library(readxl)
Analisis_de_covarianza_Mice <- read_excel("C:/Users/ERICK/Desktop/Semestre 2021-I/Disenio de Experimentos/Ejercicios/Analisis de covarianza Mice.xlsx")
ff=Analisis_de_covarianza_Mice$Fertilizantes
MO=Analisis_de_covarianza_Mice$MO
Prot=Analisis_de_covarianza_Mice$Proteína
Lat=Analisis_de_covarianza_Mice$X
Long=Analisis_de_covarianza_Mice$Y
#Contar el total de NAs en la base de datos
sum(is.na(Analisis_de_covarianza_Mice))
## [1] 5
#Omitir las filas con observaciones NA
Base_cov <- na.omit(Analisis_de_covarianza_Mice)
#Saber el número de NAs por columna
colSums(is.na(Analisis_de_covarianza_Mice))
## X Y Fertilizantes MO Proteína
## 0 0 0 0 5
#install.packages("mice", dependencies = TRUE)
library(mice)
##
## Attaching package: 'mice'
## The following object is masked from 'package:stats':
##
## filter
## The following objects are masked from 'package:base':
##
## cbind, rbind
columns <- c("Proteína","MO")
imputed_data <- mice(Analisis_de_covarianza_Mice[,names(Analisis_de_covarianza_Mice) %in% columns],m = 1,
maxit = 1, method = "mean",print=F)
complete.data_Erick <- mice::complete(imputed_data)
Prot2=complete.data_Erick$Proteína
Análisis exploratorio
\[y_i = \beta_0 + \beta_1x_i+\epsilon_i\]
\[P_i = \beta_0 + \beta_1 MO_i+\epsilon_i\] \[E[P_i|MO_i] = \beta_0 + \beta_1 MO_i\] \[\widehat{P_i} = \beta_0 + \beta_1 MO_i\]
Ajustando el modelo de recta con: Minimos Cuadrados Oridnarios
mod1 = lm(Prot~MO)
summary(mod1)
##
## Call:
## lm(formula = Prot ~ MO)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.10399 -0.27435 0.09673 0.23745 0.76812
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.6768 0.3822 9.619 1.58e-10 ***
## MO 0.7050 0.1250 5.642 4.27e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4003 on 29 degrees of freedom
## (5 observations deleted due to missingness)
## Multiple R-squared: 0.5233, Adjusted R-squared: 0.5069
## F-statistic: 31.83 on 1 and 29 DF, p-value: 4.269e-06
coef = round(mod1$coefficients, 2)
\[\widehat{P_i} = 3.68 + 0.7 MO_i\]
shapiro.test(mod1$residuals)
##
## Shapiro-Wilk normality test
##
## data: mod1$residuals
## W = 0.97525, p-value = 0.6723
hist(mod1$residuals)
plot(mod1$residuals, pch = 16)
# Análisis de covarianza
mod2 = aov(Prot2 ~ MO + ff)
summary(mod2)
## Df Sum Sq Mean Sq F value Pr(>F)
## MO 1 4.712 4.712 29.921 5.58e-06 ***
## ff 3 0.153 0.051 0.323 0.809
## Residuals 31 4.882 0.157
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
boxplot(Prot2 ~ ff)
corr.plot(MO, prot)