Checking LDH as Cofounding Variable

LDH represents intial tumor burden and was correlated with SES groupings. It is important to understand if and how this relationship might affect SES impact on cytokines, kynureine metabolites, clinical outcomes, and PROs. Spearman ranked correlations and Chi-squared tests was done on demogrpahic data. ANOVA done on peak cytokines. Only baseline values were used on kynurenine metabolites and PROs across timepoints to run covariant ANOVA of LDH*income.

LDH as Independent Variable on Demographics, Cytokines,

#Demographics
pcAge<- cor.test(CART15data$Age, CART15data$LogLDH, method=c('pearson'))
pcEd<- cor.test(CART15data$EducationLevelCoded, CART15data$LogLDH, method=c('pearson'))
pclines<- cor.test(CART15data$lines, CART15data$LogLDH, method=c('pearson'))
pcIncome<- t.test(CART15data$LogLDH ~CART15data$IncomeDi)
pcCR<- cor.test(CART15data$LogLDH,  CART15data$day28coded, method=c('pearson'))
pcCRSdays<- cor.test(CART15data$`Day to CRS`, CART15data$LogLDH, method=c('pearson'))
pcNTXdays<- cor.test(CART15data$`Day to NTX`, CART15data$LogLDH, method=c('pearson'))
pcCRSgrade<- cor.test(CART15data$`Max Grade CRS`, CART15data$LogLDH, method=c('pearson'))
pcNTXgrade<- cor.test(CART15data$`Max Grade NTX`, CART15data$LogLDH, method=c('pearson'))
pcCRS <-t.test(CART15data$LogLDH ~ CART15data$`CRS (Y=1 /N =0)`)
pcNTX <- t.test(CART15data$LogLDH ~CART15data$`NTX (yes=1, no =0)`)


data.frame(pcAge$p.value, pcEd$p.value, pcIncome$p.value, pclines$p.value, pcCR$p.value, pcCRS$p.value, pcCRSdays$p.value, pcCRSgrade$p.value, pcNTX$p.value, pcNTXgrade$p.value, pcNTXdays$p.value)
ggboxplot(CART15data, x = "CRS (Y=1 /N =0)", y = "LogLDH", 
color = "CRS (Y=1 /N =0)", palette = c("#00AFBB", "#E7B800"),
ylab = "LogLDH", xlab = "CRS (Y=1 /N =0)")

ggboxplot(CART15data, x = "NTX (yes=1, no =0)", y = "LogLDH", 
color = "NTX (yes=1, no =0)", palette = c("#00AFBB", "#E7B800"),
ylab = "LogLDH", xlab = "NTX (yes=1, no =0)")

ggboxplot(CART15data, x = "day28coded", y = "LogLDH", 
color = "day28coded", palette = c("#00AFBB", "#E7B800", "cyan2"),
ylab = "LogLDH", xlab = "day28coded")

ggboxplot(CART15data, x = "Max Grade NTX", y = "LogLDH", 
color = "Max Grade NTX", palette = c("#00AFBB", "#E7B800", "cyan2", "pink"),
ylab = "LogLDH", xlab = "Max Grade NTX")

ggboxplot(CART15data, x = "Max Grade CRS", y = "LogLDH", 
color = "Max Grade CRS", palette = c("#00AFBB", "#E7B800", "cyan2", "pink"),
ylab = "LogLDH", xlab = "Max Grade CRS")

##Cytokines
spBCA1<- cor.test(CART15data$LogBCA1, CART15data$LogLDH, method =c('pearson'))
spFrac<- cor.test(CART15data$LogFractalkine, CART15data$LogLDH, method =c('pearson'))
spGCSF<- cor.test(CART15data$LogGCSF, CART15data$LogLDH, method =c('pearson'))
spI309<- cor.test(CART15data$LogI309, CART15data$LogLDH, method =c('pearson'))
spIFNg<- cor.test(CART15data$LogIFNg, CART15data$LogLDH, method =c('pearson'))
spIL6<- cor.test(CART15data$LogIL6, CART15data$LogLDH, method =c('pearson'))
spIL8<- cor.test(CART15data$LogIL8, CART15data$LogLDH, method =c('pearson'))
spIP10<- cor.test(CART15data$LogIP10, CART15data$LogLDH, method =c('pearson'))
spMCP2<- cor.test(CART15data$LogMCP2, CART15data$LogLDH, method =c('pearson'))
spTNFa<- cor.test(CART15data$LogTNFa, CART15data$LogLDH, method =c('pearson'))

