1 Pacotes

library(tidyverse)
library(kableExtra)
library(data.table)
library(gridExtra)
library(readxl)
library(plotly)
library(psych)
library(stargazer)
library(reshape2)
library(corrplot)
library(scales)
library(GGally)
library(rstatix)

2 Etapa 1 - Validação das Marcas

2.1 Marcas mais relacionadas com o Rugby

2.1.1 Ajustando o conjunto de dados

ResMul <- data.frame(Freq = colSums(Marcas_ASS[2:21]),
                     Pct_Respostas = (colSums(Marcas_ASS[2:21]) / sum(Marcas_ASS[2:21]))*100,
                     Pct_Casos = (colSums(Marcas_ASS[2:21]) / nrow(Marcas_ASS[2:21]))*100)

2.1.2 Tabela

ResMul <- ResMul[order(-ResMul$Freq), ] 
ResMul %>% kbl %>% kable_classic(full_width = F, html_font = "Cambria")
Freq Pct_Respostas Pct_Casos
Adidas 9 18.367347 69.230769
Kipsta 5 10.204082 38.461539
Topper 4 8.163265 30.769231
Gilbert 4 8.163265 30.769231
Canterbury 4 8.163265 30.769231
Nike 4 8.163265 30.769231
Under.Armor 3 6.122449 23.076923
Penalty 2 4.081633 15.384615
Kevingston 2 4.081633 15.384615
Sulback 2 4.081633 15.384615
Kappa 1 2.040816 7.692308
Blk 1 2.040816 7.692308
Flash 1 2.040816 7.692308
Offload 1 2.040816 7.692308
Fila 1 2.040816 7.692308
Umbro 1 2.040816 7.692308
Asics 1 2.040816 7.692308
Soul.Rugby 1 2.040816 7.692308
Puma 1 2.040816 7.692308
Mikasa 1 2.040816 7.692308

2.1.3 Reordenando

setDT(ResMul, keep.rownames = T)

colnames(ResMul)[1] <- 'Marca'

ResMul2 <- transform(ResMul, Marca = reorder(Marca, Freq))

2.1.4 Gráfico

g1 <- ggplot(ResMul2, aes(y = Marca, weight = Freq, fill = Freq)) +
  geom_bar(show.legend = F) +
  scale_fill_continuous(low = "#87b5c5", high = "#3c525a") +
  scale_x_continuous(breaks = c(0,3,6,9)) +
  theme_minimal(base_size = 10) +
  theme(text=element_text(family= "Times New Roman", face="bold"),
        plot.title = element_text(hjust = 0.5))+
  labs(title = "Marcas mais associadas ao Rugby") + xlab("Contagem") + ylab("Marca")

g1

2.2 Marcas menos assocadas com o Rugby

2.2.1 Ajustando o conjunto de dados

ResMul2 <- data.frame(Freq = colSums(Marcas_N_ASS[2:16]),
                     Pct_Respostas = (colSums(Marcas_N_ASS[2:16]) / sum(Marcas_N_ASS[2:16]))*100,
                     Pct_Casos = (colSums(Marcas_N_ASS[2:16]) / nrow(Marcas_N_ASS[2:16]))*100)

2.2.2 Tabela

ResMul2 <- ResMul2[order(-ResMul2$Freq), ] 
ResMul2 %>% kbl %>% kable_classic(full_width = F, html_font = "Cambria")
Freq Pct_Respostas Pct_Casos
Puma 6 18.750 46.153846
Nike 5 15.625 38.461539
Reebok 3 9.375 23.076923
Adidas 2 6.250 15.384615
Fila 2 6.250 15.384615
Under.Armor 2 6.250 15.384615
Umbro 2 6.250 15.384615
Kappa 2 6.250 15.384615
Mizuno 2 6.250 15.384615
Olympikus 1 3.125 7.692308
Peak 1 3.125 7.692308
Skcetchers 1 3.125 7.692308
Diadora 1 3.125 7.692308
Penalty 1 3.125 7.692308
Asics 1 3.125 7.692308

2.2.3 Reordenando

setDT(ResMul2, keep.rownames = T)

colnames(ResMul2)[1] <- 'Marca'

ResMul2 <- transform(ResMul2, Marca = reorder(Marca, Freq))

2.2.4 Gráfico

g2 <- ggplot(ResMul2, aes(y = Marca, weight = Freq, fill = Freq)) +
  geom_bar(show.legend = F) +
  scale_fill_continuous(low = "#87b5c5", high = "#3c525a") +
  scale_x_continuous(breaks = c(0,3,6,9)) +
  theme_minimal(base_size = 10) +
  theme(text=element_text(family= "Times New Roman", face="bold"),
        plot.title = element_text(hjust = 0.5))+
  labs(title = "Marcas menos associadas ao Rugby") + xlab("Contagem") + ylab("Marca")

g2

grid.arrange(g1, g2, ncol = 2, nrow = 1)

3 Data - Rugby

3.1 Organizando os dados

# Recoding variáveis invertidas

data$D2 <- 5 - D2 + 1
data$D5 <- 5 - D5 + 1
data$D6 <- 5 - D6 + 1
data$I2 <- 5 - I2 + 1
data$I4 <- 5 - I4 + 1
data$I7 <- 5 - I7 + 1
data$R3 <- 5 - R3 + 1
data$R6 <- 5 - R6 + 1
data$S4 <- 5 - S4 + 1
data$S6 <- 5 - S6 + 1

data$missing <- rowSums(data[,c(4:38)])

data <- data %>% filter(missing > 1) # 27 casos tiveram que ser removidos da amostra

4 Descrição da Amostra

4.1 Gênero

data$Genero[is.na(data$Genero)] <- 'Não informado'

data$Genero <- factor(data$Genero)

tab <- as.data.frame(table(data$Genero))

blank_theme <- theme_minimal()+
  theme(
    axis.title.x = element_blank(),
    axis.title.y = element_blank(),
    panel.border = element_blank(),
    panel.grid=element_blank(),
    axis.ticks = element_blank(),
    plot.title=element_text(size=14, face="bold")
  )

tab2 <- tab %>% 
  mutate(csum = rev(cumsum(rev(Freq))), 
         pos = Freq/3 + lead(csum, 1),
         pos = if_else(is.na(pos), Freq/3, pos))

p1 <- ggplot(tab, aes(x = "", y = Freq, fill = Var1)) +
  geom_col(width = 1, color = 1) +
  geom_text(aes(label = Freq),
            position = position_stack(vjust = 0.5)) +
  coord_polar(theta = "y") +
  guides(fill = guide_legend(title = "Gênero")) +
  scale_y_continuous(breaks = tab2$pos, labels = tab$Var1) +
  blank_theme +
  ggtitle('1) Gênero dos respondentes') + 
  theme(axis.text.x=element_blank())
p1

