Descrição da Amostra
Gênero
data$Genero[is.na(data$Genero)] <- 'Não informado'
data$Genero <- factor(data$Genero)
tab <- as.data.frame(table(data$Genero))
blank_theme <- theme_minimal()+
theme(
axis.title.x = element_blank(),
axis.title.y = element_blank(),
panel.border = element_blank(),
panel.grid=element_blank(),
axis.ticks = element_blank(),
plot.title=element_text(size=14, face="bold")
)
tab2 <- tab %>%
mutate(csum = rev(cumsum(rev(Freq))),
pos = Freq/3 + lead(csum, 1),
pos = if_else(is.na(pos), Freq/3, pos))
p1 <- ggplot(tab, aes(x = "", y = Freq, fill = Var1)) +
geom_col(width = 1, color = 1) +
geom_text(aes(label = Freq),
position = position_stack(vjust = 0.5)) +
coord_polar(theta = "y") +
guides(fill = guide_legend(title = "Gênero")) +
scale_y_continuous(breaks = tab2$pos, labels = tab$Var1) +
blank_theme +
ggtitle('1) Gênero dos respondentes') +
theme(axis.text.x=element_blank())
p1

Idade
describe(Idade)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 79 28.8 6.51 29 28.71 5.93 17 44 27 0.04 -0.52 0.73
describe.by(Idade, group = Genero)
##
## Descriptive statistics by group
## group: Feminino
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 22 26.59 6.29 27 26.28 5.93 18 42 24 0.33 -0.43 1.34
## ------------------------------------------------------------
## group: Masculino
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 57 29.65 6.45 31 29.66 5.93 17 44 27 -0.08 -0.47 0.85
p3 <- data %>% ggplot(aes(y = Idade, fill = 'red')) +
geom_boxplot() +
labs(y = 'Anos', x = '') +
scale_x_discrete(labels = NULL, breaks = NULL) + labs(x = "") +
guides(fill = F) +
ggtitle('3) Idade') +
theme_bw()
p3

Tempo de prática
describe(Tempo_Pratica)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 79 7.15 3.71 6 6.92 2.97 1 16 15 0.56 -0.57 0.42
describe.by(Tempo_Pratica, group = Genero)
##
## Descriptive statistics by group
## group: Feminino
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 22 4.95 2.34 4 4.78 2.97 2 10 8 0.54 -0.87 0.5
## ------------------------------------------------------------
## group: Masculino
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 57 8 3.81 8 7.91 4.45 1 16 15 0.31 -0.86 0.5
p4 <- data %>% ggplot(aes(y = Tempo_Pratica, fill = 'red')) +
geom_boxplot() +
labs(y = 'Anos', x = '') +
scale_x_discrete(labels = NULL, breaks = NULL) + labs(x = "") +
guides(fill = F) +
ggtitle('4) Tempo de Prática do Rugby') +
theme_bw()
p4

grid.arrange(p1,p2,p3,p4)

Remuneração
(tab10 <- table(Remuneracao))
## Remuneracao
## Não Sim
## 74 5
Análise dos constructos
Paixão
Paixao <- as.data.frame(data[,c(4:10)])
(Alpha_P <- psych::alpha(Paixao)) # 0.76
##
## Reliability analysis
## Call: psych::alpha(x = Paixao)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.71 0.76 0.77 0.31 3.1 0.045 4.5 0.38 0.28
##
## lower alpha upper 95% confidence boundaries
## 0.62 0.71 0.8
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## P1 0.69 0.72 0.73 0.30 2.6 0.048 0.015 0.28
## P2 0.69 0.72 0.73 0.30 2.6 0.050 0.019 0.28
## P3 0.69 0.73 0.73 0.31 2.7 0.048 0.015 0.28
## P4 0.69 0.75 0.75 0.33 3.0 0.049 0.019 0.35
## P5 0.63 0.69 0.68 0.27 2.2 0.059 0.011 0.25
## P6 0.66 0.72 0.73 0.30 2.6 0.055 0.017 0.32
## P7 0.71 0.74 0.74 0.33 2.9 0.047 0.015 0.28
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## P1 82 0.53 0.64 0.57 0.41 4.8 0.41
## P2 82 0.56 0.65 0.56 0.45 4.9 0.39
## P3 82 0.52 0.64 0.56 0.40 4.9 0.39
## P4 82 0.56 0.55 0.43 0.38 4.6 0.56
## P5 82 0.76 0.75 0.74 0.65 4.6 0.54
## P6 82 0.72 0.65 0.58 0.50 4.1 0.83
## P7 82 0.70 0.57 0.47 0.42 3.8 0.97
##
## Non missing response frequency for each item
## 1 2 3 4 5 miss
## P1 0.00 0.00 0.01 0.15 0.84 0
## P2 0.00 0.00 0.01 0.12 0.87 0
## P3 0.00 0.00 0.01 0.12 0.87 0
## P4 0.00 0.00 0.04 0.33 0.63 0
## P5 0.00 0.00 0.02 0.35 0.62 0
## P6 0.00 0.05 0.13 0.45 0.37 0
## P7 0.01 0.04 0.43 0.22 0.30 0
(Omega_P <- omega(Paixao, nfactors = 1, poly = T))
## Omega
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip,
## digits = digits, title = title, sl = sl, labels = labels,
## plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option,
## covar = covar)
## Alpha: 0.86
## G.6: 0.96
## Omega Hierarchical: 0.86
## Omega H asymptotic: 1
## Omega Total 0.86
##
## Schmid Leiman Factor loadings greater than 0.2
## g F1* h2 u2 p2
## P1 0.73 0.54 0.46 1
## P2 0.77 0.59 0.41 1
## P3 0.73 0.53 0.47 1
## P4 0.52 0.27 0.73 1
## P5 0.89 0.79 0.21 1
## P6 0.63 0.40 0.60 1
## P7 0.52 0.27 0.73 1
##
## With eigenvalues of:
## g F1*
## 3.4 0.0
##
## general/max 6.103445e+16 max/min = 1
## mean percent general = 1 with sd = 0 and cv of 0
## Explained Common Variance of the general factor = 1
##
## The degrees of freedom are 14 and the fit is 2.93
## The number of observations was 82 with Chi Square = 225.96 with prob < 2.6e-40
## The root mean square of the residuals is 0.12
## The df corrected root mean square of the residuals is 0.14
## RMSEA index = 0.43 and the 10 % confidence intervals are 0.384 0.483
## BIC = 164.27
##
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 14 and the fit is 2.93
## The number of observations was 82 with Chi Square = 225.96 with prob < 2.6e-40
## The root mean square of the residuals is 0.12
## The df corrected root mean square of the residuals is 0.14
##
## RMSEA index = 0.43 and the 10 % confidence intervals are 0.384 0.483
## BIC = 164.27
##
## Measures of factor score adequacy
## g F1*
## Correlation of scores with factors 1.01 0
## Multiple R square of scores with factors 1.01 0
## Minimum correlation of factor score estimates 1.03 -1
##
## Total, General and Subset omega for each subset
## g F1*
## Omega total for total scores and subscales 0.86 0.86
## Omega general for total scores and subscales 0.86 0.86
## Omega group for total scores and subscales 0.00 0.00
stargazer(Paixao, summary = T, type = 'text', title = "Estatísticas descritivas Paixão")
##
## Estatísticas descritivas Paixão
## =====================================================
## Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
## -----------------------------------------------------
## P1 82 4.829 0.410 3 5 5 5
## P2 82 4.854 0.389 3 5 5 5
## P3 82 4.854 0.389 3 5 5 5
## P4 82 4.598 0.563 3 4 5 5
## P5 82 4.598 0.541 3 4 5 5
## P6 82 4.134 0.828 2 4 5 5
## P7 82 3.768 0.972 1 3 5 5
## -----------------------------------------------------
Paixao$Id <- seq(1:82)
Paixao_long <- melt(Paixao, id.vars = c("Id"))
colnames(Paixao_long) <- c("id", "Item", "Response")
ggplot(Paixao_long, aes(x = Response, fill = Item)) +
geom_histogram(bins = 10, show.legend = F)+
facet_wrap(~Item)+
theme_bw()

