options(digits = 12)
library(rworldmap)
library(rworldxtra)
library(ggmap)
library(sf)
library(spdep)
library(ape)
library(sp)
library(MVA)
library(Hmisc)
library(normtest)
library(nortest)
library(corrplot)
library(psych)
library(crayon)
library(pastecs)
library(readxl)
XPABLO <- read_excel("XPABLO.xlsx")
dfCOS=data.frame(XPABLO)
X=as.matrix(data.frame(dfCOS[,4:15]))
###___matriz de coordenadas
# Muestreo espacial
library(clhs)
## Warning: package 'clhs' was built under R version 4.0.5
n = 0.80 *403
n = round(n,0)
df_Luis = data.frame(x=dfCOS$Long,
y=dfCOS$Lat,
COS=dfCOS$cos)
res <- clhs(df_Luis, size = n,
iter = 100, progress = FALSE,
simple = TRUE)
df_Luis = dfCOS[res,]
dfCOS = df_Luis
XY=as.matrix(dfCOS[,2:3])
COS.d=as.matrix(dist(XY, diag=T, upper=T))
##matriz inversa de distancias
COS.d.inv <-as.matrix(1/COS.d)
##asignando cero a la diag
diag(COS.d.inv) <- 0
##__la matriz de pesos basado en distancias
W=as.matrix(COS.d.inv)
##__verificando sumas por filas
SUMAS=apply(W,1,sum)
##__estandarizando la metriz
We=W/SUMAS
##verificando estandarizaci?n
##calculando ?ndice de Moran para variables
# Nueva construccion de matriz de pesos estandarizada
contnb=dnearneigh(coordinates(XY),0,380000,longlat = F)
dlist <- nbdists(contnb, XY)
dlist <- lapply(dlist, function(x) 1/x)
Wve=nb2listw(contnb,glist=dlist,style = "W")
#modelo autoregresivo puro
modelo.arp=spautolm(cos~1,data=dfCOS,listw=Wve)
summary(modelo.arp)
##
## Call: spautolm(formula = cos ~ 1, data = dfCOS, listw = Wve)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.95167330215 -0.30242927281 0.00279215457 0.26292754728 1.41532621572
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.214208433 0.152317163 7.97158 1.5543e-15
##
## Lambda: 0.85239667 LR test value: 11.1571569 p-value: 0.0008370811
## Numerical Hessian standard error of lambda: 0.139347026
##
## Log likelihood: -166.323137198
## ML residual variance (sigma squared): 0.162759321, (sigma: 0.403434408)
## Number of observations: 322
## Number of parameters estimated: 3
## AIC: 338.646274
library(spatialreg)
\[Y = \lambda W Y + \epsilon\]
res1 = modelo.arp$fit$residuals
Moran.I(res1, COS.d.inv)
## $observed
## [1] 0.0169415923986
##
## $expected
## [1] -0.00311526479751
##
## $sd
## [1] 0.005328566605
##
## $p.value
## [1] 0.000167200247459
mod2 = sacsarlm(cos~1,data=dfCOS,listw=Wve)
summary(mod2)
##
## Call:sacsarlm(formula = cos ~ 1, data = dfCOS, listw = Wve)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.94271581997 -0.29821102915 -0.00782303031 0.25827689558 1.42174302489
##
## Type: sac
## Coefficients: (numerical Hessian approximate standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.291026032 0.293519916 0.9915 0.32144
##
## Rho: 0.749223279
## Approximate (numerical Hessian) standard error: 0.225576267
## z-value: 3.32137458, p-value: 0.000895752314
## Lambda: 0.749223292
## Approximate (numerical Hessian) standard error: 0.224984641
## z-value: 3.33010862, p-value: 0.000868121107
##
## LR test value: 16.2976657, p-value: 0.000289072557
##
## Log likelihood: -163.752882805 for sac model
## ML residual variance (sigma squared): 0.159651535, (sigma: 0.399564181)
## Number of observations: 322
## Number of parameters estimated: 4
## AIC: 335.505766, (AIC for lm: 347.803431)
\[Y = \lambda W Y + u \\ u= \rho Wu + \epsilon\]
res2 =mod2$residuals
Moran.I(res2, COS.d.inv)
## $observed
## [1] 0.00935126591104
##
## $expected
## [1] -0.00311526479751
##
## $sd
## [1] 0.00532822226694
##
## $p.value
## [1] 0.0192983715461
mser1=errorsarlm(formula=cos~Ca+Mg+K+Cu+Zn,data=dfCOS,listw=Wve)