data.frame(spBCA1$p.value, spFrac$p.value, spGCSF$p.value, spI309$p.value, spIFNg$p.value, spIL6$p.value, spIL8$p.value, spIP10$p.value, spMCP2$p.value, spTNFa$p.value)
#KYN Metabolites
pcTrp<- cor.test(CARTdata$LogTRP, CARTdata$LogLDH * CARTdata$Time, method =c('pearson'))
pcKyn <- cor.test(CARTdata$LogKYN, CARTdata$LogLDH * CARTdata$Time, method =c('pearson'))
pcKA <- cor.test(CARTdata$LogKA, CARTdata$LogLDH * CARTdata$Time, method =c('pearson'))
pcHK <- cor.test(CARTdata$LogHK, CARTdata$LogLDH * CARTdata$Time, method =c('pearson'))
pcHAA <- cor.test(CARTdata$LogHAA2, CARTdata$LogLDH * CARTdata$Time, method =c('pearson'))
pcQA <- cor.test(CARTdata$LogQA, CARTdata$LogLDH * CARTdata$Time, method =c('pearson'))

data.frame(pcTrp$p.value, pcKyn$p.value, pcKA$p.value, pcHK$p.value, pcHAA$p.value, pcQA$p.value)
#PROs
pcDep<- cor.test(CARTdata$Dep, CARTdata$LogLDH * CARTdata$Time, method =c('pearson'))
pcAnx <- cor.test(CARTdata$Anx, CARTdata$LogLDH * CARTdata$Time, method =c('pearson'))
pcPSQI <- cor.test(CARTdata$PSQI, CARTdata$LogLDH * CARTdata$Time, method =c('pearson'))
pcBPII <- cor.test(CARTdata$BPII, CARTdata$LogLDH * CARTdata$Time, method =c('pearson'))
pcBPIF <- cor.test(CARTdata$BPIF, CARTdata$LogLDH * CARTdata$Time, method =c('pearson'))
pcFSII <- cor.test(CARTdata$FSII, CARTdata$LogLDH * CARTdata$Time, method =c('pearson'))
pcFSID <- cor.test(CARTdata$FSID, CARTdata$LogLDH * CARTdata$Time, method =c('pearson'))
pcFSIF <- cor.test(CARTdata$FSIF, CARTdata$LogLDH * CARTdata$Time, method =c('pearson'))

data.frame(pcDep$p.value, pcAnx$p.value, pcPSQI$p.value, pcBPII$p.value, pcBPIF$p.value, pcFSII$p.value, pcFSID$p.value, pcFSIF$p.value)

LDH as Covariant

#Demographics 
lmAge <-lm(CART15data$Age ~ CART15data$IncomeDi + CART15data$LogLDH)
lmEd <-glm(CART15data$EducationLevelCoded ~ CART15data$IncomeDi + CART15data$LogLDH)
lmLines <-lm(CART15data$lines ~ CART15data$IncomeDi + CART15data$LogLDH)
lmCR <-glm(CART15data$day28coded ~ CART15data$IncomeDi + CART15data$LogLDH)
lmCRS <-glm(CART15data$`CRS (Y=1 /N =0)` ~ CART15data$IncomeDi + CART15data$LogLDH, family=binomial)
lmCRSgrade <-glm(CART15data$`Max Grade CRS` ~ CART15data$IncomeDi + CART15data$LogLDH)
lmCRSdays <-lm(CART15data$`Day to CRS`~ CART15data$IncomeDi + CART15data$LogLDH)
lmNTX <-glm(CART15data$`NTX (yes=1, no =0)` ~ CART15data$IncomeDi + CART15data$LogLDH, family=binomial)
lmNTXgrade <-glm(CART15data$`Max Grade NTX` ~ CART15data$IncomeDi + CART15data$LogLDH)
lmNTXdays <-lm(CART15data$`Day to NTX` ~ CART15data$IncomeDi + CART15data$LogLDH)

