chrn_labels <- c(
'Severe Chronic Absenteeism' = "Severe",
'Moderate Chronic Absenteeism' = "Moderate",
'At-Risk of Chronic Absenteeism' = "At-Risk",
'Not At-Risk of Chronic Absenteeism' = "Not At-Risk"
)
results_factor2 <- results_factor %>%
select(last_name, first_name, year, abs_levels)
m <- highlight_key(results_factor2)
p <- ggplot(m,
mapping = aes(x = year, y = length(last_name), fill = abs_levels)) +
geom_col() +
facet_wrap(~abs_levels, labeller = as_labeller(chrn_labels)) +
scale_fill_viridis_d() +
scale_x_discrete(labels = NULL) +
scale_y_continuous(labels = NULL) +
labs(x = NULL, y = NULL,
title = "2019-2020 Overall Levels of Chronic Absenteeism") +
theme_minimal() +
theme(legend.position="none")
gg <- highlight(ggplotly(p), "plotly_selected")
crosstalk::bscols(gg, DT::datatable(m,
colnames = c(
'Last Name', 'First Name', 'Year', 'Level'),
extensions = 'Buttons',
options = list(
dom = 'Bfrtip',
buttons = c('copy', 'csv', 'pdf',
'print')
)))