ggplot(Paixao_long, aes(x = Response, fill = Item))+
geom_density(show.legend = F)+
facet_wrap(~Item)+
theme_bw()

Integridade
Integridade <- as.data.frame(data[,c(11:17)])
(alpha_I <- psych::alpha(Integridade)) # 0.77
##
## Reliability analysis
## Call: psych::alpha(x = Integridade)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.76 0.77 0.78 0.32 3.3 0.04 4.3 0.48 0.29
##
## lower alpha upper 95% confidence boundaries
## 0.68 0.76 0.84
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## I1 0.71 0.71 0.72 0.29 2.5 0.049 0.034 0.25
## I2 0.68 0.70 0.72 0.28 2.3 0.054 0.032 0.24
## I3 0.71 0.71 0.71 0.29 2.4 0.049 0.028 0.25
## I4 0.75 0.76 0.77 0.34 3.2 0.043 0.035 0.29
## I5 0.77 0.78 0.79 0.37 3.6 0.039 0.035 0.44
## I6 0.77 0.78 0.78 0.37 3.5 0.037 0.035 0.44
## I7 0.70 0.71 0.73 0.29 2.5 0.051 0.031 0.25
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## I1 82 0.72 0.74 0.72 0.60 4.5 0.71
## I2 82 0.79 0.78 0.75 0.67 4.1 0.81
## I3 82 0.72 0.75 0.74 0.63 4.6 0.55
## I4 82 0.60 0.57 0.46 0.40 4.5 0.84
## I5 82 0.45 0.47 0.31 0.27 4.1 0.68
## I6 82 0.49 0.48 0.34 0.28 4.4 0.80
## I7 82 0.75 0.73 0.70 0.60 4.2 0.84
##
## Non missing response frequency for each item
## 1 2 3 4 5 miss
## I1 0.00 0.04 0.01 0.41 0.54 0
## I2 0.00 0.04 0.16 0.45 0.35 0
## I3 0.00 0.00 0.04 0.28 0.68 0
## I4 0.02 0.00 0.07 0.24 0.66 0
## I5 0.00 0.01 0.16 0.57 0.26 0
## I6 0.01 0.00 0.12 0.32 0.55 0
## I7 0.02 0.00 0.12 0.45 0.40 0
(omega_I <- omega(Integridade, nfactors = 1, poly = T))
## Omega
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip,
## digits = digits, title = title, sl = sl, labels = labels,
## plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option,
## covar = covar)
## Alpha: 0.84
## G.6: 0.88
## Omega Hierarchical: 0.85
## Omega H asymptotic: 0.99
## Omega Total 0.85
##
## Schmid Leiman Factor loadings greater than 0.2
## g F1* h2 u2 p2
## I1 0.74 0.55 0.45 1
## I2 0.84 0.71 0.29 1
## I3 0.88 0.78 0.22 1
## I4 0.67 0.45 0.55 1
## I5 0.38 0.14 0.86 1
## I6 0.38 0.15 0.85 1
## I7 0.72 0.52 0.48 1
##
## With eigenvalues of:
## g F1*
## 3.3 0.0
##
## general/max Inf max/min = NaN
## mean percent general = 1 with sd = 0 and cv of 0
## Explained Common Variance of the general factor = 1
##
## The degrees of freedom are 14 and the fit is 1.18
## The number of observations was 82 with Chi Square = 91.02 with prob < 2.4e-13
## The root mean square of the residuals is 0.12
## The df corrected root mean square of the residuals is 0.15
## RMSEA index = 0.259 and the 10 % confidence intervals are 0.211 0.313
## BIC = 29.32
##
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 14 and the fit is 1.18
## The number of observations was 82 with Chi Square = 91.02 with prob < 2.4e-13
## The root mean square of the residuals is 0.12
## The df corrected root mean square of the residuals is 0.15
##
## RMSEA index = 0.259 and the 10 % confidence intervals are 0.211 0.313
## BIC = 29.32
##
## Measures of factor score adequacy
## g F1*
## Correlation of scores with factors 0.95 0
## Multiple R square of scores with factors 0.91 0
## Minimum correlation of factor score estimates 0.81 -1
##
## Total, General and Subset omega for each subset
## g F1*
## Omega total for total scores and subscales 0.85 0.85
## Omega general for total scores and subscales 0.85 0.85
## Omega group for total scores and subscales 0.00 0.00
stargazer(Integridade, summary = T, type = 'text', title = "Estatísticas descritivas Integridade")
##
## Estatísticas descritivas Integridade
## =====================================================
## Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
## -----------------------------------------------------
## I1 82 4.451 0.705 2 4 5 5
## I2 82 4.122 0.807 2 4 5 5
## I3 82 4.646 0.553 3 4 5 5
## I4 82 4.512 0.835 1 4 5 5
## I5 82 4.073 0.681 2 4 4.8 5
## I6 82 4.390 0.797 1 4 5 5
## I7 82 4.207 0.842 1 4 5 5
## -----------------------------------------------------
Integridade$Id <- seq(1:82)
Integridade_long <- melt(Integridade, id.vars = c("Id"))
colnames(Integridade_long) <- c("id", "Item", "Response")
ggplot(Integridade_long, aes(x = Response, fill = Item)) +
geom_histogram(bins = 10, show.legend = F)+
facet_wrap(~Item)+
theme_bw()