4.2 Nível de relação com o esporte

data$Nivel_Relacao <- factor(data$Nivel_Relacao)
tab3 <- as.data.frame(table(Nivel_Relacao))
tab3$Nivel_Relacao <- as.character(tab3$Nivel_Relacao)
tab3[3,1] <- 'Outro'
tab3$Nivel_Relacao <- factor(tab3$Nivel_Relacao)

tab4 <- tab3 %>% 
  mutate(csum = rev(cumsum(rev(Freq))), 
         pos = Freq/4 + lead(csum, 1),
         pos = if_else(is.na(pos), Freq/4, pos))

p2 <- ggplot(tab3, aes(x = "", y = Freq, fill = Nivel_Relacao)) +
  geom_col(width = 1, color = 1) +
  geom_text(aes(label = Freq),
            position = position_stack(vjust = 0.5)) +
  coord_polar(theta = "y") +
  guides(fill = guide_legend(title = "Nível da Relação")) +
  scale_y_continuous(breaks = tab4$pos, labels = tab3$Nivel_Relacao) +
  blank_theme +
  ggtitle('2) Relação com o rugby') + 
  theme(axis.text.x=element_blank())

p2

4.3 Idade

describe(Idade)
##    vars  n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 79 28.8 6.51     29   28.71 5.93  17  44    27 0.04    -0.52 0.73
describe.by(Idade, group = Genero)
## 
##  Descriptive statistics by group 
## group: Feminino
##    vars  n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 22 26.59 6.29     27   26.28 5.93  18  42    24 0.33    -0.43 1.34
## ------------------------------------------------------------ 
## group: Masculino
##    vars  n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 57 29.65 6.45     31   29.66 5.93  17  44    27 -0.08    -0.47 0.85
p3 <- data %>% ggplot(aes(y = Idade, fill = 'red')) +
  geom_boxplot() +
  labs(y = 'Anos', x = '') +
  scale_x_discrete(labels = NULL, breaks = NULL) + labs(x = "") +
  guides(fill = F) +
  ggtitle('3) Idade') + 
  theme_bw()

p3

4.4 Tempo de prática

describe(Tempo_Pratica)
##    vars  n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 79 7.15 3.71      6    6.92 2.97   1  16    15 0.56    -0.57 0.42
describe.by(Tempo_Pratica, group = Genero)
## 
##  Descriptive statistics by group 
## group: Feminino
##    vars  n mean   sd median trimmed  mad min max range skew kurtosis  se
## X1    1 22 4.95 2.34      4    4.78 2.97   2  10     8 0.54    -0.87 0.5
## ------------------------------------------------------------ 
## group: Masculino
##    vars  n mean   sd median trimmed  mad min max range skew kurtosis  se
## X1    1 57    8 3.81      8    7.91 4.45   1  16    15 0.31    -0.86 0.5
p4 <- data %>% ggplot(aes(y = Tempo_Pratica, fill = 'red')) +
  geom_boxplot() +
  labs(y = 'Anos', x = '') +
  scale_x_discrete(labels = NULL, breaks = NULL) + labs(x = "") +
  guides(fill = F) +
  ggtitle('4) Tempo de Prática do Rugby') +
  theme_bw()

p4

grid.arrange(p1,p2,p3,p4)

4.5 Remuneração

(tab10 <- table(Remuneracao))
## Remuneracao
## Não Sim 
##  74   5

5 Análise dos constructos

5.1 Paixão

Paixao <- as.data.frame(data[,c(4:10)])
(Alpha_P <- psych::alpha(Paixao)) # 0.76 
## 
## Reliability analysis   
## Call: psych::alpha(x = Paixao)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd median_r
##       0.71      0.76    0.77      0.31 3.1 0.045  4.5 0.38     0.28
## 
##  lower alpha upper     95% confidence boundaries
## 0.62 0.71 0.8 
## 
##  Reliability if an item is dropped:
##    raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## P1      0.69      0.72    0.73      0.30 2.6    0.048 0.015  0.28
## P2      0.69      0.72    0.73      0.30 2.6    0.050 0.019  0.28
## P3      0.69      0.73    0.73      0.31 2.7    0.048 0.015  0.28
## P4      0.69      0.75    0.75      0.33 3.0    0.049 0.019  0.35
## P5      0.63      0.69    0.68      0.27 2.2    0.059 0.011  0.25
## P6      0.66      0.72    0.73      0.30 2.6    0.055 0.017  0.32
## P7      0.71      0.74    0.74      0.33 2.9    0.047 0.015  0.28
## 
##  Item statistics 
##     n raw.r std.r r.cor r.drop mean   sd
## P1 82  0.53  0.64  0.57   0.41  4.8 0.41
## P2 82  0.56  0.65  0.56   0.45  4.9 0.39
## P3 82  0.52  0.64  0.56   0.40  4.9 0.39
## P4 82  0.56  0.55  0.43   0.38  4.6 0.56
## P5 82  0.76  0.75  0.74   0.65  4.6 0.54
## P6 82  0.72  0.65  0.58   0.50  4.1 0.83
## P7 82  0.70  0.57  0.47   0.42  3.8 0.97
## 
## Non missing response frequency for each item
##       1    2    3    4    5 miss
## P1 0.00 0.00 0.01 0.15 0.84    0
## P2 0.00 0.00 0.01 0.12 0.87    0
## P3 0.00 0.00 0.01 0.12 0.87    0
## P4 0.00 0.00 0.04 0.33 0.63    0
## P5 0.00 0.00 0.02 0.35 0.62    0
## P6 0.00 0.05 0.13 0.45 0.37    0
## P7 0.01 0.04 0.43 0.22 0.30    0
(Omega_P <- omega(Paixao, nfactors = 1, poly = T))
## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.86 
## G.6:                   0.96 
## Omega Hierarchical:    0.86 
## Omega H asymptotic:    1 
## Omega Total            0.86 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##       g  F1*   h2   u2 p2
## P1 0.73      0.54 0.46  1
## P2 0.77      0.59 0.41  1
## P3 0.73      0.53 0.47  1
## P4 0.52      0.27 0.73  1
## P5 0.89      0.79 0.21  1
## P6 0.63      0.40 0.60  1
## P7 0.52      0.27 0.73  1
## 
## With eigenvalues of:
##   g F1* 
## 3.4 0.0 
## 
## general/max  6.103445e+16   max/min =   1
## mean percent general =  1    with sd =  0 and cv of  0 
## Explained Common Variance of the general factor =  1 
## 
## The degrees of freedom are 14  and the fit is  2.93 
## The number of observations was  82  with Chi Square =  225.96  with prob <  2.6e-40
## The root mean square of the residuals is  0.12 
## The df corrected root mean square of the residuals is  0.14
## RMSEA index =  0.43  and the 10 % confidence intervals are  0.384 0.483
## BIC =  164.27
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 14  and the fit is  2.93 
## The number of observations was  82  with Chi Square =  225.96  with prob <  2.6e-40
## The root mean square of the residuals is  0.12 
## The df corrected root mean square of the residuals is  0.14 
## 
## RMSEA index =  0.43  and the 10 % confidence intervals are  0.384 0.483
## BIC =  164.27 
## 
## Measures of factor score adequacy             
##                                                  g F1*
## Correlation of scores with factors            1.01   0
## Multiple R square of scores with factors      1.01   0
## Minimum correlation of factor score estimates 1.03  -1
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1*
## Omega total for total scores and subscales    0.86 0.86
## Omega general for total scores and subscales  0.86 0.86
## Omega group for total scores and subscales    0.00 0.00
stargazer(Paixao, summary = T, type = 'text', title = "Estatísticas descritivas Paixão")
## 
## Estatísticas descritivas Paixão
## =====================================================
## Statistic N  Mean  St. Dev. Min Pctl(25) Pctl(75) Max
## -----------------------------------------------------
## P1        82 4.829  0.410    3     5        5      5 
## P2        82 4.854  0.389    3     5        5      5 
## P3        82 4.854  0.389    3     5        5      5 
## P4        82 4.598  0.563    3     4        5      5 
## P5        82 4.598  0.541    3     4        5      5 
## P6        82 4.134  0.828    2     4        5      5 
## P7        82 3.768  0.972    1     3        5      5 
## -----------------------------------------------------
Paixao$Id <- seq(1:82)
Paixao_long <- melt(Paixao, id.vars = c("Id"))
colnames(Paixao_long) <- c("id", "Item", "Response")

ggplot(Paixao_long, aes(x = Response, fill = Item)) +
  geom_histogram(bins = 10, show.legend = F)+
  facet_wrap(~Item)+
  theme_bw()

ggplot(Paixao_long, aes(x = Response, fill = Item))+
  geom_density(show.legend = F)+
  facet_wrap(~Item)+
  theme_bw()

