Biblioteca Model Summnary
library(remotes)
library(modelsummary)
Mesclandop dados de Regressão Linear e Logit
models <- list()
models[['RegLinear']] <- lm(mpg ~ factor(cyl), mtcars)
models[['Logit']] <- glm(am ~ factor(cyl), mtcars, family = binomial)
library(tibble)
##
## Attaching package: 'tibble'
## The following object is masked from 'package:summarytools':
##
## view
rows <- tribble(~term, ~RegLinear, ~Logit,
'Classe(cyl)4', '-', '-',
'Informação', '???', 'XYZ')
attr(rows, 'position') <- c(3, 9)
modelsummary(models, add_rows = rows)
|
RegLinear
|
Logit
|
(Intercept)
|
26.664
|
0.981
|
|
(0.972)
|
(0.677)
|
Classe(cyl)4
|
|
|
factor(cyl)6
|
-6.921
|
-1.269
|
|
(1.558)
|
(1.021)
|
factor(cyl)8
|
-11.564
|
-2.773
|
|
(1.299)
|
(1.021)
|
Num.Obs.
|
32
|
32
|
Informação
|
???
|
XYZ
|
R2
|
0.732
|
|
R2 Adj.
|
0.714
|
|
AIC
|
170.6
|
39.9
|
BIC
|
176.4
|
44.3
|
Log.Lik.
|
-81.282
|
-16.967
|
F
|
39.698
|
|
Consolidacão
load("dat.Rda")
dat$Small <- dat$Pop1831 > median(dat$Pop1831)
datasummary_skim(dat)
|
Unique (#)
|
Missing (%)
|
Mean
|
SD
|
Min
|
Median
|
Max
|
|
X
|
86
|
0
|
43.5
|
25.0
|
1.0
|
43.5
|
86.0
|
|
dept
|
86
|
0
|
46.9
|
30.4
|
1.0
|
45.5
|
200.0
|
|
Crime_pers
|
85
|
0
|
19754.4
|
7504.7
|
2199.0
|
18748.5
|
37014.0
|
|
Crime_prop
|
86
|
0
|
7843.1
|
3051.4
|
1368.0
|
7595.0
|
20235.0
|
|
Literacy
|
50
|
0
|
39.3
|
17.4
|
12.0
|
38.0
|
74.0
|
|
Donations
|
85
|
0
|
7075.5
|
5834.6
|
1246.0
|
5020.0
|
37015.0
|
|
Infants
|
86
|
0
|
19049.9
|
8820.2
|
2660.0
|
17141.5
|
62486.0
|
|
Suicides
|
86
|
0
|
36522.6
|
31312.5
|
3460.0
|
26743.5
|
163241.0
|
|
Wealth
|
86
|
0
|
43.5
|
25.0
|
1.0
|
43.5
|
86.0
|
|
Commerce
|
84
|
0
|
42.8
|
25.0
|
1.0
|
42.5
|
86.0
|
|
Clergy
|
85
|
0
|
43.4
|
25.0
|
1.0
|
43.5
|
86.0
|
|
Crime_parents
|
86
|
0
|
43.5
|
25.0
|
1.0
|
43.5
|
86.0
|
|
Infanticide
|
81
|
0
|
43.5
|
24.9
|
1.0
|
43.5
|
86.0
|
|
Donation_clergy
|
86
|
0
|
43.5
|
25.0
|
1.0
|
43.5
|
86.0
|
|
Lottery
|
86
|
0
|
43.5
|
25.0
|
1.0
|
43.5
|
86.0
|
|
Desertion
|
86
|
0
|
43.5
|
25.0
|
1.0
|
43.5
|
86.0
|
|
Instruction
|
82
|
0
|
43.1
|
24.8
|
1.0
|
41.5
|
86.0
|
|
Prostitutes
|
63
|
0
|
141.9
|
521.0
|
0.0
|
33.0
|
4744.0
|
|
Distance
|
86
|
0
|
208.0
|
109.3
|
0.0
|
200.6
|
539.2
|
|
Area
|
84
|
0
|
6147.0
|
1398.2
|
762.0
|
6070.5
|
10000.0
|
|
Pop1831
|
86
|
0
|
378.6
|
148.8
|
129.1
|
346.2
|
989.9
|
|
Estatisticas para subconjuntos
datasummary_balance(~Small, dat)
