031e-16 
##   número de condición recíproco = 5.20016e-19 - using numerical Hessian.
summary(mod2)
## 
## Call:sacsarlm(formula = K ~ 1, data = df, listw = Wve)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.282232 -0.099132 -0.021571  0.074928  0.550390 
## 
## Type: sac 
## Coefficients: (numerical Hessian approximate standard errors) 
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.015328   0.064853  0.2364   0.8132
## 
## Rho: 0.85709
## Approximate (numerical Hessian) standard error: 0.13773
##     z-value: 6.2229, p-value: 4.8818e-10
## Lambda: 0.85709
## Approximate (numerical Hessian) standard error: 0.13556
##     z-value: 6.3224, p-value: 2.5759e-10
## 
## LR test value: 43.362, p-value: 3.8378e-10
## 
## Log likelihood: 230.5632 for sac model
## ML residual variance (sigma squared): 0.018325, (sigma: 0.13537)
## Number of observations: 403 
## Number of parameters estimated: 4 
## AIC: -453.13, (AIC for lm: -413.76)
res2 =mod2$residuals
Moran.I(res2, k.d.inv)
## $observed
## [1] 0.01220681
## 
## $expected
## [1] -0.002487562
## 
## $sd
## [1] 0.004258454
## 
## $p.value
## [1] 0.0005592702

Modelo 3 - Spatial lag model \[Y = \lambda W Y +X \beta + \epsilon \]

mser1=errorsarlm(formula=K~Ca+Mg+Cu+Zn,data=df,listw=Wve)
summary(mser1)
## 
## Call:errorsarlm(formula = K ~ Ca + Mg + Cu + Zn, data = df, listw = Wve)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.260048 -0.071225 -0.017940  0.049051  0.569193 
## 
## Type: error 
## Coefficients: (asymptotic standard errors) 
##               Estimate Std. Error z value  Pr(>|z|)
## (Intercept)  0.0299800  0.0269814  1.1111   0.26651
## Ca           0.0082847  0.0017826  4.6475 3.361e-06
## Mg           0.0636701  0.0065734  9.6860 < 2.2e-16
## Cu          -0.0015472  0.0040780 -0.3794   0.70440
## Zn           0.0113919  0.0032678  3.4861   0.00049
## 
## Lambda: 0.75653, LR test value: 6.0434, p-value: 0.013959
## Asymptotic standard error: 0.15953
##     z-value: 4.7423, p-value: 2.1129e-06
## Wald statistic: 22.49, p-value: 2.1129e-06
## 
## Log likelihood: 330.6833 for error model
## ML residual variance (sigma squared): 0.01128, (sigma: 0.10621)
## Number of observations: 403 
## Number of parameters estimated: 7 
## AIC: -647.37, (AIC for lm: -643.32)
res3 =mser1$residuals
Moran.I(res3, k.d.inv)
## $observed
## [1] 0.007194041
## 
## $expected
## [1] -0.002487562
## 
## $sd
## [1] 0.004241071
## 
## $p.value
## [1] 0.02244095