5.2 Integridade

Integridade <- as.data.frame(data[,c(11:17)])
(alpha_I <- psych::alpha(Integridade)) # 0.77
## 
## Reliability analysis   
## Call: psych::alpha(x = Integridade)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean   sd median_r
##       0.76      0.77    0.78      0.32 3.3 0.04  4.3 0.48     0.29
## 
##  lower alpha upper     95% confidence boundaries
## 0.68 0.76 0.84 
## 
##  Reliability if an item is dropped:
##    raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## I1      0.71      0.71    0.72      0.29 2.5    0.049 0.034  0.25
## I2      0.68      0.70    0.72      0.28 2.3    0.054 0.032  0.24
## I3      0.71      0.71    0.71      0.29 2.4    0.049 0.028  0.25
## I4      0.75      0.76    0.77      0.34 3.2    0.043 0.035  0.29
## I5      0.77      0.78    0.79      0.37 3.6    0.039 0.035  0.44
## I6      0.77      0.78    0.78      0.37 3.5    0.037 0.035  0.44
## I7      0.70      0.71    0.73      0.29 2.5    0.051 0.031  0.25
## 
##  Item statistics 
##     n raw.r std.r r.cor r.drop mean   sd
## I1 82  0.72  0.74  0.72   0.60  4.5 0.71
## I2 82  0.79  0.78  0.75   0.67  4.1 0.81
## I3 82  0.72  0.75  0.74   0.63  4.6 0.55
## I4 82  0.60  0.57  0.46   0.40  4.5 0.84
## I5 82  0.45  0.47  0.31   0.27  4.1 0.68
## I6 82  0.49  0.48  0.34   0.28  4.4 0.80
## I7 82  0.75  0.73  0.70   0.60  4.2 0.84
## 
## Non missing response frequency for each item
##       1    2    3    4    5 miss
## I1 0.00 0.04 0.01 0.41 0.54    0
## I2 0.00 0.04 0.16 0.45 0.35    0
## I3 0.00 0.00 0.04 0.28 0.68    0
## I4 0.02 0.00 0.07 0.24 0.66    0
## I5 0.00 0.01 0.16 0.57 0.26    0
## I6 0.01 0.00 0.12 0.32 0.55    0
## I7 0.02 0.00 0.12 0.45 0.40    0
(omega_I <- omega(Integridade, nfactors = 1, poly = T))
## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.84 
## G.6:                   0.88 
## Omega Hierarchical:    0.85 
## Omega H asymptotic:    0.99 
## Omega Total            0.85 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##       g  F1*   h2   u2 p2
## I1 0.74      0.55 0.45  1
## I2 0.84      0.71 0.29  1
## I3 0.88      0.78 0.22  1
## I4 0.67      0.45 0.55  1
## I5 0.38      0.14 0.86  1
## I6 0.38      0.15 0.85  1
## I7 0.72      0.52 0.48  1
## 
## With eigenvalues of:
##   g F1* 
## 3.3 0.0 
## 
## general/max  Inf   max/min =   NaN
## mean percent general =  1    with sd =  0 and cv of  0 
## Explained Common Variance of the general factor =  1 
## 
## The degrees of freedom are 14  and the fit is  1.18 
## The number of observations was  82  with Chi Square =  91.02  with prob <  2.4e-13
## The root mean square of the residuals is  0.12 
## The df corrected root mean square of the residuals is  0.15
## RMSEA index =  0.259  and the 10 % confidence intervals are  0.211 0.313
## BIC =  29.32
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 14  and the fit is  1.18 
## The number of observations was  82  with Chi Square =  91.02  with prob <  2.4e-13
## The root mean square of the residuals is  0.12 
## The df corrected root mean square of the residuals is  0.15 
## 
## RMSEA index =  0.259  and the 10 % confidence intervals are  0.211 0.313
## BIC =  29.32 
## 
## Measures of factor score adequacy             
##                                                  g F1*
## Correlation of scores with factors            0.95   0
## Multiple R square of scores with factors      0.91   0
## Minimum correlation of factor score estimates 0.81  -1
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1*
## Omega total for total scores and subscales    0.85 0.85
## Omega general for total scores and subscales  0.85 0.85
## Omega group for total scores and subscales    0.00 0.00
stargazer(Integridade, summary = T, type = 'text', title = "Estatísticas descritivas Integridade")
## 
## Estatísticas descritivas Integridade
## =====================================================
## Statistic N  Mean  St. Dev. Min Pctl(25) Pctl(75) Max
## -----------------------------------------------------
## I1        82 4.451  0.705    2     4        5      5 
## I2        82 4.122  0.807    2     4        5      5 
## I3        82 4.646  0.553    3     4        5      5 
## I4        82 4.512  0.835    1     4        5      5 
## I5        82 4.073  0.681    2     4       4.8     5 
## I6        82 4.390  0.797    1     4        5      5 
## I7        82 4.207  0.842    1     4        5      5 
## -----------------------------------------------------
Integridade$Id <- seq(1:82)
Integridade_long <- melt(Integridade, id.vars = c("Id"))
colnames(Integridade_long) <- c("id", "Item", "Response")

ggplot(Integridade_long, aes(x = Response, fill = Item)) +
  geom_histogram(bins = 10, show.legend = F)+
  facet_wrap(~Item)+
  theme_bw()

ggplot(Integridade_long, aes(x = Response, fill = Item))+
  geom_density(show.legend = F)+
  facet_wrap(~Item)+
  theme_bw()