summary(mser1)
##
## Call:errorsarlm(formula = cos ~ Ca + Mg + K + Cu + Zn, data = dfCOS,
## listw = Wve)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.9751635956 -0.1964369823 -0.0278153459 0.1714053234 1.2188188322
##
## Type: error
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.45924081633 0.15813934073 2.90403 0.003684
## Ca 0.05043737224 0.00583277103 8.64724 < 2.22e-16
## Mg -0.13167652885 0.02424287756 -5.43156 5.5865e-08
## K 0.71046908968 0.16511082890 4.30298 1.6851e-05
## Cu 0.07089153768 0.01320021926 5.37048 7.8527e-08
## Zn 0.02511855977 0.01102425883 2.27848 0.022698
##
## Lambda: 0.885314964, LR test value: 17.0841624, p-value: 3.57592702e-05
## Asymptotic standard error: 0.0792310283
## z-value: 11.1738416, p-value: < 2.220446e-16
## Wald statistic: 124.854737, p-value: < 2.220446e-16
##
## Log likelihood: -79.4223948849 for error model
## ML residual variance (sigma squared): 0.0947067355, (sigma: 0.307744595)
## Number of observations: 322
## Number of parameters estimated: 8
## AIC: 174.84479, (AIC for lm: 189.928952)
res3 =mser1$residuals
Moran.I(res3, COS.d.inv)
## $observed
## [1] 0.0171871677896
##
## $expected
## [1] -0.00311526479751
##
## $sd
## [1] 0.00532332774856
##
## $p.value
## [1] 0.00013681238486
\[Y = \lambda W Y +X \beta + \epsilon \]
mod4=lagsarlm(formula=cos~Ca+z+Mg+K+Cu,data=dfCOS,listw=Wve)
summary(mod4)
##
## Call:lagsarlm(formula = cos ~ Ca + z + Mg + K + Cu, data = dfCOS,
## listw = Wve)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.9753497653 -0.2076094602 -0.0341018992 0.1700610153 1.2806728576
##
## Type: lag
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.52586179010 0.23306359526 -2.25630 0.024052
## Ca 0.04352539452 0.00531423662 8.19034 2.2204e-16
## z 0.00224411758 0.00111127544 2.01941 0.043445
## Mg -0.13612907955 0.02308213607 -5.89759 3.6884e-09
## K 0.81752452459 0.16318410542 5.00983 5.4478e-07
## Cu 0.08595419577 0.01027927181 8.36190 < 2.22e-16
##
## Rho: 0.72516181, LR test value: 5.71520501, p-value: 0.0168186005
## Asymptotic standard error: 0.166968549
## z-value: 4.34310423, p-value: 1.40483438e-05
## Wald statistic: 18.8625544, p-value: 1.40483438e-05
##
## Log likelihood: -84.2468107596 for lag model
## ML residual variance (sigma squared): 0.0981788848, (sigma: 0.3133351)
## Number of observations: 322
## Number of parameters estimated: 8
## AIC: 184.493622, (AIC for lm: 188.208827)
## LM test for residual autocorrelation
## test value: 24.0191918, p-value: 9.53802311e-07
res4 = mod4$residuals
Moran.I(res4, COS.d.inv)
## $observed
## [1] 0.018535102587
##
## $expected
## [1] -0.00311526479751
##
## $sd
## [1] 0.00532319394579
##
## $p.value
## [1] 4.75862754592e-05
mod5=sacsarlm(formula=cos~Ca+Mg+K+Cu+Zn,data=dfCOS,listw=Wve)
summary(mod5)
##
## Call:sacsarlm(formula = cos ~ Ca + Mg + K + Cu + Zn, data = dfCOS,
## listw = Wve)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.9580011399 -0.1974771619 -0.0288531845 0.1705473999 1.2341558039
##
## Type: sac
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.1923264920 0.5347074329 -0.35969 0.719082
## Ca 0.0487561910 0.0059898314 8.13983 4.4409e-16
## Mg -0.1300895170 0.0241143567 -5.39469 6.8641e-08
## K 0.7037490645 0.1644586647 4.27919 1.8758e-05
## Cu 0.0703775170 0.0131576804 5.34878 8.8550e-08
## Zn 0.0262736597 0.0109752937 2.39389 0.016671
##
## Rho: 0.533547597
## Asymptotic standard error: 0.442877291
## z-value: 1.20473009, p-value: 0.228307517
## Lambda: 0.852011459
## Asymptotic standard error: 0.184823219
## z-value: 4.60987241, p-value: 4.02916168e-06
##
## LR test value: 19.1478698, p-value: 6.95173006e-05
##
## Log likelihood: -78.3905411642 for sac model
## ML residual variance (sigma squared): 0.0939949928, (sigma: 0.306586028)
## Number of observations: 322
## Number of parameters estimated: 9
## AIC: 174.781082, (AIC for lm: 189.928952)
res5 = mod5$residuals