ggplot(Integridade_long, aes(x = Response, fill = Item))+
geom_density(show.legend = F)+
facet_wrap(~Item)+
theme_bw()

Respeito
Respeito <- as.data.frame(data[,c(18:24)])
Respeito_Alpha <- Respeito[,-c(3,6)]
(alpha_R <- psych::alpha(Respeito_Alpha)) # 0.72
##
## Reliability analysis
## Call: psych::alpha(x = Respeito_Alpha)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.71 0.72 0.7 0.34 2.6 0.051 4.4 0.45 0.33
##
## lower alpha upper 95% confidence boundaries
## 0.61 0.71 0.81
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## R1 0.64 0.66 0.60 0.32 1.9 0.065 0.0107 0.34
## R2 0.60 0.62 0.56 0.29 1.6 0.072 0.0061 0.31
## R4 0.68 0.70 0.66 0.36 2.3 0.058 0.0148 0.31
## R5 0.73 0.73 0.69 0.40 2.7 0.048 0.0095 0.37
## R7 0.65 0.67 0.62 0.33 2.0 0.064 0.0204 0.32
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## R1 82 0.70 0.72 0.64 0.52 4.5 0.61
## R2 82 0.78 0.78 0.74 0.61 4.3 0.68
## R4 82 0.61 0.65 0.50 0.41 4.5 0.57
## R5 82 0.64 0.58 0.40 0.34 4.3 0.81
## R7 82 0.70 0.70 0.59 0.50 4.5 0.63
##
## Non missing response frequency for each item
## 2 3 4 5 miss
## R1 0.00 0.06 0.43 0.51 0
## R2 0.01 0.09 0.50 0.40 0
## R4 0.00 0.04 0.38 0.59 0
## R5 0.05 0.09 0.43 0.44 0
## R7 0.00 0.07 0.38 0.55 0
(omega_R <- omega(Respeito_Alpha, nfactors = 1, poly = T))
## Omega
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip,
## digits = digits, title = title, sl = sl, labels = labels,
## plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option,
## covar = covar)
## Alpha: 0.81
## G.6: 0.8
## Omega Hierarchical: 0.81
## Omega H asymptotic: 1
## Omega Total 0.82
##
## Schmid Leiman Factor loadings greater than 0.2
## g F1* h2 u2 p2
## R1 0.73 0.54 0.46 1
## R2 0.87 0.76 0.24 1
## R4 0.62 0.38 0.62 1
## R5 0.49 0.24 0.76 1
## R7 0.68 0.46 0.54 1
##
## With eigenvalues of:
## g F1*
## 2.4 0.0
##
## general/max Inf max/min = NaN
## mean percent general = 1 with sd = 0 and cv of 0
## Explained Common Variance of the general factor = 1
##
## The degrees of freedom are 5 and the fit is 0.16
## The number of observations was 82 with Chi Square = 12.15 with prob < 0.033
## The root mean square of the residuals is 0.06
## The df corrected root mean square of the residuals is 0.09
## RMSEA index = 0.131 and the 10 % confidence intervals are 0.035 0.23
## BIC = -9.88
##
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 5 and the fit is 0.16
## The number of observations was 82 with Chi Square = 12.15 with prob < 0.033
## The root mean square of the residuals is 0.06
## The df corrected root mean square of the residuals is 0.09
##
## RMSEA index = 0.131 and the 10 % confidence intervals are 0.035 0.23
## BIC = -9.88
##
## Measures of factor score adequacy
## g F1*
## Correlation of scores with factors 0.93 0
## Multiple R square of scores with factors 0.86 0
## Minimum correlation of factor score estimates 0.72 -1
##
## Total, General and Subset omega for each subset
## g F1*
## Omega total for total scores and subscales 0.82 0.81
## Omega general for total scores and subscales 0.81 0.81
## Omega group for total scores and subscales 0.00 0.00
stargazer(Respeito, summary = T, type = 'text', title = "Estatísticas descritivas Respeito")
##
## Estatísticas descritivas Respeito
## =====================================================
## Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
## -----------------------------------------------------
## R1 82 4.451 0.612 3 4 5 5
## R2 82 4.293 0.676 2 4 5 5
## R3 82 3.500 0.997 1 3 4 5
## R4 82 4.549 0.570 3 4 5 5
## R5 82 4.256 0.814 2 4 5 5
## R6 82 4.171 1.040 1 4 5 5
## R7 82 4.476 0.633 3 4 5 5
## -----------------------------------------------------
Respeito$Id <- seq(1:82)
Respeito_long <- melt(Respeito, id.vars = c("Id"))
colnames(Respeito_long) <- c("id", "Item", "Response")
ggplot(Respeito_long, aes(x = Response, fill = Item)) +
geom_histogram(bins = 10, show.legend = F)+
facet_wrap(~Item)+
theme_bw()

ggplot(Respeito_long, aes(x = Response, fill = Item))+
geom_density(show.legend = F)+
facet_wrap(~Item)+
theme_bw()