#Cytokines
lmBCA1<- lm(CART15data$LogBCA1 ~ CART15data$IncomeDi + CART15data$LogLDH)
lmFrac<- lm(CART15data$LogFractalkine ~ CART15data$IncomeDi + CART15data$LogLDH)
lmGCSF<- lm(CART15data$LogGCSF ~ CART15data$IncomeDi + CART15data$LogLDH)
lmI309<- lm(CART15data$LogI309 ~ CART15data$IncomeDi + CART15data$LogLDH)
lmIFNg<- lm(CART15data$LogIFNg ~ CART15data$IncomeDi + CART15data$LogLDH)
lmIL6<- lm(CART15data$LogIL6 ~ CART15data$IncomeDi + CART15data$LogLDH)
lmIL8<- lm(CART15data$LogIL8 ~ CART15data$IncomeDi + CART15data$LogLDH)
lmIP10<- lm(CART15data$LogIP10 ~ CART15data$IncomeDi + CART15data$LogLDH)
lmMCP2<- lm(CART15data$LogMCP2 ~ CART15data$IncomeDi + CART15data$LogLDH)
lmTNFa<- lm(CART15data$LogTNFa ~ CART15data$IncomeDi + CART15data$LogLDH)

#KYN Metabolites
lmrTRP <- lmer(LogTRP~IncomeDiCode*TimeCode + CARTdata$LogLDH + (1|ID), data=CARTdata)
emTRP<- emmeans(lmrTRP, pairwise~IncomeDiCode|TimeCode)

lmrKYN <- lmer(LogKYN~IncomeDiCode*TimeCode+ CARTdata$LogLDH +(1|ID), data=CARTdata)
emKYN<- emmeans(lmrKYN, pairwise~IncomeDiCode|TimeCode)

lmrKA <- lmer(LogKA~IncomeDiCode*TimeCode+ CARTdata$LogLDH +(1|ID), data=CARTdata)
emKA<- emmeans(lmrKA, pairwise~IncomeDiCode|TimeCode)

lmrHK <- lmer(LogHK~IncomeDiCode*TimeCode+ CARTdata$LogLDH + (1|ID), data=CARTdata)
emHK<- emmeans(lmrHK, pairwise~IncomeDiCode|TimeCode)

lmrHAA <- lmer(LogHAA2~IncomeDiCode*TimeCode+CARTdata$LogLDH + (1|ID), data=CARTdata)
emHAA<- emmeans(lmrHAA, pairwise~IncomeDiCode|TimeCode)

lmrQA <- lmer(LogQA~IncomeDiCode*TimeCode+CARTdata$LogLDH + (1|ID), data=CARTdata)
emQA<- emmeans(lmrQA, pairwise~IncomeDiCode|TimeCode)


#PROs
lmrDep <- lmer(Dep~IncomeDiCode*TimeCode+ CARTdata$LogLDH+(1|ID), data=CARTdata)
emDep<- emmeans(lmrDep, pairwise~IncomeDiCode|TimeCode)

lmrAnx <- lmer(Anx~IncomeDiCode*TimeCode+ CARTdata$LogLDH+(1|ID), data=CARTdata)
emAnx<- emmeans(lmrAnx, pairwise~IncomeDiCode|TimeCode)

lmrPSQI <- lmer(PSQI~IncomeDiCode*TimeCode+ CARTdata$LogLDH+(1|ID), data=CARTdata)
emPSQI<- emmeans(lmrPSQI, pairwise~IncomeDiCode|TimeCode)

lmrFSII <- lmer(FSII~IncomeDiCode*TimeCode+ CARTdata$LogLDH+(1|ID), data=CARTdata)
emFSII<- emmeans(lmrFSII, pairwise~IncomeDiCode|TimeCode)

lmrFSIF <- lmer(FSIF~IncomeDiCode*TimeCode+ CARTdata$LogLDH+(1|ID), data=CARTdata)
emFSIF<- emmeans(lmrFSIF, pairwise~IncomeDiCode|TimeCode)

lmrFSID <- lmer(FSID~IncomeDiCode*TimeCode+ CARTdata$LogLDH+(1|ID), data=CARTdata)
emFSID<- emmeans(lmrFSID, pairwise~IncomeDiCode|TimeCode)

lmrBPII <- lmer(BPII~IncomeDiCode*TimeCode+ CARTdata$LogLDH+(1|ID), data=CARTdata)
emBPII<- emmeans(lmrBPII, pairwise~IncomeDiCode|TimeCode)

lmrBPIF <- lmer(BPIF~IncomeDiCode*TimeCode+ CARTdata$LogLDH+(1|ID), data=CARTdata)
emBPIF<- emmeans(lmrBPIF, pairwise~IncomeDiCode|TimeCode)