Moran.I(res5, COS.d.inv)
## $observed
## [1] 0.0123444998355
##
## $expected
## [1] -0.00311526479751
##
## $sd
## [1] 0.00532265160961
##
## $p.value
## [1] 0.00367813042932
\[Y = \lambda W Y +X \beta + u\\u =\rho W u +\epsilon \]
mod6=sacsarlm(formula=cos~Ca+Mg+K+Cu+Zn,data=dfCOS,listw=Wve,type="mixed")
summary(mod6)
##
## Call:sacsarlm(formula = cos ~ Ca + Mg + K + Cu + Zn, data = dfCOS,
## listw = Wve, type = "mixed")
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.8749328856 -0.1939540872 -0.0129975529 0.1715165962 1.2045784185
##
## Type: sacmixed
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.73825352662 1.14500193337 1.51812 0.1289834
## Ca 0.04846060825 0.00658679573 7.35724 1.8785e-13
## Mg -0.12084469173 0.02544289609 -4.74964 2.0378e-06
## K 0.67797321767 0.16079616190 4.21635 2.4829e-05
## Cu 0.07309597218 0.01328173661 5.50350 3.7233e-08
## Zn 0.02961477667 0.01118304624 2.64819 0.0080925
## lag.Ca -0.08741536045 0.06054214919 -1.44388 0.1487738
## lag.Mg -0.25712002054 0.27452877759 -0.93659 0.3489712
## lag.K 2.88728887028 2.46723920577 1.17025 0.2419000
## lag.Cu 0.18358511759 0.16550285401 1.10926 0.2673195
## lag.Zn -0.61186242288 0.16741430373 -3.65478 0.0002574
##
## Rho: 0.564425533
## Asymptotic standard error: 1.07424583
## z-value: 0.525415614, p-value: 0.599294302
## Lambda: 0.316262512
## Asymptotic standard error: 1.50065834
## z-value: 0.210749178, p-value: 0.833082998
##
## LR test value: 41.7877912, p-value: 5.71279243e-07
##
## Log likelihood: -67.0705804566 for sacmixed model
## ML residual variance (sigma squared): 0.0884357587, (sigma: 0.297381504)
## Number of observations: 322
## Number of parameters estimated: 14
## AIC: 162.141161, (AIC for lm: 189.928952)
\[Y = \lambda W Y +X \beta_1 +W X \beta_2+ u\\u =\rho W u +\epsilon\] ## SDE Spatial Durbin Error Model
mod7=lagsarlm(formula=cos~Ca+Mg+K+Cu,data=dfCOS,listw=Wve,type="mixed")
summary(mod7)
##
## Call:lagsarlm(formula = cos ~ Ca + Mg + K + Cu, data = dfCOS, listw = Wve,
## type = "mixed")
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.8784124883 -0.1975703931 -0.0264888029 0.1818513714 1.1598261445
##
## Type: mixed
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.8354039206 0.3606372640 2.31647 0.02053284
## Ca 0.0462236482 0.0065199685 7.08955 1.3456e-12
## Mg -0.1290293480 0.0261743121 -4.92962 8.2391e-07
## K 0.7525312556 0.1616061075 4.65658 3.2151e-06
## Cu 0.0970454488 0.0105682018 9.18278 < 2.22e-16
## lag.Ca -0.0671419351 0.0468486395 -1.43317 0.15181005
## lag.Mg 0.0969553784 0.2147609495 0.45146 0.65166006
## lag.K 2.1608127750 2.2010872599 0.98170 0.32624645
## lag.Cu -0.3151951837 0.0933889795 -3.37508 0.00073795
##
## Rho: 0.731523192, LR test value: 5.52673481, p-value: 0.0187280234
## Asymptotic standard error: 0.172407524
## z-value: 4.2429888, p-value: 2.20562445e-05
## Wald statistic: 18.002954, p-value: 2.20562445e-05
##
## Log likelihood: -77.3928991596 for mixed model
## ML residual variance (sigma squared): 0.0940718626, (sigma: 0.306711367)
## Number of observations: 322
## Number of parameters estimated: 11
## AIC: 176.785798, (AIC for lm: 180.312533)
## LM test for residual autocorrelation
## test value: 3.15555808, p-value: 0.0756688137
res7 = mod7$residuals