Disciplina
Disciplina <- as.data.frame(data[,c(25:31)])
alpha_D <- psych::alpha(Disciplina) # 0.73
omega_d <- omega(Disciplina, nfactors = 1, poly = T)
stargazer(Disciplina, summary = T, type = 'text', title = "Estatísticas descritivas Disciplina")
##
## Estatísticas descritivas Disciplina
## =====================================================
## Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
## -----------------------------------------------------
## D1 82 3.537 0.892 1 3 4 5
## D2 82 3.293 0.962 1 3 4 5
## D3 82 3.476 0.984 1 3 4 5
## D4 82 3.695 0.990 1 3 4 5
## D5 82 3.976 0.816 2 4 4.8 5
## D6 82 4.195 0.744 1 4 5 5
## D7 82 3.598 0.914 1 3 4 5
## -----------------------------------------------------
Disciplina$Id <- seq(1:82)
Disciplina_long <- melt(Disciplina, id.vars = c("Id"))
colnames(Disciplina_long) <- c("id", "Item", "Response")
ggplot(Disciplina_long, aes(x = Response, fill = Item)) +
geom_histogram(bins = 10, show.legend = F)+
facet_wrap(~Item)+
theme_bw()

ggplot(Disciplina_long, aes(x = Response, fill = Item))+
geom_density(show.legend = F)+
facet_wrap(~Item)+
theme_bw()

Solidariedade
Solidariedade <- as.data.frame(data[,c(32:38)])
(alpha_S <- psych::alpha(Solidariedade)) # 0.84
##
## Reliability analysis
## Call: psych::alpha(x = Solidariedade)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.82 0.84 0.84 0.43 5.2 0.03 4.2 0.56 0.42
##
## lower alpha upper 95% confidence boundaries
## 0.76 0.82 0.88
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## S1 0.80 0.82 0.82 0.44 4.7 0.034 0.0145 0.44
## S2 0.78 0.80 0.79 0.39 3.9 0.038 0.0101 0.38
## S3 0.78 0.80 0.79 0.41 4.1 0.038 0.0129 0.38
## S4 0.83 0.83 0.82 0.46 5.0 0.030 0.0101 0.45
## S5 0.81 0.83 0.83 0.45 4.9 0.033 0.0149 0.46
## S6 0.80 0.82 0.81 0.43 4.5 0.034 0.0105 0.42
## S7 0.80 0.81 0.80 0.42 4.3 0.035 0.0098 0.38
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## S1 82 0.68 0.68 0.60 0.54 3.8 0.81
## S2 82 0.79 0.81 0.79 0.71 4.3 0.67
## S3 82 0.77 0.78 0.74 0.68 4.3 0.72
## S4 82 0.68 0.62 0.54 0.48 4.1 1.10
## S5 82 0.65 0.65 0.55 0.51 4.1 0.79
## S6 82 0.69 0.71 0.65 0.56 4.3 0.82
## S7 82 0.71 0.74 0.70 0.61 4.5 0.67
##
## Non missing response frequency for each item
## 1 2 3 4 5 miss
## S1 0.01 0.05 0.23 0.55 0.16 0
## S2 0.00 0.01 0.09 0.52 0.38 0
## S3 0.01 0.00 0.09 0.51 0.39 0
## S4 0.04 0.07 0.12 0.30 0.46 0
## S5 0.00 0.02 0.21 0.45 0.32 0
## S6 0.02 0.01 0.04 0.46 0.46 0
## S7 0.00 0.01 0.06 0.39 0.54 0
(omega_S <- omega(Solidariedade, nfactors = 1, poly = T))
## Omega
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip,
## digits = digits, title = title, sl = sl, labels = labels,
## plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option,
## covar = covar)
## Alpha: 0.89
## G.6: 0.9
## Omega Hierarchical: 0.89
## Omega H asymptotic: 1
## Omega Total 0.89
##
## Schmid Leiman Factor loadings greater than 0.2
## g F1* h2 u2 p2
## S1 0.66 0.44 0.56 1
## S2 0.89 0.78 0.22 1
## S3 0.76 0.57 0.43 1
## S4 0.66 0.44 0.56 1
## S5 0.63 0.39 0.61 1
## S6 0.74 0.54 0.46 1
## S7 0.78 0.61 0.39 1
##
## With eigenvalues of:
## g F1*
## 3.8 0.0
##
## general/max 6.810577e+16 max/min = 1
## mean percent general = 1 with sd = 0 and cv of 0
## Explained Common Variance of the general factor = 1
##
## The degrees of freedom are 14 and the fit is 0.65
## The number of observations was 82 with Chi Square = 50.47 with prob < 5.1e-06
## The root mean square of the residuals is 0.08
## The df corrected root mean square of the residuals is 0.1
## RMSEA index = 0.178 and the 10 % confidence intervals are 0.128 0.234
## BIC = -11.23
##
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 14 and the fit is 0.65
## The number of observations was 82 with Chi Square = 50.47 with prob < 5.1e-06
## The root mean square of the residuals is 0.08
## The df corrected root mean square of the residuals is 0.1
##
## RMSEA index = 0.178 and the 10 % confidence intervals are 0.128 0.234
## BIC = -11.23
##
## Measures of factor score adequacy
## g F1*
## Correlation of scores with factors 0.95 0
## Multiple R square of scores with factors 0.91 0
## Minimum correlation of factor score estimates 0.82 -1
##
## Total, General and Subset omega for each subset
## g F1*
## Omega total for total scores and subscales 0.89 0.89
## Omega general for total scores and subscales 0.89 0.89
## Omega group for total scores and subscales 0.00 0.00
stargazer(Solidariedade, summary = T, type = 'text', title = "Estatísticas descritivas Disciplina")
##
## Estatísticas descritivas Disciplina
## =====================================================
## Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
## -----------------------------------------------------
## S1 82 3.793 0.813 1 3 4 5
## S2 82 4.268 0.668 2 4 5 5
## S3 82 4.268 0.721 1 4 5 5
## S4 82 4.085 1.102 1 4 5 5
## S5 82 4.061 0.791 2 4 5 5
## S6 82 4.329 0.817 1 4 5 5
## S7 82 4.451 0.669 2 4 5 5
## -----------------------------------------------------
Solidariedade$Id <- seq(1:82)
Solidariedade_long <- melt(Solidariedade, id.vars = c("Id"))
colnames(Solidariedade_long) <- c("id", "Item", "Response")
ggplot(Solidariedade_long, aes(x = Response, fill = Item)) +
geom_histogram(bins = 10, show.legend = F)+
facet_wrap(~Item)+
theme_bw()