#Data Output
summary(lmAge)
## 
## Call:
## lm(formula = CART15data$Age ~ CART15data$IncomeDi + CART15data$LogLDH)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -16.889  -9.670   3.474   7.732  13.440 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)           52.489     31.056   1.690    0.117
## CART15data$IncomeDi   -5.016      6.877  -0.729    0.480
## CART15data$LogLDH      5.393      9.972   0.541    0.599
## 
## Residual standard error: 11.43 on 12 degrees of freedom
## Multiple R-squared:  0.1213, Adjusted R-squared:  -0.02519 
## F-statistic: 0.828 on 2 and 12 DF,  p-value: 0.4604
summary(lmEd)
## 
## Call:
## glm(formula = CART15data$EducationLevelCoded ~ CART15data$IncomeDi + 
##     CART15data$LogLDH)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6670  -0.6298   0.1805   0.6136   1.5312  
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)   
## (Intercept)          -7.0851     2.7365  -2.589  0.02370 * 
## CART15data$IncomeDi   1.9810     0.6060   3.269  0.00671 **
## CART15data$LogLDH     2.9454     0.8787   3.352  0.00576 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 1.015245)
## 
##     Null deviance: 26.933  on 14  degrees of freedom
## Residual deviance: 12.183  on 12  degrees of freedom
## AIC: 47.448
## 
## Number of Fisher Scoring iterations: 2
summary(lmLines)
## 
## Call:
## lm(formula = CART15data$lines ~ CART15data$IncomeDi + CART15data$LogLDH)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8320 -1.8963 -0.5086  1.9488  4.2037 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)           -4.649      6.683  -0.696    0.500
## CART15data$IncomeDi    1.048      1.480   0.708    0.493
## CART15data$LogLDH      3.135      2.146   1.461    0.170
## 
## Residual standard error: 2.461 on 12 degrees of freedom
## Multiple R-squared:  0.1511, Adjusted R-squared:  0.00958 
## F-statistic: 1.068 on 2 and 12 DF,  p-value: 0.3743
summary(lmCR)
## 
## Call:
## glm(formula = CART15data$day28coded ~ CART15data$IncomeDi + CART15data$LogLDH)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -0.79413  -0.27857  -0.19429  -0.03778   1.57848  
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)          -1.1120     1.9706  -0.564    0.583
## CART15data$IncomeDi   0.2148     0.4364   0.492    0.631
## CART15data$LogLDH     0.8658     0.6328   1.368    0.196
## 
## (Dispersion parameter for gaussian family taken to be 0.5264882)
## 
##     Null deviance: 7.3333  on 14  degrees of freedom
## Residual deviance: 6.3179  on 12  degrees of freedom
## AIC: 37.598
## 
## Number of Fisher Scoring iterations: 2
summary(lmCRS)
## 
## Call:
## glm(formula = CART15data$`CRS (Y=1 /N =0)` ~ CART15data$IncomeDi + 
##     CART15data$LogLDH, family = binomial)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.52038   0.00000   0.00003   0.21798   1.19848  
## 
## Coefficients:
##                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)            12.28    9041.64   0.001    0.999
## CART15data$IncomeDi   -19.92    4520.80  -0.004    0.996
## CART15data$LogLDH      12.29      14.35   0.856    0.392
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 15.0121  on 14  degrees of freedom
## Residual deviance:  8.5456  on 12  degrees of freedom
## AIC: 14.546
## 
## Number of Fisher Scoring iterations: 19
summary(lmCRSgrade)
## 
## Call:
## glm(formula = CART15data$`Max Grade CRS` ~ CART15data$IncomeDi + 
##     CART15data$LogLDH)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.13688  -0.63402  -0.02038   0.29446   2.16806  
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)           1.1238     2.5427   0.442    0.666
## CART15data$IncomeDi  -0.8395     0.5631  -1.491    0.162
## CART15data$LogLDH     0.5585     0.8165   0.684    0.507
## 
## (Dispersion parameter for gaussian family taken to be 0.8765312)
## 
##     Null deviance: 14.933  on 14  degrees of freedom
## Residual deviance: 10.518  on 12  degrees of freedom
## AIC: 45.244
## 
## Number of Fisher Scoring iterations: 2
summary(lmCRSdays)
