Testes t e seu amigo anormal w

Curso Ninja de Estatística Aplicada com R para Ciências da Saúde

Henrique Gomide
CREPEIA, PET - Psicologia

Antes de começar

Carregando o banco da aula e pacotes

dados  <- read.csv(file.choose(), header=TRUE, sep=",")
require(car)

Como responder este problema?

  • Pessoas que praticam religião tem maior auto-estima?
  • Traduzindo: os escores médios para escala de auto-estima variam entre aqueles que praticam ou não uma religião?
  • Ou os escores médios da escala de auto-estima variam após um treinamento para auto-estima?

Os tipos de teste t

  • Amostras independentes
  • Amostras dependentes (ou pareadas)

Teste de postos de Wilcoxon

  • Para uma amostra
  • Para duas amostras (também conhecido como Mann-Whitney)

Características dos testes

As médias de duas amostras são calculadas*

  • H0: não há diferença entre os grupos
  • H1: existe uma diferença entre as médias

Pressupostos do teste t

  1. A distribuição da amostra é distribuída normalmente
  2. Os dados são mensurados em nível intervalar
  3. Para amostras independentes
  4. Os grupos são diferentes
  5. Existe homogeneidade de variâncias

Como analisar

  1. Faça análises descritivas dos seus dados
  2. Procure por normalidade
  3. Verifique a homogeneidade de variâncias
  4. Tudo ok, rode o teste
  5. Calcule o tamanho do efeito

Faça análises descritivas

  • Ver aula sobre análise descritiva

Procure por normalidade

  • Ver aula "mamãe eu sou normal"

Homogeneidade de variâncias

Teste de Levene

leveneTest(y, group, ...)

onde:

  • y - variável de interesse
  • group - variável do grupo

Homogeneidade de variâncias

Exemplo

leveneTest(somaescala ~ v9, data = dados)
## Levene's Test for Homogeneity of Variance (center = median)
##       Df F value Pr(>F)
## group  1    1.22   0.27
##       51

Se p > .05, variâncias homogêneas.

O Teste t

t.test(x, y, data, alternative, paired)

Onde x - variável 1 y - variável 2 data - banco de dados alternative - "two.sided", "less" e "greater" paired - TRUE or FALSE var.equal - TRUE or FALSE

Tudo ok, rode o teste

testeT <- t.test(somaescala ~ v9, data = dados)
testeT
## 
##  Welch Two Sample t-test
## 
## data:  somaescala by v9
## t = 0.3678, df = 34.31, p-value = 0.7153
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1.177  1.697
## sample estimates:
## mean in group Não mean in group Sim 
##             26.29             26.03

Cálculo do efeito

t <- testeT$statistic[[1]]
df <- testeT$parameter[[1]]
r <- sqrt(t^2/(t^2 + df))
round(r, 3)
## [1] 0.063

O correpondente não paramétrico

wilcox.test(x, y = NULL,
            alternative = c("two.sided", "less", "greater"),
            mu = 0, paired = FALSE, exact = NULL, correct = TRUE,
            conf.int = FALSE, conf.level = 0.95, ...)

Cálculo do efeito para Wilcoxon

$W/sqrt(N)

Obrigado

Para saber mais

Field, A. P., & Miles, J. (2012). Discovering statistics using R. Los Angeles; London: SAGE.