Spatial error model

mod4=lagsarlm(formula=K~Ca+z+Mg+Cu,data=df,listw=Wve)
summary(mod4)
## 
## Call:lagsarlm(formula = K ~ Ca + z + Mg + Cu, data = df, listw = Wve)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.264163 -0.073460 -0.018022  0.056891  0.566211 
## 
## Type: lag 
## Coefficients: (asymptotic standard errors) 
##                Estimate  Std. Error z value  Pr(>|z|)
## (Intercept) -0.04298810  0.07748581 -0.5548   0.57904
## Ca           0.00734479  0.00165234  4.4451 8.786e-06
## z           -0.00013919  0.00037474 -0.3714   0.71031
## Mg           0.05962408  0.00654979  9.1032 < 2.2e-16
## Cu           0.00627996  0.00312743  2.0080   0.04464
## 
## Rho: 0.40225, LR test value: 1.7994, p-value: 0.17978
## Asymptotic standard error: 0.2419
##     z-value: 1.6629, p-value: 0.096331
## Wald statistic: 2.7653, p-value: 0.096331
## 
## Log likelihood: 323.4067 for lag model
## ML residual variance (sigma squared): 0.011748, (sigma: 0.10839)
## Number of observations: 403 
## Number of parameters estimated: 7 
## AIC: -632.81, (AIC for lm: -633.01)
## LM test for residual autocorrelation
## test value: 6.9985, p-value: 0.0081577
res4 = mod4$residuals
Moran.I(res4, k.d.inv)
## $observed
## [1] 0.01000845
## 
## $expected
## [1] -0.002487562
## 
## $sd
## [1] 0.004241978
## 
## $p.value
## [1] 0.003221228
mod5=sacsarlm(formula=K~Ca+Mg+Cu+Zn,data=df,listw=Wve)
summary(mod5)
## 
## Call:sacsarlm(formula = K ~ Ca + Mg + Cu + Zn, data = df, listw = Wve)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.257121 -0.072217 -0.016213  0.048832  0.566822 
## 
## Type: sac 
## Coefficients: (asymptotic standard errors) 
##               Estimate Std. Error z value  Pr(>|z|)
## (Intercept) -0.0599480  0.1001759 -0.5984 0.5495549
## Ca           0.0083417  0.0017648  4.7266 2.284e-06
## Mg           0.0617844  0.0068616  9.0044 < 2.2e-16
## Cu          -0.0021386  0.0041372 -0.5169 0.6052173
## Zn           0.0116345  0.0032709  3.5570 0.0003752
## 
## Rho: 0.35886
## Asymptotic standard error: 0.39149
##     z-value: 0.91667, p-value: 0.35932
## Lambda: 0.66204
## Asymptotic standard error: 0.31633
##     z-value: 2.0929, p-value: 0.036362
## 
## LR test value: 7.2986, p-value: 0.026009
## 
## Log likelihood: 331.3109 for sac model
## ML residual variance (sigma squared): 0.011255, (sigma: 0.10609)
## Number of observations: 403 
## Number of parameters estimated: 8 
## AIC: -646.62, (AIC for lm: -643.32)
res5 = mod5$residuals
Moran.I(res5, k.d.inv)
## $observed
## [1] 0.004782086
## 
## $expected
## [1] -0.002487562
## 
## $sd
## [1] 0.004241265
## 
## $p.value
## [1] 0.08652356

SAC Spatial Autocorrelation Model

\[Y = \lambda W Y +X \beta + u\\u =\rho W u +\epsilon \]

mod6=sacsarlm(formula=K~Ca+Mg+Cu+Zn,data=df,listw=Wve,type="mixed")
summary(mod6)
## 
## Call:sacsarlm(formula = K ~ Ca + Mg + Cu + Zn, data = df, listw = Wve, 
##     type = "mixed")
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.270981 -0.065464 -0.018122  0.051767  0.571218 
## 
## Type: sacmixed 
## Coefficients: (asymptotic standard errors) 
##               Estimate Std. Error z value  Pr(>|z|)
## (Intercept)  0.1208978  0.2233859  0.5412 0.5883655
## Ca           0.0082244  0.0020977  3.9207 8.829e-05
## Mg           0.0620351  0.0073759  8.4105 < 2.2e-16
## Cu          -0.0009405  0.0041933 -0.2243 0.8225348
## Zn           0.0116238  0.0033125  3.5091 0.0004496
## lag.Ca      -0.0021975  0.0215387 -0.1020 0.9187361
## lag.Mg       0.0718716  0.2075396  0.3463 0.7291151
## lag.Cu      -0.0625863  0.0742318 -0.8431 0.3991614
## lag.Zn      -0.0132292  0.0565608 -0.2339 0.8150673
## 
## Rho: 0.52073
## Asymptotic standard error: 2.0831
##     z-value: 0.24998, p-value: 0.8026
## Lambda: 0.61822
## Asymptotic standard error: 1.7581
##     z-value: 0.35163, p-value: 0.72511
## 
## LR test value: 11.375, p-value: 0.077449
## 
## Log likelihood: 333.3492 for sacmixed model
## ML residual variance (sigma squared): 0.011135, (sigma: 0.10552)
## Number of observations: 403 
## Number of parameters estimated: 12 
## AIC: -642.7, (AIC for lm: -643.32)
res6 = mod6$residuals
Moran.I(res6, k.d.inv)
## $observed
## [1] 0.003403076
## 
## $expected
## [1] -0.002487562
## 
## $sd
## [1] 0.004239908
## 
## $p.value
## [1] 0.164732