## 
## Call:
## lm(formula = CART15data$`Day to CRS` ~ CART15data$IncomeDi + 
##     CART15data$LogLDH)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -14.940  -4.420  -1.278   3.615  12.220 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)  
## (Intercept)           -3.570     22.983  -0.155   0.8791  
## CART15data$IncomeDi   12.401      5.089   2.437   0.0313 *
## CART15data$LogLDH     -2.365      7.380  -0.320   0.7541  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.463 on 12 degrees of freedom
## Multiple R-squared:  0.4348, Adjusted R-squared:  0.3406 
## F-statistic: 4.615 on 2 and 12 DF,  p-value: 0.03261
summary(lmNTX)
## 
## Call:
## glm(formula = CART15data$`NTX (yes=1, no =0)` ~ CART15data$IncomeDi + 
##     CART15data$LogLDH, family = binomial)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.3455  -0.6563  -0.5135   0.3986   2.0495  
## 
## Coefficients:
##                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)         -10.1685     8.2515  -1.232    0.218
## CART15data$IncomeDi  -0.4987     1.5918  -0.313    0.754
## CART15data$LogLDH     4.1090     2.8292   1.452    0.146
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 19.095  on 14  degrees of freedom
## Residual deviance: 13.465  on 12  degrees of freedom
## AIC: 19.465
## 
## Number of Fisher Scoring iterations: 4
summary(lmNTXgrade)
## 
## Call:
## glm(formula = CART15data$`Max Grade NTX` ~ CART15data$IncomeDi + 
##     CART15data$LogLDH)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.56414  -0.45774  -0.08543   0.20704   2.20487  
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)   
## (Intercept)          -5.9140     2.4728  -2.392   0.0340 * 
## CART15data$IncomeDi  -0.2262     0.5476  -0.413   0.6868   
## CART15data$LogLDH     2.8639     0.7941   3.607   0.0036 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 0.829032)
## 
##     Null deviance: 26.4000  on 14  degrees of freedom
## Residual deviance:  9.9484  on 12  degrees of freedom
## AIC: 44.409
## 
## Number of Fisher Scoring iterations: 2
summary(lmNTXdays)
## 
## Call:
## lm(formula = CART15data$`Day to NTX` ~ CART15data$IncomeDi + 
##     CART15data$LogLDH)
## 
## Residuals:
##          2          9         11         13         15 
##  1.267e+00 -1.104e+00  3.526e+00  5.551e-16 -3.690e+00 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)           25.078     18.298   1.370    0.304
## CART15data$IncomeDi   -2.189      5.303  -0.413    0.720
## CART15data$LogLDH     -6.568      4.978  -1.319    0.318
## 
## Residual standard error: 3.799 on 2 degrees of freedom
##   (10 observations deleted due to missingness)
## Multiple R-squared:  0.4953, Adjusted R-squared:  -0.009494 
## F-statistic: 0.9812 on 2 and 2 DF,  p-value: 0.5047
summary(lmBCA1)
## 
## Call:
## lm(formula = CART15data$LogBCA1 ~ CART15data$IncomeDi + CART15data$LogLDH)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.61326 -0.37604 -0.03261  0.20323  0.86373 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)           1.3117     1.4545   0.902    0.385
## CART15data$IncomeDi  -0.2922     0.3221  -0.907    0.382
## CART15data$LogLDH     0.6874     0.4671   1.472    0.167
## 
## Residual standard error: 0.5356 on 12 degrees of freedom
## Multiple R-squared:  0.3286, Adjusted R-squared:  0.2167 
## F-statistic: 2.936 on 2 and 12 DF,  p-value: 0.09162
summary(lmFrac)
## 
## Call:
## lm(formula = CART15data$LogFractalkine ~ CART15data$IncomeDi + 
##     CART15data$LogLDH)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.9618 -0.4429 -0.2082  0.4501  1.3175 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)          1.18511    1.90406   0.622    0.545
## CART15data$IncomeDi -0.03405    0.42164  -0.081    0.937
## CART15data$LogLDH    0.54646    0.61141   0.894    0.389
## 
## Residual standard error: 0.7011 on 12 degrees of freedom
## Multiple R-squared:   0.09,  Adjusted R-squared:  -0.06167 
## F-statistic: 0.5934 on 2 and 12 DF,  p-value: 0.5679
summary(lmGCSF)
