Exercise 1 Download the dataframe credit.csv from http://nathanieldphillips.com/wp-content/uploads/2015/05/credit.txt. The data are stored in a comma-separated text file with headers. Load the dataframe into an object called credit.
credit <- read.table(file = "http://nathanieldphillips.com/wp-content/uploads/2015/05/credit.txt", header = T,
sep = ",", stringsAsFactors = F)
Exercise 2 How many rows and columns are in credit?
dim(credit)
## [1] 1000 17
nrow(credit)
## [1] 1000
ncol(credit)
## [1] 17
Exercise 3 What are the names of the columns of credit?
names(credit)
## [1] "checking_balance" "months_loan_duration" "credit_history"
## [4] "purpose" "amount" "savings_balance"
## [7] "employment_duration" "percent_of_income" "years_at_residence"
## [10] "age" "other_credit" "housing"
## [13] "existing_loans_count" "job" "dependents"
## [16] "phone" "default"
Exercise 4 Add a new column to the dataframe called amount.eur that converts the loan amount in DM to euros. (1 DM is about .5 EUR)
amount.dm <- 0.5
credit$amount.eur <- credit$amount / amount.dm
head(credit$amount.eur)
## [1] 2338 11902 4192 15764 9740 18110
head(credit)
## checking_balance months_loan_duration credit_history
## 1 < 0 DM 6 critical
## 2 1 - 200 DM 48 good
## 3 unknown 12 critical
## 4 < 0 DM 42 good
## 5 < 0 DM 24 poor
## 6 unknown 36 good
## purpose amount savings_balance employment_duration
## 1 furniture/appliances 1169 unknown > 7 years
## 2 furniture/appliances 5951 < 100 DM 1 - 4 years
## 3 education 2096 < 100 DM 4 - 7 years
## 4 furniture/appliances 7882 < 100 DM 4 - 7 years
## 5 car 4870 < 100 DM 1 - 4 years
## 6 education 9055 unknown 1 - 4 years
## percent_of_income years_at_residence age other_credit housing
## 1 4 4 67 none own
## 2 2 2 22 none own
## 3 2 3 49 none own
## 4 2 4 45 none other
## 5 3 4 53 none other
## 6 2 4 35 none other
## existing_loans_count job dependents phone default amount.eur
## 1 2 skilled 1 yes no 2338
## 2 1 skilled 1 no yes 11902
## 3 1 unskilled 2 no no 4192
## 4 1 skilled 2 no no 15764
## 5 2 skilled 2 no yes 9740
## 6 1 unskilled 2 yes no 18110
Exercise 5 What is the median, mean, and standard deviation of the loan amounts in EUR?
sd(credit$amount.eur)
## [1] 5645.474
mean(credit$amount.eur)
## [1] 6542.516
median(credit$amount.eur)
## [1] 4639
Exercise 6 What was the most common purpose for getting a loan? What was the least common reason?
unique(credit$purpose)
## [1] "furniture/appliances" "education" "car"
## [4] "business" "renovations"
purpose.sort <- table(credit$purpose)
purpose.sort
##
## business car education
## 97 349 59
## furniture/appliances renovations
## 473 22
sort(purpose.sort, decrease = F)
##
## renovations education business
## 22 59 97
## car furniture/appliances
## 349 473
Exercise 7 What percent of people got the loan for either education or a car?