5.3 Respeito

Respeito <- as.data.frame(data[,c(18:24)])
Respeito_Alpha <- Respeito[,-c(3,6)]
(alpha_R <- psych::alpha(Respeito_Alpha)) # 0.72
## 
## Reliability analysis   
## Call: psych::alpha(x = Respeito_Alpha)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd median_r
##       0.71      0.72     0.7      0.34 2.6 0.051  4.4 0.45     0.33
## 
##  lower alpha upper     95% confidence boundaries
## 0.61 0.71 0.81 
## 
##  Reliability if an item is dropped:
##    raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## R1      0.64      0.66    0.60      0.32 1.9    0.065 0.0107  0.34
## R2      0.60      0.62    0.56      0.29 1.6    0.072 0.0061  0.31
## R4      0.68      0.70    0.66      0.36 2.3    0.058 0.0148  0.31
## R5      0.73      0.73    0.69      0.40 2.7    0.048 0.0095  0.37
## R7      0.65      0.67    0.62      0.33 2.0    0.064 0.0204  0.32
## 
##  Item statistics 
##     n raw.r std.r r.cor r.drop mean   sd
## R1 82  0.70  0.72  0.64   0.52  4.5 0.61
## R2 82  0.78  0.78  0.74   0.61  4.3 0.68
## R4 82  0.61  0.65  0.50   0.41  4.5 0.57
## R5 82  0.64  0.58  0.40   0.34  4.3 0.81
## R7 82  0.70  0.70  0.59   0.50  4.5 0.63
## 
## Non missing response frequency for each item
##       2    3    4    5 miss
## R1 0.00 0.06 0.43 0.51    0
## R2 0.01 0.09 0.50 0.40    0
## R4 0.00 0.04 0.38 0.59    0
## R5 0.05 0.09 0.43 0.44    0
## R7 0.00 0.07 0.38 0.55    0
(omega_R <- omega(Respeito_Alpha, nfactors = 1, poly = T))
## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.81 
## G.6:                   0.8 
## Omega Hierarchical:    0.81 
## Omega H asymptotic:    1 
## Omega Total            0.82 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##       g  F1*   h2   u2 p2
## R1 0.73      0.54 0.46  1
## R2 0.87      0.76 0.24  1
## R4 0.62      0.38 0.62  1
## R5 0.49      0.24 0.76  1
## R7 0.68      0.46 0.54  1
## 
## With eigenvalues of:
##   g F1* 
## 2.4 0.0 
## 
## general/max  Inf   max/min =   NaN
## mean percent general =  1    with sd =  0 and cv of  0 
## Explained Common Variance of the general factor =  1 
## 
## The degrees of freedom are 5  and the fit is  0.16 
## The number of observations was  82  with Chi Square =  12.15  with prob <  0.033
## The root mean square of the residuals is  0.06 
## The df corrected root mean square of the residuals is  0.09
## RMSEA index =  0.131  and the 10 % confidence intervals are  0.035 0.23
## BIC =  -9.88
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 5  and the fit is  0.16 
## The number of observations was  82  with Chi Square =  12.15  with prob <  0.033
## The root mean square of the residuals is  0.06 
## The df corrected root mean square of the residuals is  0.09 
## 
## RMSEA index =  0.131  and the 10 % confidence intervals are  0.035 0.23
## BIC =  -9.88 
## 
## Measures of factor score adequacy             
##                                                  g F1*
## Correlation of scores with factors            0.93   0
## Multiple R square of scores with factors      0.86   0
## Minimum correlation of factor score estimates 0.72  -1
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1*
## Omega total for total scores and subscales    0.82 0.81
## Omega general for total scores and subscales  0.81 0.81
## Omega group for total scores and subscales    0.00 0.00
stargazer(Respeito, summary = T, type = 'text', title = "Estatísticas descritivas Respeito")
## 
## Estatísticas descritivas Respeito
## =====================================================
## Statistic N  Mean  St. Dev. Min Pctl(25) Pctl(75) Max
## -----------------------------------------------------
## R1        82 4.451  0.612    3     4        5      5 
## R2        82 4.293  0.676    2     4        5      5 
## R3        82 3.500  0.997    1     3        4      5 
## R4        82 4.549  0.570    3     4        5      5 
## R5        82 4.256  0.814    2     4        5      5 
## R6        82 4.171  1.040    1     4        5      5 
## R7        82 4.476  0.633    3     4        5      5 
## -----------------------------------------------------
Respeito$Id <- seq(1:82)
Respeito_long <- melt(Respeito, id.vars = c("Id"))
colnames(Respeito_long) <- c("id", "Item", "Response")

ggplot(Respeito_long, aes(x = Response, fill = Item)) +
  geom_histogram(bins = 10, show.legend = F)+
  facet_wrap(~Item)+
  theme_bw()

ggplot(Respeito_long, aes(x = Response, fill = Item))+
  geom_density(show.legend = F)+
  facet_wrap(~Item)+
  theme_bw()

5.4 Disciplina

Disciplina <- as.data.frame(data[,c(25:31)])
alpha_D <- psych::alpha(Disciplina) # 0.73    
omega_d <- omega(Disciplina, nfactors = 1, poly = T)
stargazer(Disciplina, summary = T, type = 'text', title = "Estatísticas descritivas Disciplina")
## 
## Estatísticas descritivas Disciplina
## =====================================================
## Statistic N  Mean  St. Dev. Min Pctl(25) Pctl(75) Max
## -----------------------------------------------------
## D1        82 3.537  0.892    1     3        4      5 
## D2        82 3.293  0.962    1     3        4      5 
## D3        82 3.476  0.984    1     3        4      5 
## D4        82 3.695  0.990    1     3        4      5 
## D5        82 3.976  0.816    2     4       4.8     5 
## D6        82 4.195  0.744    1     4        5      5 
## D7        82 3.598  0.914    1     3        4      5 
## -----------------------------------------------------
Disciplina$Id <- seq(1:82)
Disciplina_long <- melt(Disciplina, id.vars = c("Id"))
colnames(Disciplina_long) <- c("id", "Item", "Response")

ggplot(Disciplina_long, aes(x = Response, fill = Item)) +
  geom_histogram(bins = 10, show.legend = F)+
  facet_wrap(~Item)+
  theme_bw()

ggplot(Disciplina_long, aes(x = Response, fill = Item))+
  geom_density(show.legend = F)+
  facet_wrap(~Item)+
  theme_bw()

5.5 Solidariedade

Solidariedade <- as.data.frame(data[,c(32:38)])
(alpha_S <- psych::alpha(Solidariedade)) # 0.84
## 
## Reliability analysis   
## Call: psych::alpha(x = Solidariedade)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean   sd median_r
##       0.82      0.84    0.84      0.43 5.2 0.03  4.2 0.56     0.42
## 
##  lower alpha upper     95% confidence boundaries
## 0.76 0.82 0.88 
## 
##  Reliability if an item is dropped:
##    raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## S1      0.80      0.82    0.82      0.44 4.7    0.034 0.0145  0.44
## S2      0.78      0.80    0.79      0.39 3.9    0.038 0.0101  0.38
## S3      0.78      0.80    0.79      0.41 4.1    0.038 0.0129  0.38
## S4      0.83      0.83    0.82      0.46 5.0    0.030 0.0101  0.45
## S5      0.81      0.83    0.83      0.45 4.9    0.033 0.0149  0.46
## S6      0.80      0.82    0.81      0.43 4.5    0.034 0.0105  0.42
## S7      0.80      0.81    0.80      0.42 4.3    0.035 0.0098  0.38
## 
##  Item statistics 
##     n raw.r std.r r.cor r.drop mean   sd
## S1 82  0.68  0.68  0.60   0.54  3.8 0.81
## S2 82  0.79  0.81  0.79   0.71  4.3 0.67
## S3 82  0.77  0.78  0.74   0.68  4.3 0.72
## S4 82  0.68  0.62  0.54   0.48  4.1 1.10
## S5 82  0.65  0.65  0.55   0.51  4.1 0.79
## S6 82  0.69  0.71  0.65   0.56  4.3 0.82
## S7 82  0.71  0.74  0.70   0.61  4.5 0.67
## 
## Non missing response frequency for each item
##       1    2    3    4    5 miss
## S1 0.01 0.05 0.23 0.55 0.16    0
## S2 0.00 0.01 0.09 0.52 0.38    0
## S3 0.01 0.00 0.09 0.51 0.39    0
## S4 0.04 0.07 0.12 0.30 0.46    0
## S5 0.00 0.02 0.21 0.45 0.32    0
## S6 0.02 0.01 0.04 0.46 0.46    0
## S7 0.00 0.01 0.06 0.39 0.54    0
(omega_S <- omega(Solidariedade, nfactors = 1, poly = T))
## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.89 
## G.6:                   0.9 
## Omega Hierarchical:    0.89 
## Omega H asymptotic:    1 
## Omega Total            0.89 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##       g  F1*   h2   u2 p2
## S1 0.66      0.44 0.56  1
## S2 0.89      0.78 0.22  1
## S3 0.76      0.57 0.43  1
## S4 0.66      0.44 0.56  1
## S5 0.63      0.39 0.61  1
## S6 0.74      0.54 0.46  1
## S7 0.78      0.61 0.39  1
## 
## With eigenvalues of:
##   g F1* 
## 3.8 0.0 
## 
## general/max  6.810577e+16   max/min =   1
## mean percent general =  1    with sd =  0 and cv of  0 
## Explained Common Variance of the general factor =  1 
## 
## The degrees of freedom are 14  and the fit is  0.65 
## The number of observations was  82  with Chi Square =  50.47  with prob <  5.1e-06
## The root mean square of the residuals is  0.08 
## The df corrected root mean square of the residuals is  0.1
## RMSEA index =  0.178  and the 10 % confidence intervals are  0.128 0.234
## BIC =  -11.23
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 14  and the fit is  0.65 
## The number of observations was  82  with Chi Square =  50.47  with prob <  5.1e-06
## The root mean square of the residuals is  0.08 
## The df corrected root mean square of the residuals is  0.1 
## 
## RMSEA index =  0.178  and the 10 % confidence intervals are  0.128 0.234
## BIC =  -11.23 
## 
## Measures of factor score adequacy             
##                                                  g F1*
## Correlation of scores with factors            0.95   0
## Multiple R square of scores with factors      0.91   0
## Minimum correlation of factor score estimates 0.82  -1
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1*
## Omega total for total scores and subscales    0.89 0.89
## Omega general for total scores and subscales  0.89 0.89
## Omega group for total scores and subscales    0.00 0.00
stargazer(Solidariedade, summary = T, type = 'text', title = "Estatísticas descritivas Disciplina")
## 
## Estatísticas descritivas Disciplina
## =====================================================
## Statistic N  Mean  St. Dev. Min Pctl(25) Pctl(75) Max
## -----------------------------------------------------
## S1        82 3.793  0.813    1     3        4      5 
## S2        82 4.268  0.668    2     4        5      5 
## S3        82 4.268  0.721    1     4        5      5 
## S4        82 4.085  1.102    1     4        5      5 
## S5        82 4.061  0.791    2     4        5      5 
## S6        82 4.329  0.817    1     4        5      5 
## S7        82 4.451  0.669    2     4        5      5 
## -----------------------------------------------------
Solidariedade$Id <- seq(1:82)
Solidariedade_long <- melt(Solidariedade, id.vars = c("Id"))
colnames(Solidariedade_long) <- c("id", "Item", "Response")