## 
## Call:
## lm(formula = CART15data$LogGCSF ~ CART15data$IncomeDi + CART15data$LogLDH)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.8997 -0.5552 -0.0602  0.4961  0.8597 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)  
## (Intercept)           0.5409     1.6952   0.319   0.7552  
## CART15data$IncomeDi  -0.4572     0.3754  -1.218   0.2466  
## CART15data$LogLDH     0.9793     0.5444   1.799   0.0972 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6242 on 12 degrees of freedom
## Multiple R-squared:  0.4389, Adjusted R-squared:  0.3454 
## F-statistic: 4.694 on 2 and 12 DF,  p-value: 0.0312
summary(lmI309)
## 
## Call:
## lm(formula = CART15data$LogI309 ~ CART15data$IncomeDi + CART15data$LogLDH)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.73475 -0.20145 -0.06731  0.23076  0.52402 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)  
## (Intercept)           0.4551     0.9929   0.458   0.6548  
## CART15data$IncomeDi  -0.2926     0.2199  -1.331   0.2079  
## CART15data$LogLDH     0.7293     0.3188   2.287   0.0411 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3656 on 12 degrees of freedom
## Multiple R-squared:  0.5321, Adjusted R-squared:  0.4541 
## F-statistic: 6.823 on 2 and 12 DF,  p-value: 0.0105
summary(lmIFNg)
## 
## Call:
## lm(formula = CART15data$LogIFNg ~ CART15data$IncomeDi + CART15data$LogLDH)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.33371 -0.55690  0.09247  0.36874  1.57659 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)           0.8564     2.4247   0.353    0.730
## CART15data$IncomeDi  -0.3444     0.5369  -0.641    0.533
## CART15data$LogLDH     0.7586     0.7786   0.974    0.349
## 
## Residual standard error: 0.8928 on 12 degrees of freedom
## Multiple R-squared:  0.1835, Adjusted R-squared:  0.04742 
## F-statistic: 1.348 on 2 and 12 DF,  p-value: 0.2963
summary(lmIL6)
## 
## Call:
## lm(formula = CART15data$LogIL6 ~ CART15data$IncomeDi + CART15data$LogLDH)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.08332 -0.47628  0.07498  0.37896  1.40892 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)           1.0843     1.8755   0.578    0.574
## CART15data$IncomeDi  -0.4670     0.4153  -1.125    0.283
## CART15data$LogLDH     0.6659     0.6022   1.106    0.291
## 
## Residual standard error: 0.6905 on 12 degrees of freedom
## Multiple R-squared:  0.297,  Adjusted R-squared:  0.1798 
## F-statistic: 2.535 on 2 and 12 DF,  p-value: 0.1207
summary(lmIL8)
## 
## Call:
## lm(formula = CART15data$LogIL8 ~ CART15data$IncomeDi + CART15data$LogLDH)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.48514 -0.31753 -0.02474  0.20745  0.89244 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)           1.2113     1.1540   1.050    0.315
## CART15data$IncomeDi  -0.3912     0.2555  -1.531    0.152
## CART15data$LogLDH     0.5395     0.3705   1.456    0.171
## 
## Residual standard error: 0.4249 on 12 degrees of freedom
## Multiple R-squared:  0.4311, Adjusted R-squared:  0.3363 
## F-statistic: 4.546 on 2 and 12 DF,  p-value: 0.03391
summary(lmIP10)
## 
## Call:
## lm(formula = CART15data$LogIP10 ~ CART15data$IncomeDi + CART15data$LogLDH)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.47377 -0.13282  0.02447  0.13102  0.57869 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          3.97844    0.88727   4.484 0.000747 ***
## CART15data$IncomeDi -0.50612    0.19648  -2.576 0.024277 *  
## CART15data$LogLDH    0.06551    0.28491   0.230 0.822028    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3267 on 12 degrees of freedom
## Multiple R-squared:  0.4507, Adjusted R-squared:  0.3592 
## F-statistic: 4.923 on 2 and 12 DF,  p-value: 0.02747
summary(lmMCP2)
## 
## Call:
## lm(formula = CART15data$LogMCP2 ~ CART15data$IncomeDi + CART15data$LogLDH)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.41567 -0.20554 -0.06313  0.18158  0.76058 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)  
## (Intercept)           2.1369     0.9475   2.255   0.0436 *
## CART15data$IncomeDi  -0.3527     0.2098  -1.681   0.1186  
## CART15data$LogLDH     0.1957     0.3043   0.643   0.5322  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3489 on 12 degrees of freedom
## Multiple R-squared:  0.3282, Adjusted R-squared:  0.2162 
## F-statistic: 2.931 on 2 and 12 DF,  p-value: 0.09195
summary(lmTNFa)