## Warning in sanitize_datasummary_balance_data(formula, data): These variables
## were omitted because they include more than 50 levels: Department.
## Warning in datasummary_balance(~Small, dat): Please install the `estimatr` package or set `dinm=FALSE` to
## suppress this warning.
|
FALSE (N=43)
|
TRUE (N=43)
|
|
|
Mean
|
Std. Dev.
|
Mean
|
Std. Dev.
|
X
|
|
41.4
|
27.4
|
45.6
|
22.3
|
dept
|
|
46.0
|
36.6
|
47.7
|
23.0
|
Crime_pers
|
|
18040.6
|
7638.4
|
21468.2
|
7044.3
|
Crime_prop
|
|
8422.5
|
3406.7
|
7263.7
|
2559.3
|
Literacy
|
|
37.9
|
19.1
|
40.6
|
15.6
|
Donations
|
|
7258.5
|
6194.1
|
6892.6
|
5519.0
|
Infants
|
|
20790.2
|
9363.5
|
17309.6
|
7973.0
|
Suicides
|
|
42565.4
|
37074.1
|
30479.8
|
23130.9
|
Wealth
|
|
51.0
|
23.9
|
36.0
|
23.9
|
Commerce
|
|
42.7
|
24.6
|
43.0
|
25.7
|
Clergy
|
|
39.1
|
26.7
|
47.7
|
22.7
|
Crime_parents
|
|
54.2
|
25.2
|
32.8
|
19.9
|
Infanticide
|
|
37.9
|
25.7
|
49.1
|
23.1
|
Donation_clergy
|
|
52.3
|
24.0
|
34.7
|
22.9
|
Lottery
|
|
54.8
|
23.0
|
32.2
|
21.7
|
Desertion
|
|
41.7
|
25.9
|
45.3
|
24.2
|
Instruction
|
|
46.7
|
26.7
|
39.6
|
22.5
|
Prostitutes
|
|
52.8
|
93.1
|
230.9
|
724.1
|
Distance
|
|
228.7
|
116.7
|
187.2
|
98.4
|
Area
|
|
5989.0
|
1142.8
|
6305.0
|
1612.4
|
Pop1831
|
|
272.4
|
53.4
|
484.8
|
137.3
|
|
|
N
|
%
|
N
|
%
|
Region
|
C
|
13
|
30.2
|
4
|
9.3
|
|
E
|
9
|
20.9
|
8
|
18.6
|
|
N
|
4
|
9.3
|
13
|
30.2
|
|
S
|
12
|
27.9
|
5
|
11.6
|
|
W
|
4
|
9.3
|
13
|
30.2
|
|
NA
|
1
|
2.3
|
0
|
0.0
|
MainCity
|
1:Sm
|
10
|
23.3
|
0
|
0.0
|
|
2:Med
|
33
|
76.7
|
33
|
76.7
|
|
3:Lg
|
0
|
0.0
|
10
|
23.3
|
Matriz de correlação
datasummary_correlation(dat)
|
X
|
dept
|
Crime_pers
|
Crime_prop
|
Literacy
|
Donations
|
Infants
|
Suicides
|
Wealth
|
Commerce
|
Clergy
|
Crime_parents
|
Infanticide
|
Donation_clergy
|
Lottery
|
Desertion
|
Instruction
|
Prostitutes
|
Distance
|
Area
|
Pop1831
|
X
|
1
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
dept
|
.92
|
1
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
Crime_pers
|
-.12
|
-.20
|
1
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
Crime_prop
|
-.28
|
-.29
|
.27
|
1
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
Literacy
|
.09
|
.10
|
-.04
|
-.37
|
1
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
Donations
|
.06
|
.27
|
-.04
|
-.13
|
-.13
|
1
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
Infants
|
-.07
