Exercise 1 Download the dataframe credit.csv from http://nathanieldphillips.com/wp-content/uploads/2015/05/credit.txt. The data are stored in a comma-separated text file with headers. Load the dataframe into an object called credit.

credit <- read.table(file = "http://nathanieldphillips.com/wp-content/uploads/2015/05/credit.txt", header = T,
sep = ",", stringsAsFactors = F)

Exercise 2 How many rows and columns are in credit?

dim(credit)
## [1] 1000   17
nrow(credit)
## [1] 1000
ncol(credit)
## [1] 17

Exercise 3 What are the names of the columns of credit?

names(credit)
##  [1] "checking_balance"     "months_loan_duration" "credit_history"      
##  [4] "purpose"              "amount"               "savings_balance"     
##  [7] "employment_duration"  "percent_of_income"    "years_at_residence"  
## [10] "age"                  "other_credit"         "housing"             
## [13] "existing_loans_count" "job"                  "dependents"          
## [16] "phone"                "default"

Exercise 4 Add a new column to the dataframe called amount.eur that converts the loan amount in DM to euros. (1 DM is about .5 EUR)

amount.dm <- 0.5
credit$amount.eur <- credit$amount / amount.dm
head(credit$amount.eur)
## [1]  2338 11902  4192 15764  9740 18110
head(credit)
##   checking_balance months_loan_duration credit_history
## 1           < 0 DM                    6       critical
## 2       1 - 200 DM                   48           good
## 3          unknown                   12       critical
## 4           < 0 DM                   42           good
## 5           < 0 DM                   24           poor
## 6          unknown                   36           good
##                purpose amount savings_balance employment_duration
## 1 furniture/appliances   1169         unknown           > 7 years
## 2 furniture/appliances   5951        < 100 DM         1 - 4 years
## 3            education   2096        < 100 DM         4 - 7 years
## 4 furniture/appliances   7882        < 100 DM         4 - 7 years
## 5                  car   4870        < 100 DM         1 - 4 years
## 6            education   9055         unknown         1 - 4 years
##   percent_of_income years_at_residence age other_credit housing
## 1                 4                  4  67         none     own
## 2                 2                  2  22         none     own
## 3                 2                  3  49         none     own
## 4                 2                  4  45         none   other
## 5                 3                  4  53         none   other
## 6                 2                  4  35         none   other
##   existing_loans_count       job dependents phone default amount.eur
## 1                    2   skilled          1   yes      no       2338
## 2                    1   skilled          1    no     yes      11902
## 3                    1 unskilled          2    no      no       4192
## 4                    1   skilled          2    no      no      15764
## 5                    2   skilled          2    no     yes       9740
## 6                    1 unskilled          2   yes      no      18110

Exercise 5 What is the median, mean, and standard deviation of the loan amounts in EUR?

sd(credit$amount.eur)
## [1] 5645.474
mean(credit$amount.eur)
## [1] 6542.516
median(credit$amount.eur)
## [1] 4639

Exercise 6 What was the most common purpose for getting a loan? What was the least common reason?

unique(credit$purpose)
## [1] "furniture/appliances" "education"            "car"                 
## [4] "business"             "renovations"
purpose.sort <- table(credit$purpose)
purpose.sort
## 
##             business                  car            education 
##                   97                  349                   59 
## furniture/appliances          renovations 
##                  473                   22
sort(purpose.sort, decrease = F)
## 
##          renovations            education             business 
##                   22                   59                   97 
##                  car furniture/appliances 
##                  349                  473

Exercise 7 What percent of people got the loan for either education or a car?

c<- credit$purpose == "car" | credit$purpose == "education"
c
##    [1] FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE
##   [12] FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE
##   [23]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##   [34] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##   [45]  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE
##   [56]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [67] FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE
##   [78] FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE
##   [89]  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE
##  [100]  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
##  [111] FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [122]  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE
##  [133] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [144] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [155] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE
##  [166] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE
##  [177] FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE
##  [188]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [199]  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE
##  [210]  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE
##  [221] FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [232]  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE
##  [243]  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE
##  [254] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE
##  [265]  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE
##  [276] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE
##  [287]  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE
##  [298]  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE
##  [309] FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE
##  [320] FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE
##  [331]  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [342] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [353]  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE
##  [364] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE
##  [375]  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE
##  [386] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE
##  [397] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE
##  [408] FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
##  [419]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [430] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [441]  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE
##  [452] FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE
##  [463] FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE
##  [474]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [485]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE
##  [496] FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE
##  [507]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE
##  [518] FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE
##  [529] FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE
##  [540] FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE
##  [551] FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE
##  [562] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [573]  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
##  [584] FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE
##  [595]  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [606] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE
##  [617] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [628]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE
##  [639] FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE
##  [650]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE
##  [661] FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE
##  [672] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [683] FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE
##  [694]  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE
##  [705] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE
##  [716]  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE
##  [727] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE
##  [738]  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
##  [749]  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE
##  [760]  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE
##  [771]  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE
##  [782]  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE
##  [793] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE
##  [804] FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE
##  [815]  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE
##  [826]  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE
##  [837] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE
##  [848]  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE
##  [859]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [870] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
##  [881]  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE
##  [892] FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE
##  [903]  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE
##  [914] FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [925] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
##  [936] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE
##  [947] FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE
##  [958] FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [969] FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [980]  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [991]  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE
sum(c)
## [1] 408
mean(c)
## [1] 0.408

Exercise 8 What percentage of the people had a good credit history?