SDE Spatial Durbin Error Model

mod7=lagsarlm(formula=K~Ca+Mg+cos+Cu,data=df,listw=Wve,type="mixed")
summary(mod7)
## 
## Call:lagsarlm(formula = K ~ Ca + Mg + cos + Cu, data = df, listw = Wve, 
##     type = "mixed")
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.276927 -0.069153 -0.013564  0.053039  0.580889 
## 
## Type: mixed 
## Coefficients: (asymptotic standard errors) 
##                Estimate  Std. Error z value  Pr(>|z|)
## (Intercept)  0.09751193  0.21600449  0.4514    0.6517
## Ca           0.00257805  0.00217411  1.1858    0.2357
## Mg           0.06869492  0.00734669  9.3505 < 2.2e-16
## cos          0.08234599  0.01690740  4.8704 1.114e-06
## Cu           0.00050213  0.00351144  0.1430    0.8863
## lag.Ca       0.00710751  0.01306043  0.5442    0.5863
## lag.Mg       0.00791296  0.05722090  0.1383    0.8900
## lag.cos     -0.14803000  0.17367523 -0.8523    0.3940
## lag.Cu      -0.03630500  0.03234406 -1.1225    0.2617
## 
## Rho: 0.7184, LR test value: 4.8584, p-value: 0.027511
## Asymptotic standard error: 0.18094
##     z-value: 3.9703, p-value: 7.1789e-05
## Wald statistic: 15.763, p-value: 7.1789e-05
## 
## Log likelihood: 337.7557 for mixed model
## ML residual variance (sigma squared): 0.0109, (sigma: 0.1044)
## Number of observations: 403 
## Number of parameters estimated: 11 
## AIC: -653.51, (AIC for lm: -650.65)
## LM test for residual autocorrelation
## test value: 5.2685, p-value: 0.021715
res7 = mod7$residuals
Moran.I(res7, k.d.inv)
## $observed
## [1] 0.005774499
## 
## $expected
## [1] -0.002487562
## 
## $sd
## [1] 0.004239806
## 
## $p.value
## [1] 0.05133266
shapiro.test(res7)
## 
##  Shapiro-Wilk normality test
## 
## data:  res7
## W = 0.92941, p-value = 7.3e-13
ad.test(res7)
## 
##  Anderson-Darling normality test
## 
## data:  res7
## A = 5.0875, p-value = 1.362e-12
sf.test(res7)
## 
##  Shapiro-Francia normality test
## 
## data:  res7
## W = 0.9266, p-value = 1.2e-11
cvm.test(res7)
## 
##  Cramer-von Mises normality test
## 
## data:  res7
## W = 0.84651, p-value = 7.615e-09
hist(res1);hist(res1);hist(res2);hist(res3);hist(res4);hist(res5);hist(res6);hist(res7)

outliers::grubbs.test(res7) # El valor mas alto es un outlier
## 
##  Grubbs test for one outlier
## 
## data:  res7
## G.310 = 5.55708, U = 0.92299, p-value = 2.958e-06
## alternative hypothesis: highest value 0.580888607775061 is an outlier
which.max(res7) # Maximo 
## 310 
## 310
plot(df$K,mod7$fitted.values,xlab="Observados",ylab="Estimados",col="purple")

library(mvoutlier)
## Warning: package 'mvoutlier' was built under R version 4.0.5
## Loading required package: sgeostat
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2
## sROC 0.1-2 loaded
## 
## Attaching package: 'mvoutlier'
## The following object is masked _by_ '.GlobalEnv':
## 
##     X
corr.plot(df$K,mod7$fitted.values,
          quan=1/2, alpha=0.025,
          xlab="Observados",
          ylab="Estimados")

## $cor.cla
## [1] 0.6892811
## 
## $cor.rob
## [1] 0.7337593

Quitando atipicos

data = read_excel("~/R/Computacion/XPABLO.xlsx")
df=data.frame(data)
df_ka = df
atipicosk = which(df_ka$K>0.6)
df_ka = df_ka[-atipicosk,]

XY=as.matrix(df_ka[,2:3])
k.d=as.matrix(dist(XY, diag=T, upper=T))
k.d.inv <-as.matrix(1/k.d)
diag(k.d.inv) <- 0
w=as.matrix(k.d.inv)
sumas = apply(w, 1, sum)
We = w/sumas