|
-.03
|
-.04
|
.27
|
-.41
|
.17
|
1
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
Suicides
|
-.18
|
-.15
|
-.13
|
.52
|
-.37
|
-.03
|
.29
|
1
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
Wealth
|
-.08
|
-.08
|
-.12
|
.46
|
-.28
|
.08
|
.34
|
.42
|
1
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
Commerce
|
-.03
|
.05
|
.05
|
.41
|
-.58
|
.30
|
.39
|
.48
|
.48
|
1
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
Clergy
|
.15
|
.06
|
.26
|
-.07
|
-.17
|
.09
|
-.06
|
-.32
|
-.11
|
-.12
|
1
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
Crime_parents
|
-.16
|
-.07
|
-.20
|
.36
|
-.20
|
-.02
|
.06
|
.35
|
.22
|
.18
|
-.18
|
1
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
Infanticide
|
.01
|
-.07
|
.27
|
-.13
|
.32
|
-.15
|
-.24
|
-.08
|
-.22
|
-.28
|
-.01
|
-.09
|
1
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
Donation_clergy
|
-.08
|
.00
|
-.18
|
.30
|
-.38
|
.25
|
.10
|
.19
|
.34
|
.18
|
.30
|
.29
|
-.23
|
1
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
Lottery
|
-.21
|
-.11
|
.00
|
.43
|
-.36
|
.15
|
.42
|
.49
|
.48
|
.45
|
-.28
|
.28
|
-.35
|
.36
|
1
|
.
|
.
|
.
|
.
|
.
|
.
|
Desertion
|
.10
|
.03
|
.33
|
-.26
|
.40
|
-.04
|
.00
|
-.47
|
-.23
|
-.36
|
.25
|
-.39
|
.11
|
-.41
|
-.30
|
1
|
.
|
.
|
.
|
.
|
.
|
Instruction
|
-.10
|
-.11
|
.05
|
.39
|
-.98
|
.14
|
.43
|
.36
|
.31
|
.59
|
.21
|
.21
|
-.32
|
.40
|
.37
|
-.37
|
1
|
.
|
.
|
.
|
.
|
Prostitutes
|
.17
|
.14
|
-.05
|
-.33
|
.30
|
-.07
|
-.28
|
-.21
|
-.32
|
-.27
|
.20
|
-.03
|
.16
|
-.04
|
-.28
|
.04
|
-.26
|
1
|
.
|
.
|
.
|
Distance
|
-.10
|
.04
|
-.51
|
.25
|
-.28
|
.08
|
.23
|
.41
|
.40
|
.38
|
-.31
|
.26
|
-.16
|
.28
|
.28
|
-.44
|
.24
|
-.37
|
1
|
.
|
.
|
Area
|
-.18
|
-.08
|
.22
|
.09
|
-.23
|
.18
|
.16
|
.00
|
.06
|
.18
|
.08
|
-.20
|
-.23
|
.02
|
.23
|
.04
|
.20
|
-.41
|
.06
|
1
|
.
|
Pop1831
|
.17
|
.09
|
.27
|
-.26
|
.09
|
.00
|
-.23
|
-.17
|
-.31
|
-.05
|
.29
|
-.40
|
.34
|
-.22
|
-.47
|
.11
|
-.11
|
.48
|
-.37
|
-.01
|
1
|
Estatisticas Aninhadas
datasummary(Literacy + Commerce ~ Small * (mean + sd), dat)
|
FALSE
|
TRUE
|
|
mean
|
sd
|
mean
|
sd
|
Literacy
|
37.88
|
19.08
|
40.63
|
15.57
|
Commerce
|
42.65
|
24.59
|
42.95
|
25.75
|
Resumo de Regressão Linear
mod <- lm(Donations ~ Crime_prop, data = dat)
modelsummary(mod)
|
Model 1
|
(Intercept)
|
9065.287
|
|
(1738.926)
|
Crime_prop
|
-0.254
|
|
(0.207)
|
Num.Obs.