ggplot(Solidariedade_long, aes(x = Response, fill = Item)) +
  geom_histogram(bins = 10, show.legend = F)+
  facet_wrap(~Item)+
  theme_bw()

ggplot(Solidariedade_long, aes(x = Response, fill = Item))+
  geom_density(show.legend = F)+
  facet_wrap(~Item)+
  theme_bw()

6 Recodificação do one-hot-encoding

data$Forte[is.na(data$Forte)] <- 0
data$Fraca[is.na(data$Fraca)] <- 0
data$Controle[is.na(data$Controle)] <- 0
grupo <- as.data.frame(as.numeric(data$Forte))
grupo$Fraca <- as.numeric(data$Fraca)
grupo$Controle <- as.numeric(data$Controle)
colnames(grupo) <- c('Forte', 'Fraca', 'Controle')
inds <- which(rowSums(grupo) == 1)
grupo$grupo <- toupper(names(grupo)[max.col(grupo)])
data <- cbind(data, grupo$grupo)
colnames(data)[50] <- 'Condição'

7 Correlações

CorMat <- cor(as.matrix(data[,c(4:38)]))

corrplot(CorMat,
         order="original",
         type="lower",
         method="shade",
         diag = FALSE,
         tl.cex = 0.8, 
         title = 'Matriz de Correlação',
         tl.col = "black",
         tl.offset = 0.5,
         mar = c(0, 0, 2, 0))

8 Checks do Experimento

8.1 Condições

table(data$Condição)
## 
## CONTROLE    FORTE    FRACA 
##       28       26       28

8.2 Atenção

data2 <- as.data.frame(cbind(data$Atencao, data$Condição, data$Associacao_Marca))

colnames(data2) <- c('Atenção', 'Condição', 'Associacao_Marca')

data2$Atenção[is.na(data2$Atenção) & data2$Condição == 'CONTROLE'] <- 'CONTROLE'

data2$Atenção[data2$Atenção == 'Adidas'] <- 'FORTE'
data2$Atenção[data2$Atenção == 'Puma'] <- 'FRACA'  

table(Marca = data2$Atenção, 
      Condição = data2$Condição) # Temos 8 errors, mas devido ao pequeno tamanho da amostra, vamos manter
##           Condição
## Marca      CONTROLE FORTE FRACA
##   CONTROLE       28     0     0
##   FORTE           0    24     0
##   FRACA           0     0    19
##   Gilbert         0     1     0
##   Kipsta          0     1     6
1 - 8/82
## [1] 0.902439

8.3 Associação

table(data2$Associacao_Marca, data2$Condição, useNA = 'no')
##                                  
##                                   CONTROLE FORTE FRACA
##   Fortemente associada                   0    12     4
##   Levemente associada                    0     7     5
##   Nem pouco e nem muito associada        0     2    10
##   Nem um pouco associada                 0     1     3
##   Pouco associada                        0     4     5
19/28
## [1] 0.6785714
9/28
## [1] 0.3214286