contnb=dnearneigh(coordinates(XY),0,380000,longlat = F)
dlist <- nbdists(contnb, XY)
dlist <- lapply(dlist, function(x) 1/x)
Wve=nb2listw(contnb,glist=dlist,style = "W")
mod7b=lagsarlm(formula = K ~ Ca + Mg + cos + Cu, data = df_ka, listw = Wve, type = "mixed")
summary(mod7b)
## 
## Call:lagsarlm(formula = K ~ Ca + Mg + cos + Cu, data = df_ka, listw = Wve, 
##     type = "mixed")
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.270264 -0.062007 -0.013858  0.049083  0.381029 
## 
## Type: mixed 
## Coefficients: (asymptotic standard errors) 
##               Estimate Std. Error z value  Pr(>|z|)
## (Intercept)  0.1410944  0.1889618  0.7467   0.45526
## Ca           0.0050643  0.0019703  2.5704   0.01016
## Mg           0.0590258  0.0070580  8.3629 < 2.2e-16
## cos          0.0673137  0.0151678  4.4379 9.082e-06
## Cu           0.0034673  0.0031565  1.0985   0.27200
## lag.Ca      -0.0017326  0.0113559 -0.1526   0.87874
## lag.Mg       0.0195636  0.0573612  0.3411   0.73306
## lag.cos     -0.1316332  0.1524876 -0.8632   0.38801
## lag.Cu      -0.0430414  0.0297409 -1.4472   0.14784
## 
## Rho: 0.79805, LR test value: 7.5141, p-value: 0.0061217
## Asymptotic standard error: 0.13472
##     z-value: 5.9236, p-value: 3.1501e-09
## Wald statistic: 35.089, p-value: 3.1501e-09
## 
## Log likelihood: 377.0249 for mixed model
## ML residual variance (sigma squared): 0.0085353, (sigma: 0.092387)
## Number of observations: 393 
## Number of parameters estimated: 11 
## AIC: -732.05, (AIC for lm: -726.54)
## LM test for residual autocorrelation
## test value: 10.627, p-value: 0.0011147
res7b = mod7b$residuals
Moran.I(res7b, k.d.inv) # No hay depedencia espacial 
## $observed
## [1] 0.009954865
## 
## $expected
## [1] -0.00255102
## 
## $sd
## [1] 0.004373581
## 
## $p.value
## [1] 0.004244226
shapiro.test(res7b)
## 
##  Shapiro-Wilk normality test
## 
## data:  res7b
## W = 0.96802, p-value = 1.42e-07
ad.test(res7b)
## 
##  Anderson-Darling normality test
## 
## data:  res7b
## A = 3.0519, p-value = 1.138e-07
sf.test(res7b)
## 
##  Shapiro-Francia normality test
## 
## data:  res7b
## W = 0.96666, p-value = 4.412e-07
cvm.test(res7b)
## 
##  Cramer-von Mises normality test
## 
## data:  res7b
## W = 0.51666, p-value = 1.909e-06
library(mvoutlier)
color.plot(cbind(df_ka$K,mod7b$fitted.values))

