Instalando los paquetes
install.packages("tosr")
## Installing package into '/home/rstudio-user/R/x86_64-pc-linux-gnu-library/4.1'
## (as 'lib' is unspecified)
install.packages("bibliometrix")
## Installing package into '/home/rstudio-user/R/x86_64-pc-linux-gnu-library/4.1'
## (as 'lib' is unspecified)
install.packages("promises")
## Installing package into '/home/rstudio-user/R/x86_64-pc-linux-gnu-library/4.1'
## (as 'lib' is unspecified)
install.packages("tidyverse")
## Installing package into '/home/rstudio-user/R/x86_64-pc-linux-gnu-library/4.1'
## (as 'lib' is unspecified)
install.packages("igraph")
## Installing package into '/home/rstudio-user/R/x86_64-pc-linux-gnu-library/4.1'
## (as 'lib' is unspecified)
Cargando los paquetes
library("bibliometrix")
## To cite bibliometrix in publications, please use:
##
## Aria, M. & Cuccurullo, C. (2017) bibliometrix: An R-tool for comprehensive science mapping analysis,
## Journal of Informetrics, 11(4), pp 959-975, Elsevier.
##
##
## https://www.bibliometrix.org
##
##
## For information and bug reports:
## - Send an email to info@bibliometrix.org
## - Write a post on https://github.com/massimoaria/bibliometrix/issues
##
## Help us to keep Bibliometrix free to download and use by contributing with a small donation to support our research team (https://bibliometrix.org/donate.html)
##
##
## To start with the shiny web-interface, please digit:
## biblioshiny()
library("tidyverse")
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✓ ggplot2 3.3.5 ✓ purrr 0.3.4
## ✓ tibble 3.1.2 ✓ dplyr 1.0.7
## ✓ tidyr 1.1.3 ✓ stringr 1.4.0
## ✓ readr 2.0.0 ✓ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library("tosr")
library("igraph")
##
## Attaching package: 'igraph'
## The following objects are masked from 'package:dplyr':
##
## as_data_frame, groups, union
## The following objects are masked from 'package:purrr':
##
## compose, simplify
## The following object is masked from 'package:tidyr':
##
## crossing
## The following object is masked from 'package:tibble':
##
## as_data_frame
## The following objects are masked from 'package:stats':
##
## decompose, spectrum
## The following object is masked from 'package:base':
##
## union
Creando el ToS
tos <- tosR("WoS_293.txt")
## [1] "1"
##
## Converting your wos collection into a bibliographic dataframe
##
## Done!
##
##
## Generating affiliation field tag AU_UN from C1: Done!
## Computing TOS SAP
## Computing TOS subfields
tos %>% rmarkdown::paged_table()
Cargando los datos
wos <- convert2df("WoS_293.txt")
##
## Converting your wos collection into a bibliographic dataframe
##
## Done!
##
##
## Generating affiliation field tag AU_UN from C1: Done!
wos %>% rmarkdown::paged_table()
Creando la red
net <-
biblioNetwork(wos,
analysis = "coupling",
network = "references",
sep = ";") %>%
graph_from_adjacency_matrix(mode = "directed") %>%
simplify()
AnĂ¡lisis general
metricas <-
tibble(id = V(net)$name,
grado_entrada = degree(net, mode = "in"),
grado_salida = degree(net, mode = "out"),
internediacion = betweenness(net))
metricas %>% rmarkdown::paged_table()
Exportando grafo
write_graph(net, "net.graphml", "graphml")