Moran.I(res7, COS.d.inv) # No hay depedencia espacial
## $observed
## [1] 0.00585865512765
##
## $expected
## [1] -0.00311526479751
##
## $sd
## [1] 0.0053253921761
##
## $p.value
## [1] 0.0919656005729
shapiro.test(res7)
##
## Shapiro-Wilk normality test
##
## data: res7
## W = 0.9793073832, p-value = 0.000135186226
ad.test(res7)
##
## Anderson-Darling normality test
##
## data: res7
## A = 1.523400659, p-value = 0.000623307138
sf.test(res7)
##
## Shapiro-Francia normality test
##
## data: res7
## W = 0.9782820093, p-value = 0.00017938898
cvm.test(res7)
##
## Cramer-von Mises normality test
##
## data: res7
## W = 0.2379572897, p-value = 0.00179826551
hist(res7)
outliers::grubbs.test(res7) # El valor mas alto es un outlier
##
## Grubbs test for one outlier
##
## data: res7
## G.42 = 3.7756141328, U = 0.9554527383, p-value = 0.0218616865
## alternative hypothesis: highest value 1.15982614445771 is an outlier
which.max(res7) # Maximo
## 42
## 145
plot(dfCOS$cos,mod7$fitted.values)
#library(mvoutlier)
#color.plot(cbind(dfCOS$cos,mod7$fitted.values))
#corr.plot(dfCOS$cos,mod7$fitted.values,
# quan=1/2, alpha=0.025,
# xlab="Observados",
# ylab="Estimados")
ggplot(dfCOS, aes(x= dfCOS$cos, y= mod7$fitted.values))+
geom_point(size= 2)+
theme_minimal()+
stat_ellipse(level = 0.9) +
stat_ellipse(level = 0.95, color = 2) +
stat_ellipse(level = 0.99, color = 3)
## Warning: Use of `dfCOS$cos` is discouraged. Use `cos` instead.
## Warning: Use of `dfCOS$cos` is discouraged. Use `cos` instead.
## Warning: Use of `dfCOS$cos` is discouraged. Use `cos` instead.
## Warning: Use of `dfCOS$cos` is discouraged. Use `cos` instead.
dfCOS2 = dfCOS
atipicos =which(dfCOS2$cos>2.5)
dfCOS2 =dfCOS2[-atipicos,]
XY=as.matrix(dfCOS2[,2:3])
COS.d=as.matrix(dist(XY, diag=T, upper=T))
COS.d.inv <-as.matrix(1/COS.d)
diag(COS.d.inv) <- 0
W=as.matrix(COS.d.inv)
SUMAS=apply(W,1,sum)
We=W/SUMAS
# Nueva construccion de matriz de pesos estandarizada
contnb=dnearneigh(coordinates(XY),0,380000,longlat = F)
dlist <- nbdists(contnb, XY)
dlist <- lapply(dlist, function(x) 1/x)
Wve=nb2listw(contnb,glist=dlist,style = "W")
mod7b=lagsarlm(formula=cos~Ca+Mg+K+Cu,data=dfCOS2,listw=Wve,type="mixed")
summary(mod7b)
##
## Call:lagsarlm(formula = cos ~ Ca + Mg + K + Cu, data = dfCOS2, listw = Wve,
## type = "mixed")
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.8056843566 -0.2009387852 -0.0315530325 0.1887586753 0.8662568325
##
## Type: mixed
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.74218522295 0.33849418080 2.19261 0.02833560
## Ca 0.03791302149 0.00623522433 6.08046 1.1984e-09
## Mg -0.11874290032 0.02458505269 -4.82988 1.3661e-06
## K 0.69717850523 0.15114320552 4.61270 3.9747e-06
## Cu 0.09734873018 0.00988296961 9.85015 < 2.22e-16
## lag.Ca -0.04751804972 0.04278559114 -1.11061 0.26673682
## lag.Mg 0.12185068998 0.20093419963 0.60642 0.54423532
## lag.K 2.13367338619 2.02925093007 1.05146 0.29304800
## lag.Cu -0.33383837988 0.08956593865 -3.72729 0.00019355
##
## Rho: 0.76416651, LR test value: 6.78534866, p-value: 0.00919090763
## Asymptotic standard error: 0.15409003
## z-value: 4.95922098, p-value: 7.07764211e-07
## Wald statistic: 24.5938728, p-value: 7.07764212e-07
##
## Log likelihood: -54.1526830112 for mixed model
## ML residual variance (sigma squared): 0.0816918096, (sigma: 0.285817791)
## Number of observations: 318
## Number of parameters estimated: 11
## AIC: 130.305366, (AIC for lm: 135.090715)
## LM test for residual autocorrelation
## test value: 3.91513669, p-value: 0.0478531239
res7b = mod7b$residuals
Moran.I(res7b, COS.d.inv) # No hay depedencia espacial