ggplot(Solidariedade_long, aes(x = Response, fill = Item))+
geom_density(show.legend = F)+
facet_wrap(~Item)+
theme_bw()

Médias dos constructos
(data$Paixao <- rowMeans(data[4:10]))
## [1] 4.714286 4.000000 4.571429 4.571429 5.000000 4.571429 4.714286 5.000000
## [9] 4.142857 5.000000 3.714286 4.857143 5.000000 4.571429 4.285714 4.571429
## [17] 4.428571 3.571429 5.000000 4.285714 4.714286 5.000000 5.000000 4.000000
## [25] 4.142857 4.428571 4.428571 5.000000 4.428571 5.000000 4.285714 4.428571
## [33] 4.000000 4.285714 4.428571 4.428571 4.857143 4.000000 5.000000 4.285714
## [41] 4.714286 4.428571 4.428571 4.285714 4.000000 5.000000 4.428571 4.857143
## [49] 4.428571 5.000000 4.571429 4.857143 4.428571 5.000000 4.857143 5.000000
## [57] 4.000000 4.428571 4.000000 4.857143 3.428571 4.142857 4.000000 4.428571
## [65] 4.857143 4.000000 4.857143 4.142857 4.571429 4.714286 4.571429 4.142857
## [73] 4.857143 4.857143 4.714286 4.142857 4.714286 4.571429 4.428571 4.857143
## [81] 4.285714 5.000000
(data$Integridade <- rowMeans(data[11:17]))
## [1] 4.428571 4.142857 4.000000 5.000000 4.000000 4.428571 4.000000 4.428571
## [9] 3.285714 5.000000 3.857143 4.000000 4.428571 4.857143 4.714286 4.571429
## [17] 4.428571 3.857143 4.857143 4.428571 4.714286 4.000000 5.000000 4.142857
## [25] 4.285714 4.714286 4.285714 4.857143 4.571429 4.714286 4.428571 4.857143
## [33] 4.000000 3.571429 4.857143 4.142857 4.142857 4.428571 3.714286 4.857143
## [41] 4.714286 4.714286 5.000000 4.285714 3.857143 4.000000 4.285714 4.571429
## [49] 4.142857 4.428571 3.714286 4.714286 2.857143 4.285714 4.857143 4.714286
## [57] 4.571429 4.428571 4.000000 4.428571 4.285714 4.714286 2.714286 4.714286
## [65] 4.857143 4.285714 4.714286 4.571429 4.142857 3.000000 5.000000 4.571429
## [73] 4.285714 4.571429 4.428571 3.714286 4.714286 5.000000 4.000000 3.857143
## [81] 4.000000 4.428571
(data$Respeito <- rowMeans(data[18:24]))
## [1] 4.285714 4.285714 3.428571 5.000000 4.571429 3.857143 4.285714 4.000000
## [9] 3.285714 5.000000 4.571429 4.000000 4.571429 3.857143 4.714286 4.428571
## [17] 3.857143 4.000000 4.428571 4.285714 4.714286 4.428571 4.428571 4.714286
## [25] 4.285714 4.142857 5.000000 4.571429 4.285714 4.714286 3.428571 4.285714
## [33] 4.000000 4.714286 4.714286 4.428571 4.428571 4.571429 3.857143 4.142857
## [41] 4.285714 4.571429 4.571429 4.285714 3.857143 4.000000 4.428571 4.285714
## [49] 3.857143 3.714286 4.142857 4.714286 4.285714 4.000000 4.428571 5.000000
## [57] 4.142857 3.714286 4.000000 4.571429 4.000000 4.000000 3.428571 4.285714
## [65] 4.428571 4.285714 4.571429 4.000000 4.142857 3.428571 4.428571 4.571429
## [73] 3.428571 4.000000 4.714286 4.000000 4.857143 3.714286 3.714286 4.142857
## [81] 4.000000 4.285714
(data$Disciplina <- rowMeans(data[25:31]))
## [1] 3.571429 3.000000 3.571429 3.571429 3.857143 4.142857 2.857143 2.714286
## [9] 3.000000 5.000000 2.857143 3.428571 4.428571 3.428571 3.857143 3.428571
## [17] 3.428571 4.285714 4.428571 3.571429 3.428571 3.428571 5.000000 3.857143
## [25] 3.428571 3.428571 4.142857 4.571429 3.857143 3.142857 2.285714 3.571429
## [33] 2.857143 3.428571 4.000000 3.857143 4.000000 3.714286 3.000000 4.000000
## [41] 4.428571 4.571429 3.571429 3.714286 3.571429 3.857143 4.142857 3.142857
## [49] 2.857143 3.142857 2.714286 4.000000 4.428571 3.285714 4.000000 4.714286
## [57] 3.857143 4.000000 3.428571 3.714286 3.857143 3.857143 3.571429 3.714286
## [65] 3.428571 3.000000 4.142857 3.428571 4.000000 2.857143 3.428571 3.571429
## [73] 3.142857 4.285714 3.714286 3.857143 4.571429 3.000000 4.428571 3.285714
## [81] 3.571429 4.571429
(data$Solidariedade <- rowMeans(data[32:38]))
## [1] 4.857143 4.714286 3.714286 5.000000 5.000000 4.714286 4.142857 3.000000
## [9] 3.571429 4.428571 4.857143 4.000000 4.857143 3.428571 3.857143 4.000000
## [17] 3.714286 1.857143 3.714286 4.857143 4.857143 4.714286 5.000000 3.857143
## [25] 3.714286 4.285714 4.571429 4.571429 5.000000 5.000000 3.142857 3.857143
## [33] 3.857143 3.714286 4.428571 4.857143 3.571429 3.857143 3.714286 4.000000
## [41] 5.000000 4.142857 4.000000 3.571429 4.142857 4.142857 3.714286 4.142857
## [49] 3.714286 4.000000 4.142857 4.714286 4.714286 4.428571 4.142857 4.857143
## [57] 4.571429 4.000000 3.714286 4.571429 3.285714 4.000000 4.285714 4.142857
## [65] 4.000000 4.000000 4.428571 3.428571 4.571429 3.714286 4.285714 3.857143
## [73] 3.857143 4.428571 5.000000 3.857143 4.857143 4.000000 4.000000 4.428571
## [81] 4.142857 4.857143
Normalidade dos constructos
Paíxão
(shapiro_P <- shapiro.test(data$Paixao)) # Não
##
## Shapiro-Wilk normality test
##
## data: data$Paixao
## W = 0.93164, p-value = 0.0002947
ggplot(data = data, aes(Paixao)) +
geom_histogram(aes(y = ..density..), colour = 'lightblue', fill = '#4682b4',
bins = 20) +
labs(x = 'Idade', y = 'Densidade') +
stat_function(fun = dnorm,
args = list(mean = mean(data$Paixao, na.rm = T),
sd = sd(data$Paixao, na.rm = T)),
colour = 'black', size = 1) +
ggtitle('Histograma para Paixão') +
theme_bw()