|
86
|
R2
|
0.018
|
R2 Adj.
|
0.006
|
AIC
|
1739.0
|
BIC
|
1746.4
|
Log.Lik.
|
-866.516
|
F
|
1.505
|
Diferentes Regressões Comparadas
modelo <- list(
"RegLinear 1" = lm(Donations ~ Literacy + Clergy, data = dat),
"Poisson 1" = glm(Donations ~ Literacy + Commerce, family = poisson, data = dat),
"RegLinear 2" = lm(Crime_pers ~ Literacy + Clergy, data = dat),
"Poisson 2" = glm(Crime_pers ~ Literacy + Commerce, family = poisson, data = dat),
"RegLinear 3" = lm(Crime_prop ~ Literacy + Clergy, data = dat)
)
modelsummary(modelo)
|
RegLinear 1
|
Poisson 1
|
RegLinear 2
|
Poisson 2
|
RegLinear 3
|
(Intercept)
|
7948.667
|
8.241
|
16259.384
|
9.876
|
11243.544
|
|
(2078.276)
|
(0.006)
|
(2611.140)
|
(0.003)
|
(1011.240)
|
Literacy
|
-39.121
|
0.003
|
3.680
|
0.000
|
-68.507
|
|
(37.052)
|
(0.000)
|
(46.552)
|
(0.000)
|
(18.029)
|
Clergy
|
15.257
|
|
77.148
|
|
-16.376
|
|
(25.735)
|
|
(32.334)
|
|
(12.522)
|
Commerce
|
|
0.011
|
|
0.001
|
|
|
|
(0.000)
|
|
(0.000)
|
|
Num.Obs.
|
86
|
86
|
86
|
86
|
86
|
R2
|
0.020
|
|
0.065
|
|
0.152
|
R2 Adj.
|
-0.003
|
|
0.043
|
|
0.132
|
AIC
|
1740.8
|
274160.8
|
1780.0
|
257564.4
|
1616.9
|
BIC
|
1750.6
|
274168.2
|
1789.9
|
257571.7
|
1626.7
|
Log.Lik.
|
-866.392
|
-137077.401
|
-886.021
|
-128779.186
|
-804.441
|
F
|
0.866
|
|
2.903
|
|
7.441
|
modelo <- list(
"RegLinear 1" = lm(Donations ~ Literacy + Clergy, data = dat),
"Poisson 1" = glm(Donations ~ Literacy + Commerce, family = poisson, data = dat),
"RegLinear 2" = lm(Crime_pers ~ Literacy + Clergy, data = dat),
"Poisson 2" = glm(Crime_pers ~ Literacy + Commerce, family = poisson, data = dat),
"RegLinear 3" = lm(Crime_prop ~ Literacy + Clergy, data = dat)
)
modelsummary(modelo)
|
RegLinear 1
|
Poisson 1
|
RegLinear 2
|
Poisson 2
|
RegLinear 3
|
(Intercept)
|
7948.667
|
8.241
|
16259.384
|
9.876
|
11243.544
|
|
(2078.276)
|
(0.006)
|
(2611.140)
|
(0.003)
|
(1011.240)
|
Literacy
|
-39.121
|
0.003
|
3.680
|
0.000
|
-68.507
|
|
(37.052)
|
(0.000)
|
(46.552)
|
(0.000)
|
(18.029)
|
Clergy
|
15.257
|
|
77.148
|
|
-16.376
|
|
(25.735)
|
|
(32.334)
|
|
(12.522)
|
Commerce
|
|
0.011
|
|
0.001
|
|
|
|
(0.000)
|
|
(0.000)
|
|
Num.Obs.