## $observed
## [1] 0.00704175132041
##
## $expected
## [1] -0.00315457413249
##
## $sd
## [1] 0.00539904627465
##
## $p.value
## [1] 0.0589532299132
shapiro.test(res7b) # Son normales
##
## Shapiro-Wilk normality test
##
## data: res7b
## W = 0.9902307868, p-value = 0.0323644349
ad.test(res7b)
##
## Anderson-Darling normality test
##
## data: res7b
## A = 0.7982286725, p-value = 0.0382990996
sf.test(res7b)
##
## Shapiro-Francia normality test
##
## data: res7b
## W = 0.9903891847, p-value = 0.0354967612
cvm.test(res7b)
##
## Cramer-von Mises normality test
##
## data: res7b
## W = 0.1361005899, p-value = 0.0362163695
plot(dfCOS2$cos,mod7b$fitted.values)
#(dfCOS2$cos,mod7b$fitted.values,
# quan=1/2, alpha=0.025,
# xlab="Observados",
# ylab="Estimados")
ggplot(dfCOS2, aes(x= dfCOS2$cos, y= mod7b$fitted.values))+
geom_point(size= 2)+
theme_minimal()+
stat_ellipse(level = 0.9) +
stat_ellipse(level = 0.95, color = 2) +
stat_ellipse(level = 0.99, color = 3)
## Warning: Use of `dfCOS2$cos` is discouraged. Use `cos` instead.
## Warning: Use of `dfCOS2$cos` is discouraged. Use `cos` instead.
## Warning: Use of `dfCOS2$cos` is discouraged. Use `cos` instead.
## Warning: Use of `dfCOS2$cos` is discouraged. Use `cos` instead.
library(ggplot2)
library(plotly)
## Warning: package 'plotly' was built under R version 4.0.5
##
## Attaching package: 'plotly'
## The following object is masked from 'package:crayon':
##
## style
## The following object is masked from 'package:Hmisc':
##
## subplot
## The following object is masked from 'package:ggmap':
##
## wind
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
library(viridis)
## Warning: package 'viridis' was built under R version 4.0.5
## Loading required package: viridisLite
## Warning: package 'viridisLite' was built under R version 4.0.5
dataq=dfCOS2
dataq$ajustados =mod7b$fitted.values
q<-ggplot(dataq,aes(x=Long,y=Lat,color=ajustados))+
geom_point(size = 3) +
ggtitle("Predicciones del modelo 6")+
labs(x="x",y="y")+
scale_colour_gradient(low = "yellow", high = "red", na.value = NA)
ggplotly(q)
library(akima)
## Warning: package 'akima' was built under R version 4.0.5
akima.li <- interp(dataq$Long, dataq$Lat, dataq$ajustados,
nx = 50, ny = 50,
linear = F)
image(akima.li)
contour(akima.li,add=T)
q<-ggplot(dataq,aes(x=Long,y=Lat,color=cos))+
geom_point(size = 2) +
ggtitle("Observados del modelo 6")+
labs(x="x",y="y")+
scale_colour_gradient(low = "yellow", high = "red", na.value = NA)
ggplotly(q)
Eliminando datos mayores a 2 y menores a 0.5
dfCOS3 = dfCOS
atipicos =which(dfCOS3$cos>2 | dfCOS3$cos<0.45)
dfCOS3 =dfCOS3[-atipicos,]
XY=as.matrix(dfCOS3[,2:3])
COS.d=as.matrix(dist(XY, diag=T, upper=T))
COS.d.inv <-as.matrix(1/COS.d)
diag(COS.d.inv) <- 0
W=as.matrix(COS.d.inv)
SUMAS=apply(W,1,sum)
We=W/SUMAS
# Nueva construccion de matriz de pesos estandarizada
contnb=dnearneigh(coordinates(XY),0,380000,longlat = F)
dlist <- nbdists(contnb, XY)
dlist <- lapply(dlist, function(x) 1/x)
Wve=nb2listw(contnb,glist=dlist,style = "W")
mod7c=lagsarlm(formula=cos~Ca+Mg+K+Cu,data=dfCOS3,listw=Wve,type="mixed")
summary(mod7c)
##
## Call:lagsarlm(formula = cos ~ Ca + Mg + K + Cu, data = dfCOS3, listw = Wve,
## type = "mixed")
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7713582017 -0.1920765578 -0.0275801628 0.1836768495 0.8423941873
##
## Type: mixed
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.98624822312 0.37875402661 2.60393 0.0092162