9 Médias dos constructos

(data$Paixao <- rowMeans(data[4:10]))
##  [1] 4.714286 4.000000 4.571429 4.571429 5.000000 4.571429 4.714286 5.000000
##  [9] 4.142857 5.000000 3.714286 4.857143 5.000000 4.571429 4.285714 4.571429
## [17] 4.428571 3.571429 5.000000 4.285714 4.714286 5.000000 5.000000 4.000000
## [25] 4.142857 4.428571 4.428571 5.000000 4.428571 5.000000 4.285714 4.428571
## [33] 4.000000 4.285714 4.428571 4.428571 4.857143 4.000000 5.000000 4.285714
## [41] 4.714286 4.428571 4.428571 4.285714 4.000000 5.000000 4.428571 4.857143
## [49] 4.428571 5.000000 4.571429 4.857143 4.428571 5.000000 4.857143 5.000000
## [57] 4.000000 4.428571 4.000000 4.857143 3.428571 4.142857 4.000000 4.428571
## [65] 4.857143 4.000000 4.857143 4.142857 4.571429 4.714286 4.571429 4.142857
## [73] 4.857143 4.857143 4.714286 4.142857 4.714286 4.571429 4.428571 4.857143
## [81] 4.285714 5.000000
(data$Integridade <- rowMeans(data[11:17]))
##  [1] 4.428571 4.142857 4.000000 5.000000 4.000000 4.428571 4.000000 4.428571
##  [9] 3.285714 5.000000 3.857143 4.000000 4.428571 4.857143 4.714286 4.571429
## [17] 4.428571 3.857143 4.857143 4.428571 4.714286 4.000000 5.000000 4.142857
## [25] 4.285714 4.714286 4.285714 4.857143 4.571429 4.714286 4.428571 4.857143
## [33] 4.000000 3.571429 4.857143 4.142857 4.142857 4.428571 3.714286 4.857143
## [41] 4.714286 4.714286 5.000000 4.285714 3.857143 4.000000 4.285714 4.571429
## [49] 4.142857 4.428571 3.714286 4.714286 2.857143 4.285714 4.857143 4.714286
## [57] 4.571429 4.428571 4.000000 4.428571 4.285714 4.714286 2.714286 4.714286
## [65] 4.857143 4.285714 4.714286 4.571429 4.142857 3.000000 5.000000 4.571429
## [73] 4.285714 4.571429 4.428571 3.714286 4.714286 5.000000 4.000000 3.857143
## [81] 4.000000 4.428571
(data$Respeito <- rowMeans(data[18:24]))
##  [1] 4.285714 4.285714 3.428571 5.000000 4.571429 3.857143 4.285714 4.000000
##  [9] 3.285714 5.000000 4.571429 4.000000 4.571429 3.857143 4.714286 4.428571
## [17] 3.857143 4.000000 4.428571 4.285714 4.714286 4.428571 4.428571 4.714286
## [25] 4.285714 4.142857 5.000000 4.571429 4.285714 4.714286 3.428571 4.285714
## [33] 4.000000 4.714286 4.714286 4.428571 4.428571 4.571429 3.857143 4.142857
## [41] 4.285714 4.571429 4.571429 4.285714 3.857143 4.000000 4.428571 4.285714
## [49] 3.857143 3.714286 4.142857 4.714286 4.285714 4.000000 4.428571 5.000000
## [57] 4.142857 3.714286 4.000000 4.571429 4.000000 4.000000 3.428571 4.285714
## [65] 4.428571 4.285714 4.571429 4.000000 4.142857 3.428571 4.428571 4.571429
## [73] 3.428571 4.000000 4.714286 4.000000 4.857143 3.714286 3.714286 4.142857
## [81] 4.000000 4.285714
(data$Disciplina <- rowMeans(data[25:31]))
##  [1] 3.571429 3.000000 3.571429 3.571429 3.857143 4.142857 2.857143 2.714286
##  [9] 3.000000 5.000000 2.857143 3.428571 4.428571 3.428571 3.857143 3.428571
## [17] 3.428571 4.285714 4.428571 3.571429 3.428571 3.428571 5.000000 3.857143
## [25] 3.428571 3.428571 4.142857 4.571429 3.857143 3.142857 2.285714 3.571429
## [33] 2.857143 3.428571 4.000000 3.857143 4.000000 3.714286 3.000000 4.000000
## [41] 4.428571 4.571429 3.571429 3.714286 3.571429 3.857143 4.142857 3.142857
## [49] 2.857143 3.142857 2.714286 4.000000 4.428571 3.285714 4.000000 4.714286
## [57] 3.857143 4.000000 3.428571 3.714286 3.857143 3.857143 3.571429 3.714286
## [65] 3.428571 3.000000 4.142857 3.428571 4.000000 2.857143 3.428571 3.571429
## [73] 3.142857 4.285714 3.714286 3.857143 4.571429 3.000000 4.428571 3.285714
## [81] 3.571429 4.571429
(data$Solidariedade <- rowMeans(data[32:38]))
##  [1] 4.857143 4.714286 3.714286 5.000000 5.000000 4.714286 4.142857 3.000000
##  [9] 3.571429 4.428571 4.857143 4.000000 4.857143 3.428571 3.857143 4.000000
## [17] 3.714286 1.857143 3.714286 4.857143 4.857143 4.714286 5.000000 3.857143
## [25] 3.714286 4.285714 4.571429 4.571429 5.000000 5.000000 3.142857 3.857143
## [33] 3.857143 3.714286 4.428571 4.857143 3.571429 3.857143 3.714286 4.000000
## [41] 5.000000 4.142857 4.000000 3.571429 4.142857 4.142857 3.714286 4.142857
## [49] 3.714286 4.000000 4.142857 4.714286 4.714286 4.428571 4.142857 4.857143
## [57] 4.571429 4.000000 3.714286 4.571429 3.285714 4.000000 4.285714 4.142857
## [65] 4.000000 4.000000 4.428571 3.428571 4.571429 3.714286 4.285714 3.857143
## [73] 3.857143 4.428571 5.000000 3.857143 4.857143 4.000000 4.000000 4.428571
## [81] 4.142857 4.857143

10 Normalidade dos constructos

10.1 Paíxão

(shapiro_P <- shapiro.test(data$Paixao)) # Não
## 
##  Shapiro-Wilk normality test
## 
## data:  data$Paixao
## W = 0.93164, p-value = 0.0002947
ggplot(data = data, aes(Paixao)) +
  geom_histogram(aes(y = ..density..), colour = 'lightblue', fill = '#4682b4',
                 bins = 20) +
  labs(x = 'Idade', y = 'Densidade') +
  stat_function(fun = dnorm,
                args = list(mean = mean(data$Paixao, na.rm = T),
                            sd = sd(data$Paixao, na.rm = T)),
                colour = 'black', size = 1) +
  ggtitle('Histograma para Paixão') +
  theme_bw()

10.2 Integridade

(shapiro_I <- shapiro.test(data$Integridade)) # Não
## 
##  Shapiro-Wilk normality test
## 
## data:  data$Integridade
## W = 0.91531, p-value = 4.682e-05
ggplot(data = data, aes(Integridade)) +
  geom_histogram(aes(y = ..density..), colour = 'lightblue', fill = '#4682b4',
                 bins = 20) +
  labs(x = 'Idade', y = 'Densidade') +
  stat_function(fun = dnorm,
                args = list(mean = mean(data$Integridade, na.rm = T),
                            sd = sd(data$Integridade, na.rm = T)),
                colour = 'black', size = 1) +
  ggtitle('Histograma para Integridade') +
  theme_bw()

10.3 Respeito

(shapiro_R <-shapiro.test(data$Respeito)) # Não
## 
##  Shapiro-Wilk normality test
## 
## data:  data$Respeito
## W = 0.96945, p-value = 0.04756
ggplot(data = data, aes(Respeito)) +
  geom_histogram(aes(y = ..density..), colour = 'lightblue', fill = '#4682b4',
                 bins = 20) +
  labs(x = 'Idade', y = 'Densidade') +
  stat_function(fun = dnorm,
                args = list(mean = mean(data$Respeito, na.rm = T),
                            sd = sd(data$Respeito, na.rm = T)),
                colour = 'black', size = 1) +
  ggtitle('Histograma para Respeito') +
  theme_bw()

10.4 Disciplina

(shapiro_D <-shapiro.test(data$Disciplina)) # Sim 
## 
##  Shapiro-Wilk normality test
## 
## data:  data$Disciplina
## W = 0.98387, p-value = 0.3942
ggplot(data = data, aes(Disciplina)) +
  geom_histogram(aes(y = ..density..), colour = 'lightblue', fill = '#4682b4',
                 bins = 20) +
  labs(x = 'Idade', y = 'Densidade') +
  stat_function(fun = dnorm,
                args = list(mean = mean(data$Disciplina, na.rm = T),
                            sd = sd(data$Disciplina, na.rm = T)),
                colour = 'black', size = 1) +
  ggtitle('Histograma para Disciplina') +
  theme_bw()

10.5 Solidariedade

(shapiro_S <-shapiro.test(data$Solidariedade)) # Não
## 
##  Shapiro-Wilk normality test
## 
## data:  data$Solidariedade
## W = 0.92827, p-value = 0.0001985
ggplot(data = data, aes(Solidariedade)) +
  geom_histogram(aes(y = ..density..), colour = 'lightblue', fill = '#4682b4',
                 bins = 20) +
  labs(x = 'Idade', y = 'Densidade') +
  stat_function(fun = dnorm,
                args = list(mean = mean(data$Solidariedade, na.rm = T),
                            sd = sd(data$Solidariedade, na.rm = T)),
                colour = 'black', size = 1) +
  ggtitle('Histograma para Solidariedade') +
  theme_bw()