Integridade
(shapiro_I <- shapiro.test(data$Integridade)) # Não
##
## Shapiro-Wilk normality test
##
## data: data$Integridade
## W = 0.91531, p-value = 4.682e-05
ggplot(data = data, aes(Integridade)) +
geom_histogram(aes(y = ..density..), colour = 'lightblue', fill = '#4682b4',
bins = 20) +
labs(x = 'Idade', y = 'Densidade') +
stat_function(fun = dnorm,
args = list(mean = mean(data$Integridade, na.rm = T),
sd = sd(data$Integridade, na.rm = T)),
colour = 'black', size = 1) +
ggtitle('Histograma para Integridade') +
theme_bw()

Respeito
(shapiro_R <-shapiro.test(data$Respeito)) # Não
##
## Shapiro-Wilk normality test
##
## data: data$Respeito
## W = 0.96945, p-value = 0.04756
ggplot(data = data, aes(Respeito)) +
geom_histogram(aes(y = ..density..), colour = 'lightblue', fill = '#4682b4',
bins = 20) +
labs(x = 'Idade', y = 'Densidade') +
stat_function(fun = dnorm,
args = list(mean = mean(data$Respeito, na.rm = T),
sd = sd(data$Respeito, na.rm = T)),
colour = 'black', size = 1) +
ggtitle('Histograma para Respeito') +
theme_bw()

Disciplina
(shapiro_D <-shapiro.test(data$Disciplina)) # Sim
##
## Shapiro-Wilk normality test
##
## data: data$Disciplina
## W = 0.98387, p-value = 0.3942
ggplot(data = data, aes(Disciplina)) +
geom_histogram(aes(y = ..density..), colour = 'lightblue', fill = '#4682b4',
bins = 20) +
labs(x = 'Idade', y = 'Densidade') +
stat_function(fun = dnorm,
args = list(mean = mean(data$Disciplina, na.rm = T),
sd = sd(data$Disciplina, na.rm = T)),
colour = 'black', size = 1) +
ggtitle('Histograma para Disciplina') +
theme_bw()

Solidariedade
(shapiro_S <-shapiro.test(data$Solidariedade)) # Não
##
## Shapiro-Wilk normality test
##
## data: data$Solidariedade
## W = 0.92827, p-value = 0.0001985
ggplot(data = data, aes(Solidariedade)) +
geom_histogram(aes(y = ..density..), colour = 'lightblue', fill = '#4682b4',
bins = 20) +
labs(x = 'Idade', y = 'Densidade') +
stat_function(fun = dnorm,
args = list(mean = mean(data$Solidariedade, na.rm = T),
sd = sd(data$Solidariedade, na.rm = T)),
colour = 'black', size = 1) +
ggtitle('Histograma para Solidariedade') +
theme_bw()

