Introducción
En esta pagina se muestran modelos sencillos para estimar el valor de la renta mensual de cada tipo de inmueble. El calculo es muy sencillo:
\[\text{Renta mensual}=\beta_{\text{ Monto inicial}}+\text{Metros}^2\cdot\beta_{\text{Metros}^2}\] es decir, para cada predicción se suma el monto inicial (indicado en cada tabla) y la multiplicación de metros cuadrados con el coeficiente de metros cuadrados(también indicado en cada tabla). A continuación se muestran los modelos:
Oficinas
San Juan
|
|
|
|
Dependent variable:
|
|
|
|
|
|
v_renta
|
|
|
Precio de renta mensual
|
|
|
|
Metro construido al cuadrado
|
78.173***
|
|
|
(15.332)
|
|
|
|
|
Monto inicial
|
8,911.374***
|
|
|
(908.617)
|
|
|
|
|
|
|
Observations
|
50
|
|
R2
|
0.351
|
|
Adjusted R2
|
0.338
|
|
Residual Std. Error
|
3,710.558 (df = 48)
|
|
F Statistic
|
25.996*** (df = 1; 48)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|


Doctores
|
|
|
|
Dependent variable:
|
|
|
|
|
|
v_renta
|
|
|
Precio de renta mensual
|
|
|
|
Metro construido al cuadrado
|
216.346***
|
|
|
(7.987)
|
|
|
|
|
Monto inicial
|
10,927.150***
|
|
|
(1,039.107)
|
|
|
|
|
|
|
Observations
|
575
|
|
R2
|
0.561
|
|
Adjusted R2
|
0.561
|
|
Residual Std. Error
|
15,230.250 (df = 573)
|
|
F Statistic
|
733.674*** (df = 1; 573)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|


Roma Norte
|
|
|
|
Dependent variable:
|
|
|
|
|
|
v_renta
|
|
|
Precio de renta mensual
|
|
|
|
Metro construido al cuadrado
|
206.197***
|
|
|
(6.948)
|
|
|
|
|
Monto inicial
|
11,538.060***
|
|
|
(945.064)
|
|
|
|
|
|
|
Observations
|
715
|
|
R2
|
0.553
|
|
Adjusted R2
|
0.552
|
|
Residual Std. Error
|
15,395.770 (df = 713)
|
|
F Statistic
|
880.619*** (df = 1; 713)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|


Coacalco- Edomex
|
|
|
|
Dependent variable:
|
|
|
|
|
|
v_renta
|
|
|
Precio de renta mensual
|
|
|
|
Metro construido al cuadrado
|
179.533***
|
|
|
(8.566)
|
|
|
|
|
Monto inicial
|
-6,871.063**
|
|
|
(2,630.152)
|
|
|
|
|
|
|
Observations
|
14
|
|
R2
|
0.973
|
|
Adjusted R2
|
0.971
|
|
Residual Std. Error
|
7,759.393 (df = 12)
|
|
F Statistic
|
439.270*** (df = 1; 12)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|


Tlalnepantla
|
|
|
|
Dependent variable:
|
|
|
|
|
|
v_renta
|
|
|
Precio de renta mensual
|
|
|
|
Metro construido al cuadrado
|
223.962***
|
|
|
(9.906)
|
|
|
|
|
Monto inicial
|
4,255.012*
|
|
|
(2,552.314)
|
|
|
|
|
|
|
Observations
|
248
|
|
R2
|
0.675
|
|
Adjusted R2
|
0.674
|
|
Residual Std. Error
|
30,808.980 (df = 246)
|
|
F Statistic
|
511.119*** (df = 1; 246)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|

Lorenzo
|
|
|
|
Dependent variable:
|
|
|
|
|
|
v_renta
|
|
|
Precio de renta mensual
|
|
|
|
Metro construido al cuadrado
|
219.293***
|
|
|
(13.679)
|
|
|
|
|
Monto inicial
|
3,132.841**
|
|
|
(1,229.422)
|
|
|
|
|
|
|
Observations
|
189
|
|
R2
|
0.579
|
|
Adjusted R2
|
0.577
|
|
Residual Std. Error
|
8,804.315 (df = 187)
|
|
F Statistic
|
257.004*** (df = 1; 187)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|