head(credit)
##   checking_balance months_loan_duration credit_history
## 1           < 0 DM                    6       critical
## 2       1 - 200 DM                   48           good
## 3          unknown                   12       critical
## 4           < 0 DM                   42           good
## 5           < 0 DM                   24           poor
## 6          unknown                   36           good
##                purpose amount savings_balance employment_duration
## 1 furniture/appliances   1169         unknown           > 7 years
## 2 furniture/appliances   5951        < 100 DM         1 - 4 years
## 3            education   2096        < 100 DM         4 - 7 years
## 4 furniture/appliances   7882        < 100 DM         4 - 7 years
## 5                  car   4870        < 100 DM         1 - 4 years
## 6            education   9055         unknown         1 - 4 years
##   percent_of_income years_at_residence age other_credit housing
## 1                 4                  4  67         none     own
## 2                 2                  2  22         none     own
## 3                 2                  3  49         none     own
## 4                 2                  4  45         none   other
## 5                 3                  4  53         none   other
## 6                 2                  4  35         none   other
##   existing_loans_count       job dependents phone default amount.eur
## 1                    2   skilled          1   yes      no       2338
## 2                    1   skilled          1    no     yes      11902
## 3                    1 unskilled          2    no      no       4192
## 4                    1   skilled          2    no      no      15764
## 5                    2   skilled          2    no     yes       9740
## 6                    1 unskilled          2   yes      no      18110
history.g <- credit$credit_history == "good"
mean(history.g)
## [1] 0.53

Exercise 9 Of those people with a critical credit history, what was the median loan amount in EUR? What about for people with a good credit history?

median(subset(x = credit, subset = credit_history == "critical")$amount.eur)
## [1] 4362
median(subset(x = credit, subset = credit_history == "good")$amount.eur)
## [1] 4435

Exercise 10 Was there a relationship between a borrower’s age and their loan amount in EUR? Test this in two ways: once using a correlation, and once by comparing the average loan amount of people whose age is above the median age to those whose age is less than the median age.

cor(credit$age, credit$amount.eur)
## [1] 0.03271642
median.age <- median(credit$age)
median.age
## [1] 33
above <- mean(subset(x = credit, subset = credit$age > median.age)$amount.eur)
above
## [1] 6708.62
under <- mean(subset(x = credit, subset = credit$age < median.age)$amount.eur)
under
## [1] 6459.685
compare <- above == under
compare
## [1] FALSE

Exercise 11 Did people with a savings balance of less than 100 DM have a different default rate than those with a savings balance greater than 500 DM?

head(credit)
##   checking_balance months_loan_duration credit_history
## 1           < 0 DM                    6       critical
## 2       1 - 200 DM                   48           good
## 3          unknown                   12       critical
## 4           < 0 DM                   42           good
## 5           < 0 DM                   24           poor
## 6          unknown                   36           good
##                purpose amount savings_balance employment_duration
## 1 furniture/appliances   1169         unknown           > 7 years
## 2 furniture/appliances   5951        < 100 DM         1 - 4 years
## 3            education   2096        < 100 DM         4 - 7 years
## 4 furniture/appliances   7882        < 100 DM         4 - 7 years
## 5                  car   4870        < 100 DM         1 - 4 years
## 6            education   9055         unknown         1 - 4 years
##   percent_of_income years_at_residence age other_credit housing
## 1                 4                  4  67         none     own
## 2                 2                  2  22         none     own
## 3                 2                  3  49         none     own
## 4                 2                  4  45         none   other
## 5                 3                  4  53         none   other
## 6                 2                  4  35         none   other
##   existing_loans_count       job dependents phone default amount.eur
## 1                    2   skilled          1   yes      no       2338
## 2                    1   skilled          1    no     yes      11902
## 3                    1 unskilled          2    no      no       4192
## 4                    1   skilled          2    no      no      15764
## 5                    2   skilled          2    no     yes       9740
## 6                    1 unskilled          2   yes      no      18110
less.100 <- subset(x = credit, 
                   subset = credit$savings_balance == "< 100 DM")$default == "yes"
less.100
##   [1]  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE
##  [12]  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
##  [23]  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [34] FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [45] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [56]  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE
##  [67]  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE
##  [78] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [89] FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE
## [100] FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE
## [111] FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
## [122] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [133]  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE
## [144] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE
## [155] FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE
## [166] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE
## [177] FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
## [188]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
## [199] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
## [210]  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE
## [221] FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE
## [232] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE
## [243] FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE
## [254] FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE
## [265]  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
## [276] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE
## [287]  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
## [298]  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE
## [309] FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE
## [320] FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE
## [331]  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE
## [342]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE
## [353] FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE
## [364]  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
## [375]  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE
## [386]  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE
## [397]  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
## [408] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [419] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
## [430]  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
## [441]  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE
## [452] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE
## [463] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE
## [474]  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
## [485] FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE
## [496] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
## [507] FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
## [518]  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
## [529] FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE
## [540] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE
## [551]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE
## [562] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE
## [573]  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
## [584] FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE
## [595] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
mean.less.100 <- mean(less.100)
mean.less.100
## [1] 0.3598673
unique(credit$savings_balance)
## [1] "unknown"       "< 100 DM"      "500 - 1000 DM" "> 1000 DM"    
## [5] "100 - 500 DM"
over.500 <- subset(x = credit, subset = credit$savings_balance == "500-1000 DM" | credit$savings_balance == "> 1000 DM")$default == "yes"
mean.over.500 <- mean(over.500)
mean.over.500
## [1] 0.125
mean.over.500 == mean.less.100
## [1] FALSE