## 
## Call:
## lm(formula = CART15data$LogTNFa ~ CART15data$IncomeDi + CART15data$LogLDH)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.40389 -0.20705 -0.09129  0.16745  0.86054 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)  
## (Intercept)           0.8191     0.9485   0.863   0.4048  
## CART15data$IncomeDi  -0.3497     0.2100  -1.665   0.1218  
## CART15data$LogLDH     0.8361     0.3046   2.745   0.0178 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3493 on 12 degrees of freedom
## Multiple R-squared:  0.6274, Adjusted R-squared:  0.5653 
## F-statistic:  10.1 on 2 and 12 DF,  p-value: 0.002677
emTRP$contrasts
## TimeCode = Baseline:
##  contrast   estimate    SE   df t.ratio p.value
##  high - low   0.1500 0.131 36.6 1.142   0.2610 
## 
## TimeCode = D14:
##  contrast   estimate    SE   df t.ratio p.value
##  high - low   0.1387 0.144 40.6 0.963   0.3411 
## 
## TimeCode = D28:
##  contrast   estimate    SE   df t.ratio p.value
##  high - low   0.0109 0.137 38.1 0.079   0.9374 
## 
## TimeCode = D90:
##  contrast   estimate    SE   df t.ratio p.value
##  high - low   0.0928 0.138 38.1 0.673   0.5052 
## 
## Degrees-of-freedom method: kenward-roger
emKYN$contrasts
## TimeCode = Baseline:
##  contrast   estimate    SE   df t.ratio p.value
##  high - low  -0.1719 0.140 31.9 -1.226  0.2293 
## 
## TimeCode = D14:
##  contrast   estimate    SE   df t.ratio p.value
##  high - low  -0.0909 0.152 36.6 -0.598  0.5538 
## 
## TimeCode = D28:
##  contrast   estimate    SE   df t.ratio p.value
##  high - low  -0.0942 0.146 33.7 -0.645  0.5232 
## 
## TimeCode = D90:
##  contrast   estimate    SE   df t.ratio p.value
##  high - low  -0.0750 0.147 33.8 -0.511  0.6123 
## 
## Degrees-of-freedom method: kenward-roger
emKA$contrasts
## TimeCode = Baseline:
##  contrast   estimate    SE   df t.ratio p.value
##  high - low  0.18246 0.213 29.3 0.858   0.3980 
## 
## TimeCode = D14:
##  contrast   estimate    SE   df t.ratio p.value
##  high - low  0.06580 0.229 34.1 0.287   0.7760 
## 
## TimeCode = D28:
##  contrast   estimate    SE   df t.ratio p.value
##  high - low  0.00732 0.221 31.3 0.033   0.9738 
## 
## TimeCode = D90:
##  contrast   estimate    SE   df t.ratio p.value
##  high - low  0.21614 0.222 31.4 0.975   0.3372 
## 
## Degrees-of-freedom method: kenward-roger
emHK$contrasts
## TimeCode = Baseline:
##  contrast   estimate    SE   df t.ratio p.value
##  high - low  -0.1324 0.281 17.5 -0.472  0.6428 
## 
## TimeCode = D14:
##  contrast   estimate    SE   df t.ratio p.value
##  high - low  -0.0958 0.291 19.7 -0.329  0.7453 
## 
## TimeCode = D28:
##  contrast   estimate    SE   df t.ratio p.value
##  high - low  -0.1697 0.286 18.6 -0.594  0.5600 
## 
## TimeCode = D90:
##  contrast   estimate    SE   df t.ratio p.value
##  high - low   0.1436 0.286 18.7  0.501  0.6219 
## 
## Degrees-of-freedom method: kenward-roger
emHAA$contrasts
## TimeCode = Baseline:
##  contrast   estimate    SE   df t.ratio p.value
##  high - low   -0.348 0.439 20.0 -0.792  0.4378 
## 
## TimeCode = D14:
##  contrast   estimate    SE   df t.ratio p.value
##  high - low   -0.456 0.460 23.1 -0.992  0.3315 
## 
## TimeCode = D28:
##  contrast   estimate    SE   df t.ratio p.value
##  high - low   -0.668 0.450 21.4 -1.485  0.1522 
## 
## TimeCode = D90:
##  contrast   estimate    SE   df t.ratio p.value
##  high - low   -0.183 0.451 21.6 -0.407  0.6884 
## 
## Degrees-of-freedom method: kenward-roger
emQA$contrasts
## TimeCode = Baseline:
##  contrast   estimate    SE   df t.ratio p.value
##  high - low   -0.633 0.218 12.5 -2.897  0.0129 
## 
## TimeCode = D14:
##  contrast   estimate    SE   df t.ratio p.value
##  high - low   -0.747 0.284 13.0 -2.627  0.0209 
## 
## TimeCode = D28:
##  contrast   estimate    SE   df t.ratio p.value
##  high - low   -0.548 0.255 12.7 -2.146  0.0519 
## 
## TimeCode = D90:
##  contrast   estimate    SE   df t.ratio p.value
##  high - low   -0.436 0.284 12.7 -1.537  0.1487 
## 
## Degrees-of-freedom method: kenward-roger
emDep$contrasts