## $outliers
##     1     2     3     4     5     6     7     8     9    10    11    12    13 
## FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE 
##    14    15    16    17    18    19    20    21    22    23    24    25    26 
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
##    27    28    29    30    31    32    33    34    35    36    37    38    39 
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
##    40    41    42    43    44    45    46    47    48    49    50    51    52 
## FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE 
##    53    54    55    56    57    58    59    60    61    62    63    64    65 
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
##    66    67    68    69    70    71    72    73    74    75    76    77    78 
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
##    79    80    81    82    83    84    85    86    87    88    89    90    91 
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
##    92    93    94    95    96    97    98    99   100   101   102   103   104 
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
##   105   106   107   108   109   110   111   112   113   114   115   116   117 
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE 
##   118   119   120   121   122   123   124   125   126   127   128   129   130 
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
##   131   132   133   134   135   136   138   139   140   141   142   143   144 
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
##   145   146   147   148   149   150   151   152   153   154   155   156   157 
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
##   158   159   160   162   163   164   165   166   167   168   169   170   171 
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
##   172   173   174   175   176   177   178   179   180   181   182   183   184 
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
##   185   186   187   188   189   191   192   193   194   195   196   197   198 
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
##   199   200   201   202   203   204   205   206   207   208   209   210   211 
## FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
##   212   213   214   215   216   217   218   219   220   221   222   223   224 
## FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
##   225   226   228   229   230   231   232   233   234   235   236   237   238 
## FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
##   239   240   241   242   243   244   245   246   247   248   249   250   251 
## FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE 
##   252   253   254   255   257   258   259   260   261   262   263   264   265 
## FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
##   266   267   268   269   270   271   273   274   275   276   277   278   279 
## FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE 
##   280   282   283   284   285   286   287   288   289   290   291   292   293 
##  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE 
##   294   295   296   297   298   299   300   301   302   303   304   305   306 
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
##   307   308   309   311   312   313   314   315   316   317   318   319   320 
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
##   321   322   323   324   325   326   327   328   329   330   331   332   333 
## FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
##   334   335   336   337   338   339   340   341   342   343   344   345   346 
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
##   347   348   349   350   351   352   353   354   355   356   357   358   359 
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
##   360   361   362   363   364   365   366   367   368   369   370   371   372 
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
##   374   376   377   378   379   380   381   382   383   384   385   386   387 
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE 
##   388   389   390   391   392   393   394   395   396   397   398   399   400 
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
##   401   402   403 
## FALSE FALSE FALSE 
## 
## $md
##          1          2          3          4          5          6          7 
## 0.62084834 4.54859726 1.29233179 0.34145257 2.11535600 0.55774336 1.84128593 
##          8          9         10         11         12         13         14 
## 3.17622513 4.39017143 1.07911203 0.81677413 1.08675449 1.94567704 0.56125526 
##         15         16         17         18         19         20         21 
## 1.39473251 2.45069654 1.29055590 1.24594564 1.25942131 1.05246984 0.54185558 
##         22         23         24         25         26         27         28 
## 0.36563379 0.92720357 2.08696211 1.78409994 1.75896806 0.83863036 1.07517159 
##         29         30         31         32         33         34         35 
## 0.42231854 1.43597660 0.32676251 1.70826651 0.61350732 0.95496252 0.32178734 
##         36         37         38         39         40         41         42 
## 1.40435318 1.42053936 1.34962557 1.54686497 0.73093579 0.71797572 2.13455880 
##         43         44         45         46         47         48         49 
## 0.93511484 0.50590312 0.83428493 2.98272035 0.19132302 0.77432342 1.41730560 
##         50         51         52         53         54         55         56 
## 1.23442508 0.78709827 2.10977717 1.22559351 1.25869075 0.82044113 0.08433578 
##         57         