Parque San Andres
|
|
|
|
Dependent variable:
|
|
|
|
|
|
v_renta
|
|
|
Precio de renta mensual
|
|
|
|
Metro construido al cuadrado
|
331.987***
|
|
|
(9.575)
|
|
|
|
|
Monto inicial
|
-4,811.003
|
|
|
(6,723.493)
|
|
|
|
|
|
|
Observations
|
25
|
|
R2
|
0.981
|
|
Adjusted R2
|
0.980
|
|
Residual Std. Error
|
26,632.370 (df = 23)
|
|
F Statistic
|
1,202.255*** (df = 1; 23)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
## Azcapo
|
|
|
|
Dependent variable:
|
|
|
|
|
|
v_renta
|
|
|
Precio de renta mensual
|
|
|
|
Metro construido al cuadrado
|
135.675***
|
|
|
(12.049)
|
|
|
|
|
Monto inicial
|
3,524.968
|
|
|
(2,546.165)
|
|
|
|
|
|
|
Observations
|
27
|
|
R2
|
0.835
|
|
Adjusted R2
|
0.829
|
|
Residual Std. Error
|
9,511.609 (df = 25)
|
|
F Statistic
|
126.802*** (df = 1; 25)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|


Bodegas
Azcapo
|
|
|
|
Dependent variable:
|
|
|
|
|
|
v_renta
|
|
|
Precio de renta mensual
|
|
|
|
Metro construido al cuadrado
|
256.145***
|
|
|
(12.078)
|
|
|
|
|
Monto inicial
|
-173,834.000**
|
|
|
(54,650.590)
|
|
|
|
|
|
|
Observations
|
8
|
|
R2
|
0.987
|
|
Adjusted R2
|
0.985
|
|
Residual Std. Error
|
109,988.000 (df = 6)
|
|
F Statistic
|
449.787*** (df = 1; 6)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
## San Juan Mixcoac (Autolavado)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
v_renta
|
|
|
Precio de renta mensual
|
|
|
|
Metro construido al cuadrado
|
166.986**
|
|
|
(65.000)
|
|
|
|
|
Monto inicial
|
-2,704.097
|
|
|
(46,690.920)
|
|
|
|
|
|
|
Observations
|
8
|
|
R2
|
0.524
|
|
Adjusted R2
|
0.444
|
|
Residual Std. Error
|
25,432.950 (df = 6)
|
|
F Statistic
|
6.600** (df = 1; 6)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|

San Juan (Bodega técnica)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
v_renta
|
|
|
Precio de renta mensual
|
|
|
|
Metro construido al cuadrado
|
194.080***
|
|
|
(53.323)
|
|
|
|
|
Monto inicial
|
-1,716.432
|
|
|
(26,602.400)
|
|
|
|
|
|
|
Observations
|
13
|
|
R2
|
0.546
|
|
Adjusted R2
|
0.505
|
|
Residual Std. Error
|
44,622.810 (df = 11)
|
|
F Statistic
|
13.248*** (df = 1; 11)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|

Roma
|
|
|
|
Dependent variable:
|
|
|
|
|
|
v_renta
|
|
|
Precio de renta mensual
|
|
|
|
Metro construido al cuadrado
|
185.644***
|
|
|
(21.574)
|
|
|
|
|
Monto inicial
|
7,878.458
|
|
|
(18,824.060)
|
|
|
|
|
|
|
Observations
|
12
|
|
R2
|
0.881
|
|
Adjusted R2
|
0.869
|
|
Residual Std. Error
|
34,887.180 (df = 10)
|
|
F Statistic
|
74.048*** (df = 1; 10)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|


Terrenos
San Juan
|
|
|
|
Dependent variable:
|
|
|
|
|
|
v_renta
|
|
|
Precio de renta mensual
|
|
|
|
Metros totales al cuadrado
|
185.644***
|
|
|
(21.574)
|
|
|
|
|
Monto inicial
|
7,878.458
|
|
|
(18,824.060)
|
|
|
|
|
|
|
Observations
|
12
|
|
R2
|
0.881
|
|
Adjusted R2
|
0.869
|
|
Residual Std. Error
|
34,887.180 (df = 10)
|
|
F Statistic
|
74.048*** (df = 1; 10)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|


Roma
|
|
|
|
Dependent variable:
|
|
|
|
|
|
v_renta
|
|
|
Precio de renta mensual
|
|
|
|
Metros totales al cuadrado
|
309.425***
|
|
|
(26.930)
|
|
|
|
|
Monto inicial
|
-71,065.370
|
|
|
(46,129.470)
|
|
|
|
|
|
|
Observations
|
7
|
|
R2
|
0.964
|
|
Adjusted R2
|
0.956
|
|
Residual Std. Error
|
70,382.960 (df = 5)
|
|
F Statistic
|
132.022*** (df = 1; 5)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