Tabela resumo dos constructos
Lista_Paixao <- c('Paíxão',
mean(data$Paixao),
sd(data$Paixao),
Alpha_P$total[2],
Omega_P$omega_h,
if_else(shapiro_P$p.value < 0.05, 'p < 0.05', 'p > 0.05'))
Lista_Integridade <- c('Integridade',
mean(data$Integridade),
sd(data$Integridade),
alpha_I$total[2],
omega_I$omega_h,
if_else(shapiro_I$p.value < 0.05, 'p < 0.05', 'p > 0.05'))
Lista_Disciplina <- c('Disciplina',
mean(data$Disciplina),
sd(data$Disciplina),
alpha_D$total[2],
omega_d$omega_h,
if_else(shapiro_D$p.value < 0.05, 'p < 0.05', 'p > 0.05'))
Lista_Respeito <- c('Respeito',
mean(data$Respeito),
sd(data$Respeito),
alpha_R$total[2],
omega_R$omega_h,
if_else(shapiro_R$p.value < 0.05, 'p < 0.05', 'p > 0.05'))
Lista_Solidariedade <- c('Solidariedade',
mean(data$Solidariedade),
sd(data$Solidariedade),
alpha_S$total[2],
omega_S$omega_h,
if_else(shapiro_S$p.value < 0.05, 'p < 0.05', 'p > 0.05'))
resumo <- as.data.frame(cbind(Lista_Paixao,
Lista_Integridade,
Lista_Respeito,
Lista_Disciplina,
Lista_Solidariedade))
resumo <- t(resumo)
colnames(resumo) <- c("Constructo", "Média", "Desvio Padrão",
"Alpha", "Omega", "Normalidade P-Valor")
rownames(resumo) <- NULL
kbl(as.data.frame(resumo)) %>%
kable_classic(full_width = F, html_font = "Cambria")
|
Constructo
|
Média
|
Desvio Padrão
|
Alpha
|
Omega
|
Normalidade P-Valor
|
|
Paíxão
|
4.519164
|
0.3773054
|
0.7559314
|
0.8623842
|
p < 0.05
|
|
Integridade
|
4.343206
|
0.481379
|
0.7677872
|
0.8466994
|
p < 0.05
|
|
Respeito
|
4.24216
|
0.4001065
|
0.7217115
|
0.814672
|
p < 0.05
|
|
Disciplina
|
3.681185
|
0.5563707
|
0.7329862
|
0.783773
|
p > 0.05
|
|
Solidariedade
|
4.179443
|
0.5633516
|
0.8390173
|
0.8901089
|
p < 0.05
|
Médias por grupo
Paixao
describe.by(data$Paixao, group = data$Condição)
##
## Descriptive statistics by group
## group: CONTROLE
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 28 4.52 0.4 4.43 4.55 0.42 3.43 5 1.57 -0.58 -0.18 0.08
## ------------------------------------------------------------
## group: FORTE
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 26 4.48 0.37 4.5 4.5 0.32 3.57 5 1.43 -0.42 -0.55 0.07
## ------------------------------------------------------------
## group: FRACA
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 28 4.55 0.37 4.57 4.57 0.42 3.71 5 1.29 -0.42 -0.93 0.07
ggVP <- ggplot(data, aes(x = Condição, y = Paixao, fill = Condição)) +
geom_violin(trim = F) +
stat_summary(fun.data = mean_sdl, fun.args = list(mult = 1),
geom = 'pointrange', color = 'white') +
labs(title = 'Valores por Grupos', x = 'Grupos Experimentais',
y = 'Constructo Paixao') +
theme_bw() +
theme(legend.position = 'none')
Integridade
describe.by(data$Integridade, group = data$Condição)
##
## Descriptive statistics by group
## group: CONTROLE
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 28 4.26 0.6 4.43 4.32 0.42 2.71 5 2.29 -1.21 0.75 0.11
## ------------------------------------------------------------
## group: FORTE
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 26 4.36 0.42 4.36 4.36 0.53 3.71 5 1.29 0.11 -1.43 0.08
## ------------------------------------------------------------
## group: FRACA
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 28 4.41 0.4 4.5 4.45 0.32 3.29 5 1.71 -0.85 0.25 0.08
ggVI <- ggplot(data, aes(x = Condição, y = Integridade, fill = Condição)) +
geom_violin(trim = F) +
stat_summary(fun.data = mean_sdl, fun.args = list(mult = 1),
geom = 'pointrange', color = 'white') +
labs(title = 'Valores por Grupos', x = 'Grupos Experimentais',
y = 'Constructo Integridade') +
theme_bw() +
theme(legend.position = 'none')
Respeito
describe.by(data$Respeito, group = data$Condição)
##
## Descriptive statistics by group
## group: CONTROLE
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 28 4.24 0.39 4.29 4.26 0.42 3.43 5 1.57 -0.27 -0.47 0.07
## ------------------------------------------------------------
## group: FORTE
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 26 4.27 0.45 4.21 4.28 0.53 3.43 5 1.57 -0.01 -1 0.09
## ------------------------------------------------------------
## group: FRACA
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 28 4.21 0.37 4.29 4.24 0.32 3.29 4.71 1.43 -0.81 -0.09 0.07
ggVR <- ggplot(data, aes(x = Condição, y = Respeito, fill = Condição)) +
geom_violin(trim = F) +
stat_summary(fun.data = mean_sdl, fun.args = list(mult = 1),
geom = 'pointrange', color = 'white') +
labs(title = 'Valores por Grupos', x = 'Grupos Experimentais',
y = 'Constructo Respeito') +
theme_bw() +
theme(legend.position = 'none')
Disciplina
describe.by(data$Disciplina, group = data$Condição)
##
## Descriptive statistics by group
## group: CONTROLE
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 28 3.82 0.52 3.71 3.8 0.42 2.86 5 2.14 0.4 -0.49 0.1
## ------------------------------------------------------------
## group: FORTE
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 26 3.64 0.67 3.57 3.64 0.74 2.29 5 2.71 -0.03 -0.77 0.13
## ------------------------------------------------------------
## group: FRACA
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 28 3.59 0.47 3.5 3.57 0.53 2.86 4.57 1.71 0.24 -1 0.09
ggVD <- ggplot(data, aes(x = Condição, y = Disciplina, fill = Condição)) +
geom_violin(trim = F) +
stat_summary(fun.data = mean_sdl, fun.args = list(mult = 1),
geom = 'pointrange', color = 'white') +
labs(title = 'Valores por Grupos', x = 'Grupos Experimentais',
y = 'Constructo Disciplina') +
theme_bw() +
theme(legend.position = 'none')
Solidariedade
describe.by(data$Solidariedade, group = data$Condição)
##
## Descriptive statistics by group
## group: CONTROLE
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 28 4.24 0.54 4.14 4.26 0.74 3.29 5 1.71 0.02 -1.42 0.1
## ------------------------------------------------------------
## group: FORTE
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 26 4.06 0.67 4.14 4.12 0.42 1.86 5 3.14 -1.25 2.35 0.13
## ------------------------------------------------------------
## group: FRACA
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 28 4.22 0.48 4.14 4.22 0.64 3.43 5 1.57 0.12 -1.43 0.09
ggVS <- ggplot(data, aes(x = Condição, y = Solidariedade, fill = Condição)) +
geom_violin(trim = F) +
stat_summary(fun.data = mean_sdl, fun.args = list(mult = 1),
geom = 'pointrange', color = 'white') +
labs(title = 'Valores por Grupos', x = 'Grupos Experimentais',
y = 'Constructo Solidariedade') +
theme_bw() +
theme(legend.position = 'none')
Final
grid.arrange(ggVP, ggVI, ggVD, ggVR, ggVS)