58         59         60         61         62         63 
## 1.19170548 1.21593420 1.03974168 1.87872865 0.24333172 1.17048598 1.39080028 
##         64         65         66         67         68         69         70 
## 1.73861452 1.35106383 1.88191657 1.48997294 1.23767736 0.49218306 1.11409660 
##         71         72         73         74         75         76         77 
## 0.22882592 0.90909996 1.59389425 0.95454863 2.07104363 1.44140661 0.82053399 
##         78         79         80         81         82         83         84 
## 1.80755955 0.95668590 1.90629429 2.60910100 0.31259210 1.59938939 1.54754663 
##         85         86         87         88         89         90         91 
## 1.12135639 1.69565908 1.87690514 1.84055333 0.79683086 1.04192663 0.70782098 
##         92         93         94         95         96         97         98 
## 2.09134283 0.43247913 1.22243888 1.42576411 1.56666485 1.28205585 1.64165688 
##         99        100        101        102        103        104        105 
## 1.20138152 1.45143578 0.55393515 0.32058105 0.47945200 2.37760730 0.76919691 
##        106        107        108        109        110        111        112 
## 0.47041565 1.89642948 1.46845260 1.26106677 0.51313759 1.31283764 1.23255764 
##        113        114        115        116        117        118        119 
## 2.81877511 1.15481956 2.10039873 0.71915501 1.93265658 1.34269423 0.80226306 
##        120        121        122        123        124        125        126 
## 0.19021976 0.28924244 1.62557644 1.73893673 1.46552708 1.72255644 1.37182504 
##        127        128        129        130        131        132        133 
## 0.23653803 1.15480834 1.08900589 1.27092080 2.59491637 1.17151604 1.64177561 
##        134        135        136        138        139        140        141 
## 0.50897886 1.17742169 1.49816600 0.54878306 1.85642000 0.67308124 1.41150444 
##        142        143        144        145        146        147        148 
## 0.93965830 1.08039670 1.03376027 0.29598710 0.57782043 0.99950188 2.22689329 
##        149        150        151        152        153        154        155 
## 1.86382067 1.12543712 0.73699468 0.52669394 1.16308684 1.53070195 0.31158496 
##        156        157        158        159        160        162        163 
## 0.73309365 1.42014151 1.52196585 1.40643760 1.14995492 1.53924162 0.96379519 
##        164        165        166        167        168        169        170 
## 0.72470149 0.86483357 0.52853709 1.18222165 0.57085744 1.46811367 0.55853449 
##        171        172        173        174        175        176        177 
## 1.24629508 0.56491377 0.50118231 0.42292247 0.85980987 0.89885321 0.83835675 
##        178        179        180        181        182        183        184 
## 0.49077532 1.45731370 0.91453815 0.67764157 0.92193205 0.59388223 1.55445070 
##        185        186        187        188        189        191        192 
## 1.66674569 0.79817271 1.78502507 2.10733326 0.85345344 2.48534635 1.10509939 
##        193        194        195        196        197        198        199 
## 1.87218589 2.64742106 0.39199292 0.84276265 0.68537528 1.28510680 0.48982099 
##        200        201        202        203        204        205        206 
## 1.31854889 3.13198497 1.45201787 0.51669586 2.70860940 1.06716214 1.79898903 
##        207        208        209        210        211        212        213 
## 2.10965979 0.92272275 0.62594643 1.11717817 0.67974168 0.44280443 1.47617417 
##        214        215        216        217        218        219        220 
## 0.81695352 0.37012470 3.08575229 1.99288570 0.82863720 0.95055650 1.70905486 
##        221        222        223        224        225        226        228 
## 2.27866082 1.08965189 2.44230495 0.18356721 0.73679118 0.75393974 1.09869805 
##        229        230        231        232        233        234        235 
## 2.84388369 0.78641430 2.70765157 0.62696050 1.57123847 0.49444884 1.32539954 
##        236        237        238        239        240        241        242 
## 0.29528048 1.47453838 0.62684202 0.78336392 0.43175764 2.06735838 1.67743922 
##        243        244        245        246        247        248        249 
## 3.35566608 2.73753485 2.87510133 1.08551401 1.37022281 1.11683947 0.13401558 
##        250        251        252        253        254        255        257 
## 1.39127316 0.90751894 1.36426659 1.91767333 3.44962900 1.74009933 3.31334235 
##        258        259        260        261        262        263        264 
## 2.13143394 0.42167430 1.60920380 1.37477131 0.46450320 1.04427283 0.67842058 
##        265        266        267        268        269        270        271 
## 0.73393905 1.79678655 0.37036992 3.09594321 1.88981842 1.15720456 3.04425623 
##        273        274        275        276        277        278        279 
## 0.28301299 1.03582421 1.86038626 1.33837086 1.54179952 0.79490183 3.22957519 
##        280        282        283        284        285        286        287 
## 3.87538387 1.18846974 0.70584863 2.34294104 0.82084399 1.07409269 0.94639819 
##        288        289        290        291        292        293        294 
## 1.56054917 1.00816486 1.81704511 3.42384637 2.71288127 1.69367234 2.02626297 
##        295        296        297        298        299        300        301 
## 1.59707859 2.35286749 1.20390028 0.50389629 1.36699660 1.05588807 0.33221581 
##        302        