## Ca 0.03374203320 0.00596759486 5.65421 1.5656e-08
## Mg -0.11440297699 0.02334876191 -4.89974 9.5961e-07
## K 0.61548694610 0.14449146649 4.25968 2.0472e-05
## Cu 0.09636708770 0.00943892445 10.20954 < 2.22e-16
## lag.Ca -0.04202346787 0.04122382447 -1.01940 0.3080142
## lag.Mg 0.19363503952 0.18654844714 1.03799 0.2992757
## lag.K 1.68394177193 1.83807073383 0.91615 0.3595901
## lag.Cu -0.36272433182 0.09119747449 -3.97735 6.9687e-05
##
## Rho: 0.669196956, LR test value: 4.09251279, p-value: 0.0430735606
## Asymptotic standard error: 0.204966068
## z-value: 3.26491581, p-value: 0.00109496617
## Wald statistic: 10.6596753, p-value: 0.00109496617
##
## Log likelihood: -35.8967797831 for mixed model
## ML residual variance (sigma squared): 0.0734185313, (sigma: 0.270958542)
## Number of observations: 310
## Number of parameters estimated: 11
## AIC: 93.7935596, (AIC for lm: 95.8860724)
## LM test for residual autocorrelation
## test value: 1.25310875, p-value: 0.262959552
res7c = mod7c$residuals
Moran.I(res7c, COS.d.inv) # No hay depedencia espacial
## $observed
## [1] 0.00344349611471
##
## $expected
## [1] -0.00323624595469
##
## $sd
## [1] 0.0055452194235
##
## $p.value
## [1] 0.228359793893
Se ve que el p valor aumenta en gran medida, lo que indica que ya no hay dependencia espacial
shapiro.test(res7c) # Son normales
##
## Shapiro-Wilk normality test
##
## data: res7c
## W = 0.9931568962, p-value = 0.169857498
ad.test(res7c)
##
## Anderson-Darling normality test
##
## data: res7c
## A = 0.6616534102, p-value = 0.0833485602
sf.test(res7c)
##
## Shapiro-Francia normality test
##
## data: res7c
## W = 0.9931043412, p-value = 0.147044329
cvm.test(res7c)
##
## Cramer-von Mises normality test
##
## data: res7c
## W = 0.1120387366, p-value = 0.0765338448
Al hacer las pruebas de normalidad, se puede decir que se cumple el supuesto de normalidad para los residuales del modelo
plot(dfCOS3$cos,mod7c$fitted.values)
ggplot(dfCOS3, aes(x= dfCOS3$cos, y= mod7c$fitted.values))+
geom_point(size= 2)+
theme_minimal()+
stat_ellipse(level = 0.9) +
stat_ellipse(level = 0.95, color = 2) +
stat_ellipse(level = 0.99, color = 3)
## Warning: Use of `dfCOS3$cos` is discouraged. Use `cos` instead.
## Warning: Use of `dfCOS3$cos` is discouraged. Use `cos` instead.
## Warning: Use of `dfCOS3$cos` is discouraged. Use `cos` instead.
## Warning: Use of `dfCOS3$cos` is discouraged. Use `cos` instead.
library(ggplot2)
library(plotly)
library(viridis)
dataq=dfCOS3
dataq$ajustados =mod7c$fitted.values
q<-ggplot(dataq,aes(x=Long,y=Lat,color=ajustados))+
geom_point(size = 3) +
ggtitle("Predicciones del modelo 6")+
labs(x="x",y="y")+
scale_colour_gradient(low = "yellow", high = "red", na.value = NA)
ggplotly(q)
modelo.arpb=spautolm(cos~1,data=dfCOS3,listw=Wve)
summary(modelo.arpb)
##
## Call: spautolm(formula = cos ~ 1, data = dfCOS3, listw = Wve)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.739416010 -0.285981134 0.017626671 0.253193098 0.784883924
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.205410699 0.105560428 11.41915 < 2.22e-16
##
## Lambda: 0.810276597 LR test value: 8.36785316 p-value: 0.00381916526
## Numerical Hessian standard error of lambda: 0.173191163
##
## Log likelihood: -118.172509658
## ML residual variance (sigma squared): 0.124338547, (sigma: 0.352616714)
## Number of observations: 310
## Number of parameters estimated: 3
## AIC: 242.345019
res1b = modelo.arpb$fit$residuals
Moran.I(res1b, COS.d.inv)
## $observed
## [1] 0.0130143727956
##
## $expected
## [1] -0.00323624595469
##
## $sd
## [1] 0.0055522218586
##
## $p.value
## [1] 0.00342394511819
Se puede observar como al eleiminar los valores atipicos el p valor mejora en gran medida, con respecto a los datos iniciales.