11 Relações Bivariadas entre os valores

ggpairs(data[,c(51:55)],
        title = 'Relação entre os Valores do rugby por condições',
        cardinality_threshold = 15,
        mapping = ggplot2::aes(colour = data$Condição, alpha = 0.1),
        lower = list(continuous = wrap("smooth", alpha = 0.3, size=0.1, se = F)),
        diag = list(continuous = wrap("densityDiag", alpha=0.2)),
        continuous = wrap("cor", method = 'spearman', size = 2, alignPercent = 0.5)) +
  theme_bw()

12 Tabela resumo dos constructos

Lista_Paixao <- c('Paíxão',
                mean(data$Paixao),
                sd(data$Paixao),
                Alpha_P$total[2],
                Omega_P$omega_h,
                if_else(shapiro_P$p.value < 0.05, 'p < 0.05', 'p > 0.05'))

Lista_Integridade <- c('Integridade',
                  mean(data$Integridade),
                  sd(data$Integridade),
                  alpha_I$total[2],
                  omega_I$omega_h,
                  if_else(shapiro_I$p.value < 0.05, 'p < 0.05', 'p > 0.05'))


Lista_Disciplina <- c('Disciplina',
                       mean(data$Disciplina),
                       sd(data$Disciplina),
                       alpha_D$total[2],
                       omega_d$omega_h,
                       if_else(shapiro_D$p.value < 0.05, 'p < 0.05', 'p > 0.05'))

Lista_Respeito <- c('Respeito',
                      mean(data$Respeito),
                      sd(data$Respeito),
                      alpha_R$total[2],
                      omega_R$omega_h,
                      if_else(shapiro_R$p.value < 0.05, 'p < 0.05', 'p > 0.05'))

Lista_Solidariedade <- c('Solidariedade',
                    mean(data$Solidariedade),
                    sd(data$Solidariedade),
                    alpha_S$total[2],
                    omega_S$omega_h,
                    if_else(shapiro_S$p.value < 0.05, 'p < 0.05', 'p > 0.05'))

resumo <- as.data.frame(cbind(Lista_Paixao,
                              Lista_Integridade,
                              Lista_Respeito,
                              Lista_Disciplina,
                              Lista_Solidariedade))

resumo <- t(resumo)
colnames(resumo) <- c("Constructo", "Média", "Desvio Padrão",
                     "Alpha", "Omega", "Normalidade P-Valor")

rownames(resumo) <- NULL

kbl(as.data.frame(resumo)) %>%
  kable_classic(full_width = F, html_font = "Cambria")
Constructo Média Desvio Padrão Alpha Omega Normalidade P-Valor
Paíxão 4.519164 0.3773054 0.7559314 0.8623842 p < 0.05
Integridade 4.343206 0.481379 0.7677872 0.8466994 p < 0.05
Respeito 4.24216 0.4001065 0.7217115 0.814672 p < 0.05
Disciplina 3.681185 0.5563707 0.7329862 0.783773 p > 0.05
Solidariedade 4.179443 0.5633516 0.8390173 0.8901089 p < 0.05

13 Médias por grupo

13.1 Paixao

describe.by(data$Paixao, group = data$Condição)
## 
##  Descriptive statistics by group 
## group: CONTROLE
##    vars  n mean  sd median trimmed  mad  min max range  skew kurtosis   se
## X1    1 28 4.52 0.4   4.43    4.55 0.42 3.43   5  1.57 -0.58    -0.18 0.08
## ------------------------------------------------------------ 
## group: FORTE
##    vars  n mean   sd median trimmed  mad  min max range  skew kurtosis   se
## X1    1 26 4.48 0.37    4.5     4.5 0.32 3.57   5  1.43 -0.42    -0.55 0.07
## ------------------------------------------------------------ 
## group: FRACA
##    vars  n mean   sd median trimmed  mad  min max range  skew kurtosis   se
## X1    1 28 4.55 0.37   4.57    4.57 0.42 3.71   5  1.29 -0.42    -0.93 0.07
ggVP <- ggplot(data, aes(x = Condição, y = Paixao, fill = Condição)) +
  geom_violin(trim = F) +
  stat_summary(fun.data = mean_sdl, fun.args = list(mult = 1),
               geom = 'pointrange', color = 'white') +
  labs(title = 'Valores por Grupos', x = 'Grupos Experimentais',
       y = 'Constructo Paixao') +
    theme_bw() +
  theme(legend.position = 'none')

13.2 Integridade

describe.by(data$Integridade, group = data$Condição)
## 
##  Descriptive statistics by group 
## group: CONTROLE
##    vars  n mean  sd median trimmed  mad  min max range  skew kurtosis   se
## X1    1 28 4.26 0.6   4.43    4.32 0.42 2.71   5  2.29 -1.21     0.75 0.11
## ------------------------------------------------------------ 
## group: FORTE
##    vars  n mean   sd median trimmed  mad  min max range skew kurtosis   se
## X1    1 26 4.36 0.42   4.36    4.36 0.53 3.71   5  1.29 0.11    -1.43 0.08
## ------------------------------------------------------------ 
## group: FRACA
##    vars  n mean  sd median trimmed  mad  min max range  skew kurtosis   se
## X1    1 28 4.41 0.4    4.5    4.45 0.32 3.29   5  1.71 -0.85     0.25 0.08
ggVI <- ggplot(data, aes(x = Condição, y = Integridade, fill = Condição)) +
  geom_violin(trim = F) +
  stat_summary(fun.data = mean_sdl, fun.args = list(mult = 1),
               geom = 'pointrange', color = 'white') +
  labs(title = 'Valores por Grupos', x = 'Grupos Experimentais',
       y = 'Constructo Integridade') +
  theme_bw() +
  theme(legend.position = 'none')

13.3 Respeito

describe.by(data$Respeito, group = data$Condição)
## 
##  Descriptive statistics by group 
## group: CONTROLE
##    vars  n mean   sd median trimmed  mad  min max range  skew kurtosis   se
## X1    1 28 4.24 0.39   4.29    4.26 0.42 3.43   5  1.57 -0.27    -0.47 0.07
## ------------------------------------------------------------ 
## group: FORTE
##    vars  n mean   sd median trimmed  mad  min max range  skew kurtosis   se
## X1    1 26 4.27 0.45   4.21    4.28 0.53 3.43   5  1.57 -0.01       -1 0.09
## ------------------------------------------------------------ 
## group: FRACA
##    vars  n mean   sd median trimmed  mad  min  max range  skew kurtosis   se
## X1    1 28 4.21 0.37   4.29    4.24 0.32 3.29 4.71  1.43 -0.81    -0.09 0.07
ggVR <- ggplot(data, aes(x = Condição, y = Respeito, fill = Condição)) +
  geom_violin(trim = F) +
  stat_summary(fun.data = mean_sdl, fun.args = list(mult = 1),
               geom = 'pointrange', color = 'white') +
  labs(title = 'Valores por Grupos', x = 'Grupos Experimentais',
       y = 'Constructo Respeito') +
  theme_bw() +
  theme(legend.position = 'none')