303        304        305        306        307        308 
## 0.48576542 1.46283726 0.46246562 0.26649456 1.44150525 0.86685465 1.09564689 
##        309        311        312        313        314        315        316 
## 0.91784195 1.22168314 1.51338633 1.20449123 0.38593946 0.37628116 1.00881626 
##        317        318        319        320        321        322        323 
## 0.80245500 2.49004325 1.71591305 1.02813291 1.18767637 0.95432891 2.01702598 
##        324        325        326        327        328        329        330 
## 0.42845675 1.36133109 4.27211765 2.26026909 0.96557881 1.07462369 0.75846547 
##        331        332        333        334        335        336        337 
## 1.59155955 0.84114352 1.42787653 0.64787494 1.38875257 2.22374523 0.16892966 
##        338        339        340        341        342        343        344 
## 2.07484163 1.83552494 0.80455474 1.84076611 0.96537270 0.84357798 0.10853720 
##        345        346        347        348        349        350        351 
## 1.10226047 0.90713211 0.98270770 1.70691585 0.54414205 1.96386761 1.68580024 
##        352        353        354        355        356        357        358 
## 0.90132557 0.80807963 0.61512554 0.73276203 0.67868197 0.72372687 0.76524311 
##        359        360        361        362        363        364        365 
## 1.47592743 1.35619893 2.24024454 0.93930568 0.99575813 0.78788883 0.64187309 
##        366        367        368        369        370        371        372 
## 1.15204012 2.23880014 0.30888568 1.54057442 0.13339473 1.44349517 1.34106625 
##        374        376        377        378        379        380        381 
## 0.90482950 1.20638847 1.17610415 1.27073488 2.36123950 0.98070690 0.89393795 
##        382        383        384        385        386        387        388 
## 4.41076841 0.89020930 1.24689790 0.59596538 1.01516515 3.02551977 1.44300926 
##        389        390        391        392        393        394        395 
## 1.11405480 1.38042222 1.26772404 0.74931616 0.90564675 1.17417205 0.29358795 
##        396        397        398        399        400        401        402 
## 1.19876095 0.72339538 1.68534452 1.02572488 0.24212420 2.24782265 0.41615523 
##        403 
## 2.25979032 
## 
## $euclidean
##         1         2         3         4         5         6         7         8 
## 2.6700125 4.2220862 2.8681865 2.7214101 5.1691401 2.8570800 3.5776450 3.0137952 
##         9        10        11        12        13        14        15        16 
## 5.5988880 2.4703354 3.7743492 4.4412405 3.0149862 3.6834799 1.2860612 2.1662896 
##        17        18        19        20        21        22        23        24 
## 1.4848436 1.4520555 3.0233803 2.1653050 3.5867010 2.6236334 2.3120114 1.4419269 
##        25        26        27        28        29        30        31        32 
## 2.2069504 1.0289041 4.0375257 2.4132054 2.8823397 1.8669189 3.2102309 1.7061344 
##        33        34        35        36        37        38        39        40 
## 3.7953241 4.2195465 3.1223179 1.2624946 2.6725961 1.4530263 3.9662090 2.5194485 
##        41        42        43        44        45        46        47        48 
## 3.3718497 5.1463488 1.8467063 2.4434268 2.0097438 2.5127881 2.9320239 2.0877439 
##        49        50        51        52        53        54        55        56 
## 4.4769427 4.4176885 2.8279248 1.2181003 2.6924835 1.5162768 2.5562794 3.1229840 
##        57        58        59        60        61        62        63        64 
## 3.9619690 4.3075351 2.0382867 1.2986187 2.7901349 1.7340253 1.4808160 1.7286892 
##        65        66        67        68        69        70        71        72 
## 1.4675196 2.5435166 3.5894429 4.4795078 3.3240918 3.6829857 3.1912897 2.9945963 
##        73        74        75        76        77        78        79        80 
## 1.0766357 1.8416452 3.1960117 1.7282311 3.0959692 4.1638843 3.2349240 4.8851293 
##        81        82        83        84        85        86        87        88 
## 4.3540746 2.7504527 1.4640715 1.1975282 2.9748238 0.8827726 0.6838664 4.4533376 
##        89        90        91        92        93        94        95        96 
## 2.4558729 3.2452153 3.9544970 4.5889585 3.5419423 3.2119753 1.4460134 1.2303394 
##        97        98        99       100       101       102       103       104 
## 2.0235326 2.4418797 1.5598907 1.6642299 2.9759816 3.0177956 3.5477586 5.0497588 
##       105       106       107       108       109       110       111       112 
## 2.7517226 2.5041310 1.7203565 1.3427832 3.5337473 3.5485648 4.4861473 1.4911018 
##       113       114       115       116       117       118       119       120 
## 5.0758178 1.5738519 3.8984496 3.3574039 2.7085400 4.0043973 2.1252429 2.8022552 
##       121       122       123       124       125       126       127       128 
## 2.8092202 1.9772547 2.2272417 1.1953057 1.6324226 1.6146494 3.3375536 1.8705335 
##       129       130       131       132       133       134       135       136 
## 1.6608818 1.6446760 1.5305639 1.5436182 2.9838359 2.8428069 3.7950531 3.3547039 
##       138       139       140       141       142       143       144       145 
## 3.1396744 3.6660159 3.3957879 1.5709590 2.3126543 2.5037314 4.3721427 2.9789715 
##       146       147       148       149       150       151       152       153 
## 2.5552244 3.7005658 5.8565011 5.0380077 4.1418165 2.1260603 2.3719586 3.0542845 
##       154       155       