## TimeCode = Baseline:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low    -1.72 6.21 23.9 -0.277  0.7841 
## 
## TimeCode = D14:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low     7.81 7.85 34.7  0.995  0.3265 
## 
## TimeCode = D28:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low    -4.50 6.40 25.6 -0.702  0.4890 
## 
## TimeCode = D90:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low    -2.52 6.70 28.0 -0.376  0.7096 
## 
## Degrees-of-freedom method: kenward-roger
emAnx$contrasts
## TimeCode = Baseline:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low  -1.4385 3.52 18.1 -0.408  0.6878 
## 
## TimeCode = D14:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low  -0.8964 4.14 27.6 -0.217  0.8301 
## 
## TimeCode = D28:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low   0.0964 3.59 19.2  0.027  0.9789 
## 
## TimeCode = D90:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low  -2.5600 3.70 21.0 -0.692  0.4965 
## 
## Degrees-of-freedom method: kenward-roger
emPSQI$contrasts
## TimeCode = Baseline:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low    -3.12 1.95 26.3 -1.603  0.1208 
## 
## TimeCode = D14:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low    -2.48 2.60 34.7 -0.956  0.3455 
## 
## TimeCode = D28:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low    -2.18 2.11 29.1 -1.037  0.3083 
## 
## TimeCode = D90:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low    -4.51 2.21 31.0 -2.039  0.0500 
## 
## Degrees-of-freedom method: kenward-roger
emFSII$contrasts
## TimeCode = Baseline:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low   -1.555 1.12 23.0 -1.393  0.1769 
## 
## TimeCode = D14:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low    0.948 1.40 34.0  0.678  0.5023 
## 
## TimeCode = D28:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low   -0.659 1.15 24.6 -0.574  0.5711 
## 
## TimeCode = D90:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low   -1.055 1.20 27.0 -0.880  0.3868 
## 
## Degrees-of-freedom method: kenward-roger
emFSIF$contrasts
## TimeCode = Baseline:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low    -1.02 1.16 28.4 -0.883  0.3844 
## 
## TimeCode = D14:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low     1.07 1.51 37.1  0.708  0.4836 
## 
## TimeCode = D28:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low    -1.90 1.20 30.0 -1.589  0.1226 
## 
## TimeCode = D90:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low    -0.65 1.26 32.3 -0.514  0.6108 
## 
## Degrees-of-freedom method: kenward-roger
emFSID$contrasts
## TimeCode = Baseline:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low   -0.569 2.88 22.4 -0.197  0.8452 
## 
## TimeCode = D14:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low    7.442 3.58 33.4  2.077  0.0456 
## 
## TimeCode = D28:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low   -1.105 2.96 23.9 -0.373  0.7123 
## 
## TimeCode = D90:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low    0.823 3.09 26.3  0.267  0.7919 
## 
## Degrees-of-freedom method: kenward-roger
emBPII$contrasts
## TimeCode = Baseline:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low   -2.548 1.09 21.8 -2.340  0.0289 
## 
## TimeCode = D14:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low   -0.337 1.35 32.8 -0.251  0.8037 
## 
## TimeCode = D28:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low   -2.826 1.12 23.3 -2.527  0.0188 
## 
## TimeCode = D90:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low   -3.676 1.16 25.6 -3.158  0.0040 
## 
## Degrees-of-freedom method: kenward-roger
emBPIF$contrasts
## TimeCode = Baseline:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low    -2.97 1.34 20.4 -2.214  0.0384 
## 
## TimeCode = D14:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low    -1.38 1.63 31.1 -0.849  0.4023 
## 
## TimeCode = D28:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low    -2.69 1.38 21.8 -1.955  0.0635 
## 
## TimeCode = D90:
##  contrast   estimate   SE   df t.ratio p.value
##  high - low    -2.23 1.43 23.9 -1.561  0.1317 
## 
## Degrees-of-freedom method: kenward-roger

The basic approach is regression adjustment: -continuous demographics: t-test/ANOVA is equivalent to lm(Age ~ IncomeDiCode, data=CAR15data), so we do lm(Age ~ IncomeDiCode+ LogLDH, data=CAR15data)