13.4 Disciplina

describe.by(data$Disciplina, group = data$Condição)
## 
##  Descriptive statistics by group 
## group: CONTROLE
##    vars  n mean   sd median trimmed  mad  min max range skew kurtosis  se
## X1    1 28 3.82 0.52   3.71     3.8 0.42 2.86   5  2.14  0.4    -0.49 0.1
## ------------------------------------------------------------ 
## group: FORTE
##    vars  n mean   sd median trimmed  mad  min max range  skew kurtosis   se
## X1    1 26 3.64 0.67   3.57    3.64 0.74 2.29   5  2.71 -0.03    -0.77 0.13
## ------------------------------------------------------------ 
## group: FRACA
##    vars  n mean   sd median trimmed  mad  min  max range skew kurtosis   se
## X1    1 28 3.59 0.47    3.5    3.57 0.53 2.86 4.57  1.71 0.24       -1 0.09
ggVD <- ggplot(data, aes(x = Condição, y = Disciplina, fill = Condição)) +
  geom_violin(trim = F) +
  stat_summary(fun.data = mean_sdl, fun.args = list(mult = 1),
               geom = 'pointrange', color = 'white') +
  labs(title = 'Valores por Grupos', x = 'Grupos Experimentais',
       y = 'Constructo Disciplina') +
  theme_bw() +
  theme(legend.position = 'none')

13.5 Solidariedade

describe.by(data$Solidariedade, group = data$Condição)
## 
##  Descriptive statistics by group 
## group: CONTROLE
##    vars  n mean   sd median trimmed  mad  min max range skew kurtosis  se
## X1    1 28 4.24 0.54   4.14    4.26 0.74 3.29   5  1.71 0.02    -1.42 0.1
## ------------------------------------------------------------ 
## group: FORTE
##    vars  n mean   sd median trimmed  mad  min max range  skew kurtosis   se
## X1    1 26 4.06 0.67   4.14    4.12 0.42 1.86   5  3.14 -1.25     2.35 0.13
## ------------------------------------------------------------ 
## group: FRACA
##    vars  n mean   sd median trimmed  mad  min max range skew kurtosis   se
## X1    1 28 4.22 0.48   4.14    4.22 0.64 3.43   5  1.57 0.12    -1.43 0.09
ggVS <- ggplot(data, aes(x = Condição, y = Solidariedade, fill = Condição)) +
  geom_violin(trim = F) +
  stat_summary(fun.data = mean_sdl, fun.args = list(mult = 1),
               geom = 'pointrange', color = 'white') +
  labs(title = 'Valores por Grupos', x = 'Grupos Experimentais',
       y = 'Constructo Solidariedade') +
  theme_bw() +
  theme(legend.position = 'none')

13.6 Final

grid.arrange(ggVP, ggVI, ggVD, ggVR, ggVS)

14 Kruskal-Wallis

14.1 Paíxão

kwP <- kruskal.test(Paixao ~ Condição, data = data)
kwP
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Paixao by Condição
## Kruskal-Wallis chi-squared = 0.4299, df = 2, p-value = 0.8066
kwEP <- kruskal_effsize(data, Paixao ~ Condição, ci = T, nboot = 1000)
kwEP
## # A tibble: 1 x 7
##   .y.        n effsize conf.low conf.high method  magnitude
## * <chr>  <int>   <dbl>    <dbl>     <dbl> <chr>   <ord>    
## 1 Paixao    82 -0.0199    -0.02      0.08 eta2[H] small

14.2 Integridade

kwI <- kruskal.test(Integridade ~ Condição, data = data)
kwI
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Integridade by Condição
## Kruskal-Wallis chi-squared = 0.67867, df = 2, p-value = 0.7122
kwEI <- kruskal_effsize(data, Integridade ~ Condição, ci = T, nboot = 1000)
kwEI
## # A tibble: 1 x 7
##   .y.             n effsize conf.low conf.high method  magnitude
## * <chr>       <int>   <dbl>    <dbl>     <dbl> <chr>   <ord>    
## 1 Integridade    82 -0.0167    -0.02      0.09 eta2[H] small

14.3 Disciplina

kwD <- kruskal.test(Disciplina ~ Condição, data = data)
kwD
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Disciplina by Condição
## Kruskal-Wallis chi-squared = 2.3117, df = 2, p-value = 0.3148
kwED <- kruskal_effsize(data, Disciplina ~ Condição, ci = T, nboot = 1000)
kwED
## # A tibble: 1 x 7
##   .y.            n effsize conf.low conf.high method  magnitude
## * <chr>      <int>   <dbl>    <dbl>     <dbl> <chr>   <ord>    
## 1 Disciplina    82 0.00395    -0.02      0.13 eta2[H] small

14.4 Respeito

kwR <- kruskal.test(Respeito ~ Condição, data = data)  
kwR
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Respeito by Condição
## Kruskal-Wallis chi-squared = 0.10292, df = 2, p-value = 0.9498
kwER <- kruskal_effsize(data, Respeito ~ Condição, ci = T, nboot = 1000)
kwER
## # A tibble: 1 x 7
##   .y.          n effsize conf.low conf.high method  magnitude
## * <chr>    <int>   <dbl>    <dbl>     <dbl> <chr>   <ord>    
## 1 Respeito    82 -0.0240    -0.02      0.08 eta2[H] small

14.5 Solidariedade

kwS <- kruskal.test(Solidariedade ~ Condição, data = data)
kwS
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Solidariedade by Condição
## Kruskal-Wallis chi-squared = 0.48491, df = 2, p-value = 0.7847
kwES <- kruskal_effsize(data, Solidariedade ~ Condição, ci = T, nboot = 1000)
kwES
## # A tibble: 1 x 7
##   .y.               n effsize conf.low conf.high method  magnitude
## * <chr>         <int>   <dbl>    <dbl>     <dbl> <chr>   <ord>    
## 1 Solidariedade    82 -0.0192    -0.02      0.09 eta2[H] small

15 Tabela Final

KWPaixao <- c('Paixão',
              round(kwP$statistic, 4), 
              round(kwP$p.value, 4),
              kwP$parameter,
              round(kwEP$effsize, 4),
              kwEP$magnitude)

KWIntegridade <- c('Integridade',
              round(kwI$statistic, 4), 
              round(kwI$p.value, 4), 
              kwI$parameter,
              round(kwEI$effsize, 4),
              kwEI$magnitude)


KWDisciplina <- c('Disciplina',
                   round(kwD$statistic, 4), 
                   round(kwD$p.value, 4),
                   kwD$parameter,
                   round(kwED$effsize, 4),
                   kwED$magnitude)

KWRespeito <- c('Respeito',
                  round(kwR$statistic, 4),  
                  round(kwR$p.value, 4),
                  kwR$parameter,
                  round(kwER$effsize, 4),
                  kwER$magnitude)

KWSolidariedade <- c('Solidariedade',
                round(kwS$statistic, 4),
                round(kwS$p.value, 4), 
                kwS$parameter,
                round(kwES$effsize, 4),
                kwES$magnitude)


resumoKW <- as.data.frame(cbind(KWPaixao,
                                KWIntegridade,
                                KWDisciplina,
                                KWRespeito,
                                KWSolidariedade))

resumoKW <- t(resumoKW)
colnames(resumoKW) <- c("Constructo", "X²", "P-Value",
                      "GL", "Tamanho do Efeito", "Classificação Cohen (1988)")

rownames(resumoKW) <- NULL

resumoKW[, 6] <- 'Pequeno'
kbl(as.data.frame(resumoKW)) %>%
  kable_classic(full_width = F, html_font = "Cambria")
Constructo P-Value GL Tamanho do Efeito Classificação Cohen (1988)
Paixão 0.4299 0.8066 2 -0.0199 Pequeno
Integridade 0.6787 0.7122 2 -0.0167 Pequeno
Disciplina 2.3117 0.3148 2 0.0039 Pequeno
Respeito 0.1029 0.9498 2 -0.024 Pequeno
Solidariedade 0.4849 0.7847 2 -0.0192 Pequeno