c<- credit$purpose == "car" | credit$purpose == "education"
c
## [1] FALSE FALSE TRUE FALSE TRUE TRUE FALSE TRUE FALSE TRUE TRUE
## [12] FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE
## [23] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [34] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [45] TRUE TRUE FALSE TRUE TRUE FALSE FALSE TRUE FALSE TRUE TRUE
## [56] TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [67] FALSE TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE
## [78] FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE
## [89] TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE
## [100] TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE
## [111] FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
## [122] TRUE FALSE TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE
## [133] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE
## [144] FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE
## [155] FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE FALSE TRUE TRUE
## [166] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE
## [177] FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE TRUE
## [188] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
## [199] TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE FALSE
## [210] TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE
## [221] FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [232] TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE
## [243] TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE TRUE
## [254] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE
## [265] TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE
## [276] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE
## [287] TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE
## [298] TRUE FALSE FALSE TRUE FALSE TRUE TRUE TRUE FALSE TRUE FALSE
## [309] FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE
## [320] FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE FALSE FALSE
## [331] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [342] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
## [353] TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE
## [364] FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE TRUE
## [375] TRUE FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE
## [386] FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE
## [397] FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE
## [408] FALSE FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
## [419] TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE FALSE FALSE
## [430] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
## [441] TRUE FALSE TRUE TRUE FALSE TRUE TRUE FALSE FALSE FALSE TRUE
## [452] FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE
## [463] FALSE TRUE FALSE TRUE FALSE FALSE FALSE TRUE FALSE TRUE TRUE
## [474] TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
## [485] TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE
## [496] FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE
## [507] TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE
## [518] FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE
## [529] FALSE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE
## [540] FALSE FALSE TRUE FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE
## [551] FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE FALSE FALSE TRUE
## [562] FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
## [573] TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE
## [584] FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE
## [595] TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE
## [606] FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE
## [617] FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
## [628] TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
## [639] FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE
## [650] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE
## [661] FALSE TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE FALSE FALSE
## [672] FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
## [683] FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE FALSE
## [694] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE
## [705] FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE
## [716] TRUE FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE TRUE TRUE
## [727] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE
## [738] TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
## [749] TRUE TRUE FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE TRUE
## [760] TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE FALSE FALSE
## [771] TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE FALSE FALSE
## [782] TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE
## [793] FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE FALSE FALSE
## [804] FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE FALSE
## [815] TRUE TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE
## [826] TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE
## [837] FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE
## [848] TRUE FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE
## [859] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [870] FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE
## [881] TRUE TRUE TRUE FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE
## [892] FALSE TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE
## [903] TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE
## [914] FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE
## [925] FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE
## [936] FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE
## [947] FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE
## [958] FALSE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
## [969] FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE
## [980] TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE
## [991] TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE
sum(c)
## [1] 408
mean(c)
## [1] 0.408
Exercise 8 What percentage of the people had a good credit history?
head(credit)
## checking_balance months_loan_duration credit_history
## 1 < 0 DM 6 critical
## 2 1 - 200 DM 48 good
## 3 unknown 12 critical
## 4 < 0 DM 42 good
## 5 < 0 DM 24 poor
## 6 unknown 36 good
## purpose amount savings_balance employment_duration
## 1 furniture/appliances 1169 unknown > 7 years
## 2 furniture/appliances 5951 < 100 DM 1 - 4 years
## 3 education 2096 < 100 DM 4 - 7 years
## 4 furniture/appliances 7882 < 100 DM 4 - 7 years
## 5 car 4870 < 100 DM 1 - 4 years
## 6 education 9055 unknown 1 - 4 years
## percent_of_income years_at_residence age other_credit housing
## 1 4 4 67 none own
## 2 2 2 22 none own
## 3 2 3 49 none own
## 4 2 4 45 none other
## 5 3 4 53 none other
## 6 2 4 35 none other
## existing_loans_count job dependents phone default amount.eur
## 1 2 skilled 1 yes no 2338
## 2 1 skilled 1 no yes 11902
## 3 1 unskilled 2 no no 4192
## 4 1 skilled 2 no no 15764
## 5 2 skilled 2 no yes 9740
## 6 1 unskilled 2 yes no 18110
history.g <- credit$credit_history == "good"
mean(history.g)
## [1] 0.53
Exercise 9 Of those people with a critical credit history, what was the median loan amount in EUR? What about for people with a good credit history?
median(subset(x = credit, subset = credit_history == "critical")$amount.eur)
## [1] 4362
median(subset(x = credit, subset = credit_history == "good")$amount.eur)
## [1] 4435
Exercise 10 Was there a relationship between a borrower’s age and their loan amount in EUR? Test this in two ways: once using a correlation, and once by comparing the average loan amount of people whose age is above the median age to those whose age is less than the median age.