156       157       158       159       160       162 
## 1.5367178 3.4445052 2.9439375 4.7814616 3.6461745 2.6337235 3.8111507 5.0168384 
##       163       164       165       166       167       168       169       170 
## 1.8209177 2.1658768 3.7814902 3.7073692 1.6796705 2.3133081 2.0297423 3.6556097 
##       171       172       173       174       175       176       177       178 
## 4.5471982 3.5399516 3.6399176 2.6705091 4.1249788 4.1432742 3.8807069 3.5387616 
##       179       180       181       182       183       184       185       186 
## 3.8746846 2.6809191 2.1918790 3.9689156 3.5516395 3.8547240 5.1716128 3.6114987 
##       187       188       189       191       192       193       194       195 
## 5.1815395 4.7818833 2.6605062 6.0470509 3.9348776 5.2933262 5.2062391 3.0672058 
##       196       197       198       199       200       201       202       203 
## 1.9653025 3.5041712 2.7907128 3.6474942 4.2671669 6.9602829 4.6850553 3.2808292 
##       204       205       206       207       208       209       210       211 
## 6.0524396 3.3344433 5.3251012 5.7097417 4.0693945 3.8241490 1.6463664 2.6437776 
##       212       213       214       215       216       217       218       219 
## 3.1151041 4.9225972 3.3234344 3.3228445 5.4610745 4.0678326 3.8956092 4.1132945 
##       220       221       222       223       224       225       226       228 
## 1.2884138 5.1247719 4.4347089 5.9913677 2.8828339 3.7189586 2.9149462 3.7695194 
##       229       230       231       232       233       234       235       236 
## 6.2254240 3.7984534 6.3117315 3.7986216 1.1454978 3.3640058 2.2878150 2.9316659 
##       237       238       239       240       241       242       243       244 
## 4.3771203 3.3269953 2.2276125 3.3996055 5.1813813 4.4656102 6.2464869 5.2768863 
##       245       246       247       248       249       250       251       252 
## 6.6413043 4.1482154 4.7483540 2.7071066 3.1532636 4.1634169 2.1937236 1.8783687 
##       253       254       255       257       258       259       260       261 
## 3.7997195 6.6133191 4.3533652 5.6561721 1.8662155 3.5749565 4.4823694 4.7206973 
##       262       263       264       265       266       267       268       269 
## 2.7793853 2.4630753 2.7164165 3.4678332 3.1870333 2.8821787 6.6288121 5.3015117 
##       270       271       273       274       275       276       277       278 
## 4.3649337 6.7982442 2.9136650 2.1725578 2.3857218 1.3594141 4.3457263 3.9869700 
##       279       280       282       283       284       285       286       287 
## 6.4708716 6.9209710 4.4581378 2.2904866 3.9564929 3.9921056 1.6686249 2.5096320 
##       288       289       290       291       292       293       294       295 
## 4.6255885 2.3988527 4.4267003 6.7466300 6.3125391 1.6920361 4.7012084 1.0999479 
##       296       297       298       299       300       301       302       303 
## 5.5405313 1.5253908 3.2086893 1.3474801 2.1025754 2.7185476 2.7061572 1.3444750 
##       304       305       306       307       308       309       311       312 
## 2.4552986 2.8443905 3.4998392 1.9461729 3.0186526 3.1651973 3.7380482 1.1859319 
##       313       314       315       316       317       318       319       320 
## 3.2005785 3.5083730 3.4896104 2.8243778 3.5493033 3.1023099 1.6845828 4.2661733 
##       321       322       323       324       325       326       327       328 
## 1.6859578 4.2713634 2.8500625 3.0960034 2.0084102 3.8209576 5.2359999 3.9379084 
##       329       330       331       332       333       334       335       336 
## 3.5245563 2.7800005 1.4305702 1.9861289 1.3164349 3.4546507 3.9502320 5.8929983 
##       337       338       339       340       341       342       343       344 
## 3.0972428 5.2248674 4.9521871 2.8251926 1.2175192 2.5605186 3.2891590 3.1563647 
##       345       346       347       348       349       350       351       352 
## 4.3445486 2.9506154 1.8807165 5.2353861 2.7488935 4.2252858 5.1193289 3.8463463 
##       353       354       355       356       357       358       359       360 
## 2.2177172 3.1816246 3.9606536 3.0203007 2.4520886 3.9764175 3.7613877 1.4962766 
##       361       362       363       364       365       366       367       368 
## 1.4471883 3.4395445 3.9336795 2.6938592 3.3840455 4.0724212 1.7393814 3.1897974 
##       369       370       371       372       374       376       377       378 
## 1.5325522 3.1209418 4.7873195 2.4446095 2.7846394 4.2395631 4.1242012 1.5817403 
##       379       380       381       382       383       384       385       386 
## 0.7537195 2.4580688 1.9001681 5.0086114 1.9646687 2.5546639 2.7906276 3.4077181 
##       387       388       389       390       391       392       393       394 
## 5.0100468 4.5922988 4.3303897 1.9833110 1.7246773 3.9307135 2.1707786 1.5544813 
##       395       396       397       398       399       400       401       402 
## 3.1046795 3.9598388 2.2143539 4.7767389 2.3791770 2.9722903 4.3190013 3.1816523 
##       403 
## 2.1498471
corr.plot(df_ka$K,mod7b$fitted.values,
          quan=1/2, alpha=0.025,
          xlab="Observados",
          ylab="Estimados")

## $cor.cla
## [1] 0.7037577
## 
## $cor.rob
## [1] 0.7335219
library(akima)
## Warning: package 'akima' was built under R version 4.0.5
dataw=df_ka
dataw$ajustados =mod7b$fitted.values
akima.li <- interp(dataw$Long, dataw$Lat, dataw$ajustados,
                    nx = 50, ny = 50,
                  linear = F)
image(akima.li)
contour(akima.li,add=T)