mod2 = sacsarlm(cos~1,data=dfCOS3,listw=Wve)
summary(mod2)
##
## Call:sacsarlm(formula = cos ~ 1, data = dfCOS3, listw = Wve)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.738661932 -0.283699357 0.014964596 0.265591486 0.801220611
##
## Type: sac
## Coefficients: (numerical Hessian approximate standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.385578987 0.347690222 1.10897 0.26744
##
## Rho: 0.675040767
## Approximate (numerical Hessian) standard error: 0.280870905
## z-value: 2.40338445, p-value: 0.0162440996
## Lambda: 0.67504076
## Approximate (numerical Hessian) standard error: 0.280266855
## z-value: 2.40856437, p-value: 0.0160154019
##
## LR test value: 11.639119, p-value: 0.00296891271
##
## Log likelihood: -116.536876754 for sac model
## ML residual variance (sigma squared): 0.122841107, (sigma: 0.350486957)
## Number of observations: 310
## Number of parameters estimated: 4
## AIC: 241.073754, (AIC for lm: 248.712872)
res2 =mod2$residuals
Moran.I(res2, COS.d.inv)
## $observed
## [1] 0.00693430201451
##
## $expected
## [1] -0.00323624595469
##
## $sd
## [1] 0.00555205418886
##
## $p.value
## [1] 0.0669733017529
mser1b=errorsarlm(formula=cos~Ca+Mg+K+Cu+Zn,data=dfCOS3,listw=Wve)
summary(mser1b)
##
## Call:errorsarlm(formula = cos ~ Ca + Mg + K + Cu + Zn, data = dfCOS3,
## listw = Wve)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.8724711247 -0.1974798065 -0.0209656548 0.1939424679 0.8753692281
##
## Type: error
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.55644123545 0.13083561428 4.25298 2.1094e-05
## Ca 0.03828296785 0.00544205949 7.03465 1.9977e-12
## Mg -0.11984572249 0.02175931026 -5.50779 3.6337e-08
## K 0.60692792319 0.14826505944 4.09353 4.2485e-05
## Cu 0.07631019666 0.01190405090 6.41044 1.4510e-10
## Zn 0.01708116627 0.00997485968 1.71242 0.086819
##
## Lambda: 0.8723403, LR test value: 15.2391584, p-value: 9.4718915e-05
## Asymptotic standard error: 0.0878371805
## z-value: 9.93133312, p-value: < 2.220446e-16
## Wald statistic: 98.6313776, p-value: < 2.220446e-16
##
## Log likelihood: -40.3641398048 for error model
## ML residual variance (sigma squared): 0.0750516664, (sigma: 0.273955592)
## Number of observations: 310
## Number of parameters estimated: 8
## AIC: 96.7282796, (AIC for lm: 109.967438)
res2b =mser1b$residuals
Moran.I(res2b, COS.d.inv)
## $observed
## [1] 0.0152542035384
##
## $expected
## [1] -0.00323624595469
##
## $sd
## [1] 0.00554326378349
##
## $p.value
## [1] 0.000850968257627
mod4b=lagsarlm(formula=cos~Ca+z+Mg+K+Cu,data=dfCOS3,listw=Wve)
summary(mod4b)
##
## Call:lagsarlm(formula = cos ~ Ca + z + Mg + K + Cu, data = dfCOS3,
## listw = Wve)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.8830399687 -0.2046775967 -0.0217052063 0.1879746074 0.9101067995
##
## Type: lag
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.367941317010 0.248193385373 -1.48248 0.138213
## Ca 0.033734010116 0.004915861486 6.86228 6.7770e-12
## z 0.002159771093 0.000996740571 2.16683 0.030248
## Mg -0.123670087707 0.020602943610 -6.00254 1.9425e-09
## K 0.687426143088 0.146014296484 4.70794 2.5024e-06
## Cu 0.085766675951 0.009220226664 9.30201 < 2.22e-16
##
## Rho: 0.671955778, LR test value: 4.30912397, p-value: 0.0379084782
## Asymptotic standard error: 0.192945507
## z-value: 3.48261947, p-value: 0.00049653361
## Wald statistic: 12.1286384, p-value: 0.00049653361
##
## Log likelihood: -43.1404090004 for lag model
## ML residual variance (sigma squared): 0.0769265385, (sigma: 0.277356338)
## Number of observations: 310
## Number of parameters estimated: 8
## AIC: 102.280818, (AIC for lm: 104.589942)
## LM test for residual autocorrelation
## test value: 15.7781123, p-value: 7.12216992e-05
res4b = mod4b$residuals