|
86
|
86
|
86
|
86
|
86
|
R2
|
0.020
|
|
0.065
|
|
0.152
|
R2 Adj.
|
-0.003
|
|
0.043
|
|
0.132
|
AIC
|
1740.8
|
274160.8
|
1780.0
|
257564.4
|
1616.9
|
BIC
|
1750.6
|
274168.2
|
1789.9
|
257571.7
|
1626.7
|
Log.Lik.
|
-866.392
|
-137077.401
|
-886.021
|
-128779.186
|
-804.441
|
F
|
0.866
|
|
2.903
|
|
7.441
|
modelsummary(modelo, fmt = 4)
|
RegLinear 1
|
Poisson 1
|
RegLinear 2
|
Poisson 2
|
RegLinear 3
|
(Intercept)
|
7948.6672
|
8.2410
|
16259.3843
|
9.8758
|
11243.5443
|
|
(2078.2761)
|
(0.0058)
|
(2611.1396)
|
(0.0034)
|
(1011.2402)
|
Literacy
|
-39.1209
|
0.0030
|
3.6800
|
-0.0003
|
-68.5065
|
|
(37.0520)
|
(0.0001)
|
(46.5521)
|
(0.0001)
|
(18.0286)
|
Clergy
|
15.2567
|
|
77.1481
|
|
-16.3758
|
|
(25.7354)
|
|
(32.3339)
|
|
(12.5222)
|
Commerce
|
|
0.0111
|
|
0.0006
|
|
|
|
(0.0001)
|
|
(0.0000)
|
|
Num.Obs.
|
86
|
86
|
86
|
86
|
86
|
R2
|
0.020
|
|
0.065
|
|
0.152
|
R2 Adj.
|
-0.003
|
|
0.043
|
|
0.132
|
AIC
|
1740.8
|
274160.8
|
1780.0
|
257564.4
|
1616.9
|
BIC
|
1750.6
|
274168.2
|
1789.9
|
257571.7
|
1626.7
|
Log.Lik.
|
-866.392
|
-137077.401
|
-886.021
|
-128779.186
|
-804.441
|
F
|
0.866
|
|
2.903
|
|
7.441
|
modelsummary(modelo, fmt = "%.4f")
|
RegLinear 1
|
Poisson 1
|
RegLinear 2
|
Poisson 2
|
RegLinear 3
|
(Intercept)
|
7948.6672
|
8.2410
|
16259.3843
|
9.8758
|
11243.5443
|
|
(2078.2761)
|
(0.0058)
|
(2611.1396)
|
(0.0034)
|
(1011.2402)
|
Literacy
|
-39.1209
|
0.0030
|
3.6800
|
-0.0003
|
-68.5065
|
|
(37.0520)
|
(0.0001)
|
(46.5521)
|
(0.0001)
|
(18.0286)
|
Clergy
|
15.2567
|
|
77.1481
|
|
-16.3758
|
|
(25.7354)
|
|
(32.3339)
|
|
(12.5222)
|
Commerce
|
|
0.0111
|
|
0.0006
|
|
|
|
(0.0001)
|
|
(0.0000)
|
|
Num.Obs.
|
86
|
86
|
86
|
86
|
86
|
R2
|
0.020
|
|
0.065
|
|
0.152
|
R2 Adj.
|
-0.003
|
|
0.043
|
|
0.132
|
AIC
|
1740.8
|
274160.8
|
1780.0
|
257564.4
|
1616.9
|
BIC
|
1750.6
|
274168.2
|
1789.9
|
257571.7
|
1626.7
|
Log.Lik.
|
-866.392
|
-137077.401
|
-886.021
|
-128779.186
|
-804.441
|
F
|
0.866
|
|
2.903
|
|
7.441
|