cor(credit$age, credit$amount.eur)
## [1] 0.03271642
median.age <- median(credit$age)
median.age
## [1] 33
above <- mean(subset(x = credit, subset = credit$age > median.age)$amount.eur)
above
## [1] 6708.62
under <- mean(subset(x = credit, subset = credit$age < median.age)$amount.eur)
under
## [1] 6459.685
compare <- above == under
compare
## [1] FALSE
Exercise 11 Did people with a savings balance of less than 100 DM have a different default rate than those with a savings balance greater than 500 DM?
head(credit)
## checking_balance months_loan_duration credit_history
## 1 < 0 DM 6 critical
## 2 1 - 200 DM 48 good
## 3 unknown 12 critical
## 4 < 0 DM 42 good
## 5 < 0 DM 24 poor
## 6 unknown 36 good
## purpose amount savings_balance employment_duration
## 1 furniture/appliances 1169 unknown > 7 years
## 2 furniture/appliances 5951 < 100 DM 1 - 4 years
## 3 education 2096 < 100 DM 4 - 7 years
## 4 furniture/appliances 7882 < 100 DM 4 - 7 years
## 5 car 4870 < 100 DM 1 - 4 years
## 6 education 9055 unknown 1 - 4 years
## percent_of_income years_at_residence age other_credit housing
## 1 4 4 67 none own
## 2 2 2 22 none own
## 3 2 3 49 none own
## 4 2 4 45 none other
## 5 3 4 53 none other
## 6 2 4 35 none other
## existing_loans_count job dependents phone default amount.eur
## 1 2 skilled 1 yes no 2338
## 2 1 skilled 1 no yes 11902
## 3 1 unskilled 2 no no 4192
## 4 1 skilled 2 no no 15764
## 5 2 skilled 2 no yes 9740
## 6 1 unskilled 2 yes no 18110
less.100 <- subset(x = credit,
subset = credit$savings_balance == "< 100 DM")$default == "yes"
less.100
## [1] TRUE FALSE FALSE TRUE FALSE TRUE TRUE TRUE FALSE TRUE FALSE
## [12] TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE
## [23] TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE
## [34] FALSE TRUE FALSE TRUE TRUE FALSE FALSE TRUE FALSE FALSE FALSE
## [45] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
## [56] TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE
## [67] TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE
## [78] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE
## [89] FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE TRUE FALSE TRUE
## [100] FALSE FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE
## [111] FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
## [122] FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [133] TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE
## [144] FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE
## [155] FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE FALSE FALSE TRUE
## [166] FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE
## [177] FALSE TRUE FALSE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE
## [188] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
## [199] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
## [210] TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE
## [221] FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE
## [232] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE
## [243] FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE
## [254] FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE
## [265] TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE
## [276] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE
## [287] TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
## [298] TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE
## [309] FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE TRUE
## [320] FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
## [331] TRUE FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE
## [342] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE
## [353] FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE TRUE
## [364] TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
## [375] TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE TRUE
## [386] TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE
## [397] TRUE FALSE TRUE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
## [408] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [419] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
## [430] TRUE FALSE FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE
## [441] TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE
## [452] FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE
## [463] FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE
## [474] TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE
## [485] FALSE TRUE TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE TRUE
## [496] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE
## [507] FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
## [518] TRUE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
## [529] FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE TRUE FALSE FALSE
## [540] FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE
## [551] TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE
## [562] FALSE FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE
## [573] TRUE FALSE TRUE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
## [584] FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE FALSE
## [595] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
mean.less.100 <- mean(less.100)
mean.less.100
## [1] 0.3598673
unique(credit$savings_balance)
## [1] "unknown" "< 100 DM" "500 - 1000 DM" "> 1000 DM"
## [5] "100 - 500 DM"
over.500 <- subset(x = credit, subset = credit$savings_balance == "500-1000 DM" | credit$savings_balance == "> 1000 DM")$default == "yes"
mean.over.500 <- mean(over.500)
mean.over.500
## [1] 0.125
mean.over.500 == mean.less.100
## [1] FALSE