Kruskal-Wallis
Paíxão
kwP <- kruskal.test(Paixao ~ Condição, data = data)
kwP
##
## Kruskal-Wallis rank sum test
##
## data: Paixao by Condição
## Kruskal-Wallis chi-squared = 0.4299, df = 2, p-value = 0.8066
kwEP <- kruskal_effsize(data, Paixao ~ Condição, ci = T, nboot = 1000)
kwEP
## # A tibble: 1 x 7
## .y. n effsize conf.low conf.high method magnitude
## * <chr> <int> <dbl> <dbl> <dbl> <chr> <ord>
## 1 Paixao 82 -0.0199 -0.02 0.08 eta2[H] small
Integridade
kwI <- kruskal.test(Integridade ~ Condição, data = data)
kwI
##
## Kruskal-Wallis rank sum test
##
## data: Integridade by Condição
## Kruskal-Wallis chi-squared = 0.67867, df = 2, p-value = 0.7122
kwEI <- kruskal_effsize(data, Integridade ~ Condição, ci = T, nboot = 1000)
kwEI
## # A tibble: 1 x 7
## .y. n effsize conf.low conf.high method magnitude
## * <chr> <int> <dbl> <dbl> <dbl> <chr> <ord>
## 1 Integridade 82 -0.0167 -0.02 0.09 eta2[H] small
Disciplina
kwD <- kruskal.test(Disciplina ~ Condição, data = data)
kwD
##
## Kruskal-Wallis rank sum test
##
## data: Disciplina by Condição
## Kruskal-Wallis chi-squared = 2.3117, df = 2, p-value = 0.3148
kwED <- kruskal_effsize(data, Disciplina ~ Condição, ci = T, nboot = 1000)
kwED
## # A tibble: 1 x 7
## .y. n effsize conf.low conf.high method magnitude
## * <chr> <int> <dbl> <dbl> <dbl> <chr> <ord>
## 1 Disciplina 82 0.00395 -0.02 0.13 eta2[H] small
Respeito
kwR <- kruskal.test(Respeito ~ Condição, data = data)
kwR
##
## Kruskal-Wallis rank sum test
##
## data: Respeito by Condição
## Kruskal-Wallis chi-squared = 0.10292, df = 2, p-value = 0.9498
kwER <- kruskal_effsize(data, Respeito ~ Condição, ci = T, nboot = 1000)
kwER
## # A tibble: 1 x 7
## .y. n effsize conf.low conf.high method magnitude
## * <chr> <int> <dbl> <dbl> <dbl> <chr> <ord>
## 1 Respeito 82 -0.0240 -0.02 0.08 eta2[H] small
Solidariedade
kwS <- kruskal.test(Solidariedade ~ Condição, data = data)
kwS
##
## Kruskal-Wallis rank sum test
##
## data: Solidariedade by Condição
## Kruskal-Wallis chi-squared = 0.48491, df = 2, p-value = 0.7847
kwES <- kruskal_effsize(data, Solidariedade ~ Condição, ci = T, nboot = 1000)
kwES
## # A tibble: 1 x 7
## .y. n effsize conf.low conf.high method magnitude
## * <chr> <int> <dbl> <dbl> <dbl> <chr> <ord>
## 1 Solidariedade 82 -0.0192 -0.02 0.09 eta2[H] small
Tabela Final
KWPaixao <- c('Paixão',
round(kwP$statistic, 4),
round(kwP$p.value, 4),
kwP$parameter,
round(kwEP$effsize, 4),
kwEP$magnitude)
KWIntegridade <- c('Integridade',
round(kwI$statistic, 4),
round(kwI$p.value, 4),
kwI$parameter,
round(kwEI$effsize, 4),
kwEI$magnitude)
KWDisciplina <- c('Disciplina',
round(kwD$statistic, 4),
round(kwD$p.value, 4),
kwD$parameter,
round(kwED$effsize, 4),
kwED$magnitude)
KWRespeito <- c('Respeito',
round(kwR$statistic, 4),
round(kwR$p.value, 4),
kwR$parameter,
round(kwER$effsize, 4),
kwER$magnitude)
KWSolidariedade <- c('Solidariedade',
round(kwS$statistic, 4),
round(kwS$p.value, 4),
kwS$parameter,
round(kwES$effsize, 4),
kwES$magnitude)
resumoKW <- as.data.frame(cbind(KWPaixao,
KWIntegridade,
KWDisciplina,
KWRespeito,
KWSolidariedade))
resumoKW <- t(resumoKW)
colnames(resumoKW) <- c("Constructo", "X²", "P-Value",
"GL", "Tamanho do Efeito", "Classificação Cohen (1988)")
rownames(resumoKW) <- NULL
resumoKW[, 6] <- 'Pequeno'
kbl(as.data.frame(resumoKW)) %>%
kable_classic(full_width = F, html_font = "Cambria")
|
Constructo
|
X²
|
P-Value
|
GL
|
Tamanho do Efeito
|
Classificação Cohen (1988)
|
|
Paixão
|
0.4299
|
0.8066
|
2
|
-0.0199
|
Pequeno
|
|
Integridade
|
0.6787
|
0.7122
|
2
|
-0.0167
|
Pequeno
|
|
Disciplina
|
2.3117
|
0.3148
|
2
|
0.0039
|
Pequeno
|
|
Respeito
|
0.1029
|
0.9498
|
2
|
-0.024
|
Pequeno
|
|
Solidariedade
|
0.4849
|
0.7847
|
2
|
-0.0192
|
Pequeno
|