Moran.I(res4b, COS.d.inv)
## $observed
## [1] 0.014781732924
##
## $expected
## [1] -0.00323624595469
##
## $sd
## [1] 0.00554384341832
##
## $p.value
## [1] 0.00115369308859
mod5b=sacsarlm(formula=cos~Ca+Mg+K+Cu+Zn,data=dfCOS3,listw=Wve)
summary(mod5)
##
## Call:sacsarlm(formula = cos ~ Ca + Mg + K + Cu + Zn, data = dfCOS,
## listw = Wve)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.9580011399 -0.1974771619 -0.0288531845 0.1705473999 1.2341558039
##
## Type: sac
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.1923264920 0.5347074329 -0.35969 0.719082
## Ca 0.0487561910 0.0059898314 8.13983 4.4409e-16
## Mg -0.1300895170 0.0241143567 -5.39469 6.8641e-08
## K 0.7037490645 0.1644586647 4.27919 1.8758e-05
## Cu 0.0703775170 0.0131576804 5.34878 8.8550e-08
## Zn 0.0262736597 0.0109752937 2.39389 0.016671
##
## Rho: 0.533547597
## Asymptotic standard error: 0.442877291
## z-value: 1.20473009, p-value: 0.228307517
## Lambda: 0.852011459
## Asymptotic standard error: 0.184823219
## z-value: 4.60987241, p-value: 4.02916168e-06
##
## LR test value: 19.1478698, p-value: 6.95173006e-05
##
## Log likelihood: -78.3905411642 for sac model
## ML residual variance (sigma squared): 0.0939949928, (sigma: 0.306586028)
## Number of observations: 322
## Number of parameters estimated: 9
## AIC: 174.781082, (AIC for lm: 189.928952)
res5b = mod5b$residuals
Moran.I(res5b, COS.d.inv)
## $observed
## [1] 0.0108829732729
##
## $expected
## [1] -0.00323624595469
##
## $sd
## [1] 0.0055429359859
##
## $p.value
## [1] 0.0108576991626
\[Y = \lambda W Y +X \beta + u\\u =\rho W u +\epsilon \]
mod6b=sacsarlm(formula=cos~Ca+Mg+K+Cu+Zn,data=dfCOS3,listw=Wve,type="mixed")
summary(mod6b)
##
## Call:sacsarlm(formula = cos ~ Ca + Mg + K + Cu + Zn, data = dfCOS3,
## listw = Wve, type = "mixed")
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.77023192723 -0.18462767289 -0.00318083665 0.17228084214 0.84182928839
##
## Type: sacmixed
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.73342758562 0.90797679816 1.90911 0.056248
## Ca 0.03505715185 0.00603928878 5.80485 6.4425e-09
## Mg -0.10803063551 0.02270934646 -4.75710 1.9639e-06
## K 0.57231957866 0.14349326234 3.98848 6.6499e-05
## Cu 0.07922472532 0.01188095633 6.66821 2.5894e-11
## Zn 0.02152543676 0.00996147979 2.16087 0.030706
## lag.Ca -0.05987887969 0.04432013915 -1.35105 0.176678
## lag.Mg -0.18774267764 0.20609967816 -0.91093 0.362331
## lag.K 2.63873525221 1.80527564178 1.46168 0.143829
## lag.Cu 0.12670118340 0.14468126509 0.87573 0.381179
## lag.Zn -0.57097612702 0.13970340115 -4.08706 4.3687e-05
##
## Rho: 0.506700093
## Asymptotic standard error: 0.753583252
## z-value: 0.672387678, p-value: 0.501336925
## Lambda: -0.0663800317
## Asymptotic standard error: 1.27058199
## z-value: -0.0522438004, p-value: 0.958334433
##
## LR test value: 44.1746488, p-value: 1.97697505e-07
##
## Log likelihood: -25.8963946095 for sacmixed model
## ML residual variance (sigma squared): 0.0690110573, (sigma: 0.262699557)
## Number of observations: 310
## Number of parameters estimated: 14
## AIC: 79.7927892, (AIC for lm: 109.967438)
res6b = mod6b$residuals
Moran.I(res6b, COS.d.inv)
## $observed
## [1] -0.000252897856322
##
## $expected
## [1] -0.00323624595469
##
## $sd
## [1] 0.00554379432916
##
## $p.value
## [1] 0.590479076866